CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506
Published online 12 February 2016 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3795

A cost-efficient resource provisioning algorithm for DHT-based
cloud storage systems?

Jingya Zhou®", Jianxi Fan and Juncheng Jia

School of Computer Science and Technology, Soochow University, Suzhou 215006, China

SUMMARY

Personal cloud storage provides users with convenient data access services. Service providers build dis-
tributed storage systems by utilizing cloud resources with distributed hash table (DHT), so as to enhance
system scalability. Efficient resource provisioning could not only guarantee service performance, but help
providers to save cost. However, the interactions among servers in a DHT-based cloud storage system depend
on the routing process, which makes its execution logic more complicated than traditional multi-tier applica-
tions. In addition, production data centers often comprise heterogeneous machines with different capacities.
Few studies have fully considered the heterogeneity of cloud resources, which brings new challenges to
resource provisioning. To address these challenges, this paper presents a novel resource provisioning model
for service providers. The model utilizes queuing network for analysis of both service performance and cost
estimation. Then, the problem is defined as a cost optimization with performance constraints. We propose
a cost-efficient algorithm to decompose the original problem into a sub-optimization one. Furthermore, we
implement a prototype system on top of an infrastructure platform built with OpenStack. It has been deployed
in our campus network. Based on real-world traces collected from our system and Dropbox, we validate the
efficiency of our proposed algorithms by extensive experiments. Copyright © 2016 John Wiley & Sons, Ltd.

Received 2 June 2015; Revised 10 January 2016; Accepted 16 January 2016

KEY WORDS: cloud storage; data access services; resource provisioning; queuing network

1. INTRODUCTION

Personal cloud storage provides users with many attractive functions, such as data storage, data
sharing, data access, and management. It utilizes cloud technologies to build storage systems based
on IT resources located in data centers. With the popularity of cloud computing, cloud storage
services have gained more and more attention in both academia and industry [1-4]. According to
an THS report, personal cloud storage subscriptions have reached 500 million in 2012 for major
providers such as Dropbox and iCloud [5]. The cloud storage market is estimated to grow at a rate
of 33.1% and reach $56.57bn by 2019 [6]. One of the most attractive features of personal cloud
storage is the ability to provide users with convenient data access services without worrying about
data loss. When users use services, they are mainly concerned about data availability and response
delay. The former represents the probability that users can successfully access the target data, and the
latter refers to the time required for the system to respond to requests. Both of them directly affect
the service level that users experienced and become the preferred performance metrics discussed in
this paper.

In general, cloud storage providers build their storage systems based on the infrastructure rented
from infrastructure as a service providers. For example, Dropbox chooses IT resources that come

*Correspondence to: Jingya Zhou, School of Computer Science and Technology, Soochow University, Suzhou 215006,
China.

TN previous version of this paper has appeared in NPC’ 14 conference.

TE-mail: jy_zhou@suda.edu.cn

Copyright © 2016 John Wiley & Sons, Ltd.

4486 J.ZHOU, J. FAN AND J. JIA

from Amazon as its servers to store data and deal with requests [7]. Hence, cloud storage providers
have to face an important problem — how many resources are required to build the system as
well as to provide satisfactory services. The objective is to minimize the resource cost as well as
guarantee the agreed performance level. However, it is not easy to achieve this objective because
some new observations pose great challenges to the problem. In this paper, we explore the resource
provisioning problem from the cloud storage provider’s point of view.

First, currently, cloud storage systems often face a high amount of concurrent access requests.
More than 1 billion files are accessed in Dropbox everyday. A cloud storage system consists of
two kinds of servers: index server, which stores meta data about users’ files, including the list of
files, their sizes and attributes, and pointers to where the files were stored; storage server, which
stores file data uploaded by users. As shown in Figure 1, access requests from users’ client reach the
index server at first for retrieving the corresponding meta data of files and then the client interacts
with storage server directly based on meta data. Single index server architecture (e.g., GFS [8])
cannot support such a high amount of concurrent access requests. Distributed hash table (DHT)
and Zookeeper are two well-known mechanisms for maintaining multiple servers, and both of them
can be used to build multi-index server architecture. DHT focuses on the scalability of system by
building on a highly flexible structure, while Zookeeper is a centralized coordination service that
ensures strong consistency by following rigorous distributed algorithms. Nowadays, many cloud
storage providers begin to choose DHT (e.g., Dynamo [1], Cassandra [2]). DHT requires that users’
requests need to be matched and forwarded among index servers after they arrive at the system. Its
execution logic is more complicated than both single index server architecture and multi-tier web
applications because the interactions among servers depend on the routing process. While in single
index server architecture there is no direct interaction among servers, in multi-tier web applications,
interactions occur sequentially layer by layer.

Second, resource heterogeneity has become very common in today’s production data centers
[9]. Modern data centers often comprise different types of machines from more than one gener-
ation. Those machines have heterogeneous processor architectures, clock frequencies, memories,
and disks. Even if the system is running on virtual machines, we cannot neglect the fact that dif-
ferent types of virtual machines have varied processing capacities. As a result, cost optimization is
never easily equivalent to the minimum number of servers. In particular, modern storage technol-
ogy such as solid-state drives (SSD) have greatly improved I/O performance and have been used in
many storage systems. Nevertheless, the price per unit capacity of SSD is much higher than that of

Users i, Gl

. | respon?esT___¢ data
Cloud Storage provider /'/_—-__“l’\ M I\ L"""““a

Service access point j

e N —

i Index
\ Index server|

server
Index . _ Index
server server
rent se{rvers from datacenter {}
R L [
IaaS provi
IT Resource
\ in Datacenter =I| =11 S

Figure 1. Cloud storage system overview.

requests

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506
DOI: 10.1002/cpe

COST-EFFICIENT RESOURCE PROVISIONING FOR DHT-BASED CLOUD STORAGE SYSTEMS 4487

hard disk drives (HDD). Hence, there exists a trade-off between performance and cost in realizing a
fine-grained resource provisioning.

To address these challenges, we present a cost-efficient resource provisioning scheme. First, we
propose a queuing network model that takes the heterogeneity of both the servers capacity and
its pricing into account. In the model, each server is regarded as an M/G/1/k queue with its own
processing capacity, where users’ requests arrive randomly; the processing time of requests to be
executed on servers is a distribution rather than a fixed value, and each queue has a length limit,
which meet the practical facts. Different types of servers are charged varied prices. More impor-
tantly, we use this model to analyze the complex interactions by calculating the forwarded requests.
It captures the specific correlation between performance metrics and the allocated resources. Sec-
ond, we propose a fine-grained resource provisioning algorithm to avoid additional cost due to
resource waste. Our algorithm is based on the principle of renting just enough resources to meet the
performance objective. It answers not only how many index servers and storage servers are needed
to rent, but also what types of servers and which type of storage media are required for index server
and storage server, respectively. Third, we propose an implementation of parallel algorithm based
on MapReduce paradigm to deal with the time-consuming problem of algorithm when applied in
large-scale systems.

Our scheme is able to reap the benefits of fine-grained provisioning, resulting in significantly
lower cost. It calculates each server’s capacity by solving a nonlinear programming and chooses
the proper types of server according to capacity values, so as to minimize the total cost. Trace-
driven experiment results illustrate that our scheme can reduce cost by at least 40% compared with
a state-of-the-art scheme without incurring significant degradation of performance.

The remainder of this paper is organized as follows. Section 2 reviews related work. Section 3
presents the modeling of resource provisioning, including performance analysis and problem
description. In Section 4 we provide a solution and implement a parallel algorithm in Section 5.
The experimental results are analyzed in Section 6. Finally, Section 7 draws on some important
conclusions along with suggestions for future work.

2. RELATED WORK

Resource provisioning on demand is a promising approach for reducing cost by dynamically adjust-
ing the number of servers to match resource demands. Xiong et al. [10] presented a prediction model
of service performance for web applications and attempted to answer the question of how many
resources are required to guarantee the performance for a given number of users. Similarly, Shi ez
al. [11] analyzed the resource utilization log by a linear predicting model and proposed a flat period
reservation-reduced method to achieve better response delay. However, the model of these studies
was designed by using an M/M/1 queuing system. An M/M/1 queuing system indicates that service
times follow exponential distribution uniformly. It is a strong assumption that only applies to few
practical scenarios. In production environments, service times on an arbitrary server should be inde-
pendent and follow a general distribution. Zhu et al. [12] created a resource provisioning model by
employing an M/G/1 queuing system, which is an extension of the M/M/1 queue, and developed
meta-heuristic solutions based on the mixed tabu-search optimization algorithm to solve the pro-
visioning problem. However, the proposed model only takes response delay into consideration and
focuses on the maximization of infrastructure as a service provider’s profit, which is different from
the goal of this paper.

Resource demands not only depend on user requests but also have a strong correlation with spe-
cific execution logic. Zhang [13] presented a resource management algorithm for cloud storage
systems. The proposed algorithm aims to achieve load balancing by using two types of operation,
that is, merge operation and split operation. However, such an algorithm does not consider server
interactions during the execution of services and only considers load balancing as performance met-
rics. Jing et al. [14] focused on how to minimize cost while satisfying response delay constraint for
multi-tier applications. It employs a flexible hybrid queuing model that consists of one M/M/c queue
and multiple M/M/1queues to determine the number of servers at each tier. Different from layer-by-
layer research ideas, Lama et al. [15] suggested employing fuzzy theory to guide server provisioning

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506
DOI: 10.1002/cpe

4488 J.ZHOU, J. FAN AND J. JIA

and designed a model-independent fuzzy controller, so as to minimize servers while guaranteeing
end-to-end response delay. For multi-tier applications, the interactions among servers are executed
layer by layer, so the execution logic is simple. For cloud storage services, users’ requests should
usually be matched and forwarded among many servers after they arrive at systems. The interac-
tions among servers depend on the routing process and are not to be executed in accordance with
the fixed order. Hence, the interactions that occurred in cloud storage systems are complicated and
lack of an effective resource provisioning model for characterization.

The works in [14, 15] are based on the assumption that servers are identical, which is contra-
dictory to the reality of the situation in production data centers. Furthermore, failure to consider
machine heterogeneity results in coarse-grained resource provisioning and limited cost optimiza-
tion. More recently, Zhang et al. [9] studied the heterogeneity-aware resource provisioning problem
in the cloud data center. Different from our work, they dynamically adjusted the number of servers
to strike a balance between energy savings and scheduling delay. Neither interactions among servers
nor resource cost have been considered in their work. Our previous work [16] provided a novel
resource provisioning model by characterizing the execution logic of cloud storage services. How-
ever, the resource heterogeneity has not been fully considered in [16], and this paper acts as an
extension. Specifically, we updated the resource provisioning model, provided the implementation
of parallel algorithm to improve efficiency, and evaluated the effectiveness of resource provisioning.

3. RESOURCE PROVISIONING MODEL

To tackle the previous problem, we have to establish a resource provisioning model. As we know,
cloud storage is a carefully designed distributed storage system. A ring structure is used to describe
the mapping from file name to its meta data. The ring is divided into many partitions that correspond
to index servers. Each index server stores the meta data that belong to the corresponding partition
and maintains a routing table at the same time. When the system receives requests, it will dispatch
them to index servers firstly. To accelerate operations, the meta data is stored in memory. If requests
match, index server will return results directly. Otherwise it will forward requests to another one
by checking its routing table. The information contained in a routing table depends on the system
scale. For a system with dozens of servers, the routing table could contain full information about all
partitions (index servers) through gossiping each server’s routing table. The meta data can be found
within one hop in this case. However, the overhead of maintaining routing table increases with the
system size. In a large-scale storage system, each index server’s routing table contains information
about only a small number of other partitions (index servers). As a consequence, the requests will
be forwarded to the next server according to the DHT scheme and may be forwarded several hops
before matching.

Index servers interact with each other through forwarding requests. To better describe this type
of interaction, we propose a resource provisioning model based on queuing network. As shown in
Figure 2, the system consists of N index servers and M storage servers, and each is modeled as
an M/G/1/k queue with independent general execution time distribution. We use M/G/1/k queue
based on the following considerations. On one hand, users’ requests arrive randomly and could be

Ay
M/G/1/k M/G/1/k,
A $ s match ss
:IID 1 > |]ID 1M
A Index A Storage
Requests 1 dispatch : Server 2 : forwarded Server
' : - requests
IS match
— P10 SR
Ay
Figure 2. Queuing network model for resource provisioning.
Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506

DOI: 10.1002/cpe

COST-EFFICIENT RESOURCE PROVISIONING FOR DHT-BASED CLOUD STORAGE SYSTEMS 4489

described as a Poisson distribution with rate A; . On the other hand, because of the limit of server
capacity, the server cannot simultaneously receive and handle an unlimited number of requests.
As requests increase, the length of queue becomes larger, which results in a higher response delay
or even blocks servers. To avoid server overload, we set up size limits (ky, k;) for the queues of
index server and storage server, respectively. When the length of queue reaches the limits, the server
workload will be saturated and then the new arrived requests will be denied. Once a request is
denied, the user’s access will fail, and as a consequence, the data availability will decrease. In our
model, index servers are classified and charged by their processing capacities. Server’s capacity
mainly depends on its own processor and memory, for example, the processing capacity of index
server I is represented by p; (Umin < Mi < MUmax), Where fmax and pmi, are the upper bound
and lower bound, respectively. Storage servers are classified and charged by their I/O capacities
that mainly depend on disk, for example, the I/O capacity of storage server i is represented by
Vi (Umin < Vi < Umax)- The cost of both index server and storage server are represented by two
functions f7(u;) and fs(v;), respectively.

3.1. Performance modeling

When users’ requests arrive at the system, they are dispatched to servers and will be processed
according to DHT mechanism. It is assumed that the data have been stored in the system, and
then the primary performance metrics concerned by users should be data availability and response
delay. The former is denoted by P,,,, which represents the probability that users can successfully
access the target data, and the latter is denoted by R, which represents the time required for the
system to respond to requests. This paper strives to research on resource provisioning from the cloud
storage provider’s point of view. Considering users’ requirements, we should focus on performance
guarantee; while considering the rented servers, we should focus on cost minimization. Therefore,
we combine both of them together and describe the problem as follows:

Data availability and response delay are regarded as performance metrics, while server cost is
regarded as economic metrics. Hence, our problem is how to generate a resource provisioning
demand for providers according to the current users’ requests, so that it can meet performance
metrics while optimizing economic metrics. The resource provisioning demand consists of five
parameters, that is, the number of index and storage servers, the processing and I/O capacity of each
server, and cost.

3.1.1. Performance analysis for index servers.. In a cloud storage system, users’ requests can be
satisfied within O(log N) hops forwarding according to DHT rules, so that the mean match rate at
each hop is at least 1/(log N + 1). Assuming that the mean rejection rate of index server is Pr;,
then the meta data availability should be

log N
+1
Pueta = Y A()B()) ’N - (1)
j=0

where A(j) = (1 — Py, j)f +1 represents the probability that the request arrives at the (j + 1)th

server after it finishes j hops forwarding without being denied, while B(j) =]_[(1- g N e NET)
represents the probability that the request has not been matched at prev10us j servers The proba-
bility of being matched successfully at the (j + 1)th server is o ; g Assuming that the request
stops at the (j + 1)th server, then there exists three cases, as shown in Figure 3:

(1) The request is not matched at the (j + 1)th server. Then the request is forwarded to the (j +
2)th server and is denied by the server. The probability of such case should be B(j 4 1) Py¢;.
(ii)) The request is matched successfully at the (j + 1)th server. The probability of such case
should be B(j)l N+1
(iii) The request has arrlved at the last hop, that is, j = log N. The probability of such case
should be A(log N)B(log N).

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506
DOI: 10.1002/cpe

4490 J.ZHOU, J. FAN AND J. JIA

_ Jjth hop _ Jth hop _ logNth hop
:ail to r:a[t‘ch and match the quest match the quest
j orward the request) successfully . successfully
J W \ 4

"the request is rejected I !
0] (i) (iii)

Figure 3. An example of request forwarding.

Combining the aforementioned cases, we conclude that the mean hop counts of request can be
represented by

logN—1 . .
: : +1 +1 .
1 =" (40080) (1 i) P + i) 1) o
+ A(log N)B(log N)log N

We can deduce the mean number of forwarded messages in the same way:

log N—1 . .
. . Jj+1 . j+1 .
FM = A(j)B 1————) Pyes 1 e —
].Z:O () (])((logN+1) rei(J +)+logN+1J)). 3)
+ A(log N)B(log N)log N

As described by Figure 2, the arrival rate of index servers consists of both the requests A issued
from users and the forwarded requests A, where A, = A; FM. So the mean arrival rate from
users can be calculated by A;/N. It is noted that the probability of receiving requests depends on
the access frequency of meta data stored on server. Q;(0 < Q; < 1) is used to represent the
access frequency of server i, and then the arrival rate of forwarded requests at server i should be
Az, = Q;iA,. For server i, the arrival rate can be represented by

AI)=A1i + A2 =A(1/N + O; FM). 4

Response delay consists of two parts, that is, the query time 7}, and I/O latency T;,, and Ty also
includes the mean time required to forward the request, denoted by Ty, and the mean sojourn time
at index server, denoted by 7. Thus, the mean response delay should be

R=Ts -H+Ts-(H+1)+ T (5)

We should deduce the sojourn time by analyzing M/G/1/k queuing system. There are a number
of possible approaches to achieve an exact analysis: embedded Markov chains [17], regenerative
processes [18], and mean busy period approaches [19], yet these approaches tend to be very complex
and only appropriate for small value of k. We choose to use two-moment approximation approach
[20] that is based on diffusion theory. The key idea of this approach is concluded that the discrete
queuing process is approximated to a continuous diffusion process. The rejection rate of server i can
be represented by a function of p;, denoted by f.;(;), which equals the probability of having k
requests in the queue, that is,

(@ +2k0)/@+@) ())

—_— . . —_— 1
Pkl,i - frej (pl) - p.z(qji+kl+l)/(2+¢i) _ 1 (6)

1

_2 2 _52
where @; = \/ pie Sis; — \/ pie %i, p; = A(i)/u; represents the service intensity of server i and s;
represents the coefficient of variation of the service process. The mean rejection rate is calculated by

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506
DOI: 10.1002/cpe

COST-EFFICIENT RESOURCE PROVISIONING FOR DHT-BASED CLOUD STORAGE SYSTEMS 4491

| N
Proj =5 2 Prrsi- (7
i=1
Because servers may deny the incoming requests, the effective arrival rate at server i should be

less than A (i), and can be represented by A.(i) = A(i)(1 — P, ;). Thus, the probability of empty
workload at server i is given by

le‘(i) _ (Pi - 1) 8)
Wi - piz(q§i+k1+1)/(2+q5,») _ 1'

Pyi =1-—

The probability that there are j requests waiting in the queue of server i is pij Py,;, and then the
mean number of requests waiting in the queue of server i should be

ki—1

Li =Y jp! Po+kiPr. ©)
=0

Based on Little’s Formula [17], the sojourn time at server i is represented by Ts; = L;/A.(i).
Therefore, the mean sojourn time is given by

1 N
T, = NZTS,-. (10

3.1.2. Performance analysis for storage servers. Once the meta data has been obtained, the next
step is to access files stored on storage servers. We use a queuing model to estimate the I/O latency
in terms of Noop I/O scheduling mechanism. As illustrated by Figure 4, initially, the requests arrive
at the cache queue. After being served by the cache, two alternatives are possible for each request:
Either the request is completed and leaves with probability p., or the request arrives at the disk queue
with probability 1 — p.. Merging is often used to enhance I/O performance by minimizing seeking
time, and it occurs when a request is issued to an identical or adjacent region of the disk. Merging
requires the kernel to sort and merge a set of requests. However, it is not suitable for truly random-
access devices such as SSD, because SSD has no overhead associated with seeking. In addition,
Noop I/O scheduler performs merging without sorting and merely maintains the request queue in
near-first in first out order. Requests from cloud storage users are highly random. Considering these
issues, we think merging has little influence on I/O performance in our system, and we do not
consider request merging in this paper. Specifically, the I/O latency at a storage server has a strong
correlation with the storage media. In a hybrid storage system, SSD is usually used as a secondary
storage to improve 1/O performance [21, 22]. The latency can be calculated by

Tssa = PcWeache + teache) + (1 — pe) Wssa + Weache + Lssa), (11)
Thad = Pc(Weache + teache) + (1 — pe) Whad + Weache + thda)-
|_ ______________ 1
| Storage server |
! 1
requests 1Cache SSD/HDD 1
: 1_pc 1
— ——>
> {110 |
1
reply I lpc l :
< ! |
L e e e e = J
Figure 4. A queuing model for storage server.
Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506

DOI: 10.1002/cpe

4492 J.ZHOU, J. FAN AND J. JIA

where fcqches tssd» and tp 4 represent the time required to read a block of data from cache, SSD and
HDD, respectively, W.acne, Wssa, and Wy 44 represent the waiting time spent on queuing and can
be calculated by the same approach as discussed in Section 3.1.1. Assuming that the percentage of
requests replied by SSD is py4, then the mean I/O latency is given by

Tio = pssaTssa + (1 — pssa) Thaa- (12)

Before calculating the data availability, P,,,, we have to obtain data availability at cache, SSD
and HDD, denoted by pcache, Pssd»> and ppaa, respectively. peaches Pssa» and ppaq could be cal-
culated by (1 — Pegche rej)s (1 — Pssd rej)s and (1 — Ppaq rej), and the calculation of rejection rate
is the same as analyzed in Section 3.1.1.

Pcache_rej = frej (/Ocache)v
Pssd_rej = frej (Pssd)s (13)
Praa rej = frej(Phda),

Pova = Ppeta (pssd (pcpcache + (1 - pC)pssd) + Phad (pcpcache + (1 - pc’)phdd)) . (14

3.2. Resource provisioning problem formulation

The total cost paid by a storage provider mainly includes index server cost, storage server cost, and
traffic cost. The index server cost is the function of each server’s capacity, and the storage server
cost is the function of each server’s I/O capacity. In particular, for simplicity, storage server’s I/O
capacity only depends on the storage media, for example, vssq 0OF V44, and we assumes that servers
with the same storage media have the same disk capacity. Traffic cost caused by retrieving data can
be reduced by data compression techniques, while traffic cost caused by geo-replication depends on
the specific replication scheme. Our work focused on resource provisioning for a single data center;
both of them are out of the scope of this paper. Another type of traffic cost, which is caused by data
movement between two continuous resource provisionings, has not been considered yet, because it
belongs to intra-data center traffic and is free for storage providers. Therefore, the cost discussed
here mainly refers to server cost, including cost of both index server and storage server. The final
objective of resource provisioning is to generate the server level resource demands to minimize cost
while satisfying performance requirements. The definition of the resource provisioning problem is
formalized by Equation (14).

Given the constraints (1)—(6), the objective is to find a resource provisioning demand that is able
to minimize the overall cost. Constraints (1)—(2) are the thresholds of performance metrics, for
example, data availability P, and response delay R*. Constraints (3)—(5) are the thresholds of
rejection rate of both index server P, and storage server, for example, SSD server Pgq ,o; and
HDD server Ppgq rej. Constraint (6) represents the range of ;. The index server cost is f7(/4;)
that is a non-decreasing function of y;, and the request arrival rate is A 1. N represents the number of
servers and p represents the vector of server’s processing capacities. Mssq or Mj 44 is the number
of storage servers with SSD or HDD, and its cost, denoted by fs(vssq) or fs(Vaaa), is also a non-
decreasing function of I/O capacity. Cost is the sum of all server cost. The resource provisioning
demand is represented by (N, i, Mgsq, Mpaa).

N
Min Cost = Y. f1(wi)+Mssaq fs(vssa) + Mpaa fs(haa),

i=1

st. (1) Payg = P*

ava’

(2) R < R*,

15)
(3) Prej < Pr*ej’ (
*
(4) Pssd?rej < Pssdﬁrej’
*
(5) Phdd_rej S Phdd_rej’
(6) Mmin S Ui < Umax-
Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506

DOI: 10.1002/cpe

COST-EFFICIENT RESOURCE PROVISIONING FOR DHT-BASED CLOUD STORAGE SYSTEMS 4493

4. RESOURCE PROVISIONING ALGORITHM

Recall that the cloud storage provider’s greatest concern is to maximize profit (e.g., by minimiz-
ing cost) while providing high quality service (e.g., by guaranteeing data availability and response
delay). The resource provisioning is defined as a nonlinear cost optimization problem with perfor-
mance constraints from the cloud storage provider’s point of view. We decompose our resource
provisioning problem into two subproblems: index server provisioning and storage server provi-
sioning. For index servers, we are not only trying to answer how many servers need to rent, but
also answer what the capacities vector of these servers is. u is used to represent the vector of server
capacities, while N is the number of rented servers and is also the dimension of capacities vector.
For storage servers, we attempt to give the optimal number of both SSD servers and HDD servers.
Assuming that the total amount of data is a function of time, denoted by D(¢), and the disk capacity
iS cpq4, then the number of HDD servers Mj,44 can easily be obtained by D(¢)/cpq4. We should
determine the feasible range of N and M, at the first step.

Considering constraints (4) and (5), substitute PS*S d rej and P,:‘ dd rej into Equation (13), we
can obtain the value of Mgy, denoted by M| ,. The maximum value of My, denoted by M ,
is D(t)/cssa, Where cssq is the disk capacity of each SSD server. Therefore, the feasible range
of Mysq is represented by [M] ,, M ,]. In addition, we can calculate the possible range of T;,
by substituting [M_ _,, M.’ ;] into Equation (12) and further obtain the range of T denoted by

[T,,T,] by substituting T;, into Equation (5). In the same way, substitute P

L Pr "
[M!,,, M], and P, into Equation (14 1d obtain the possibl e e
ssd> Mggals ava quation (14), we could obtain the possible range of P4, denote
by [P, P

meta’ eta] :

Substitute [Py,,;q. Pperql and P, into Equation (2). Then we can obtain the range of N that
satisfies constraints (1) and (3), denoted by [N1, N>]. In the same way, we can also obtain another
range of N, denoted by [N3, Ny4] that satisfies constraints (2) and (3) by substituting 7, 7] and
PZ ; into Equation (6). It is noted that the server rejection rate is a non-increasing function of server
capacity. Then substituting (max OF fimin in constraint (6) and Py, ; = P, ; into Equation (7), we
can deduce the maximal or minimal arrival rate Ayx Or Amp. Combining Equations (4) and (5)
together, we find that A(7) is related to total users’ requests arrival rate A, rejection rate P,;, and
the number of servers N. By substituting A, P, y and A,y Or A, into Equation (5), we can achieve
the feasible range of N , denoted by [N’, N”] that satisfies the threshold of rejection rate. In order
to satisfy all constraints, the feasible range should be trimmed by N;, N, N3, and N4. Theorem 1
shows us the proof of feasible range of N.

Theorem 1
In the server provisioning problem, the feasible range of number of index servers that satisfies all
constraints is [max (N, N1, N, N4), max (N”, N1, N>)].

Proof

P,.j is a non-increasing function of N by analyzing Equations (7) and (8). If N, < N’, the lower
bound of N, denoted by Ny, takes the value of N’ for satisfying constraint (3). If N' < Ny, Ny
takes the value of N; for satisfying constraint (1). If Ny < N’ < Ny, Ny, takes the value of N,. In
addition, R is a non-increasing function of N by analyzing Equation (5) (s is much smaller when
compared with T5). In order to satisfy constraint (2), N should belong to the range of [N3, N4], that
is, Npin = max (N', Ny, N2, N4). Assume the optimal value N* < Ny, and then it will result
in that one constraint or all of the constraints cannot be satisfied. Therefore, N,,;;, should take the
value of max (N’, N1, N, Ny).

In the same way, if N < N”, the upper bound of N, denoted by Ny.x, takes the value of
N" for satisfying constraint (3). If N” < Nj, Npu takes the value of N; for satisfying con-
straint (1). If Ny < N” < N,, Npax takes the value of N,, that is, Ny = max (N”, N1, Ny).
Assume the optimal value N* > Ny, and the corresponding optimal cost is Cost™ =
N*

2 J1(wi)+Mssa fs (vssa) + Mnaa fs (Vhaa), (min < i < Mmax), then all constraints can be sat-

i=1
isﬁed, and NV, is located in the feasible range. The corresponding cost Cost_Ny = Na f1 (min) +

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506
DOI: 10.1002/cpe

4494 J.ZHOU, J. FAN AND J. JIA

Algorithm Resource_provisioning
Input:
D(t): Total amount of data at time ¢;
A1: the total users’ requests arrival rate;
[max: the upper bound of processing capacity;
[min: the lower bound of processing capacity;
Q;: the access frequency of server i;
T': the mean time required to forward the request;
cssq: the disk capacity of each SSD server;
chaq: the disk capacity of each HDD server;
Output:
Opt_solution(N, p, Mysq, Mpaa, Cost) : the optimal resource demands;
Mpaa < D(t)/chad;
Calculate M, by subjecting Py, .. and Py, ... to equation (13);
M, < D(t)/cssd;
Calculate the range of Tj, by subjecting M__,, M, into equation (12);
Calculate T7, T? by subjecting the range of T}, into equation (5);
Calculate P, ,,, P/ .., by subjecting M’ _, M , and P}, into equation (14);
Calculate Ny, N» by subjecting P, ..., Py ... and P7, . to equation (2);

rej

Calculate N3, Ny by subjecting T, T and P, . to equation (6);

9. Calculate Apax(Amin) by subjecting fimax (umii) and Py, ; = P, to equation (7);
10. Calculate N’ (N"") by subjecting tmax (fmin)s P, ; and A1 to equation (5);

11. Nmin <— max (]\/v/7 Nl, Ng, N4), Nmax <— max (N”, Nl, Ng),

12. Opt_solution (N, yt, Mssq, Cost) <~ NLP_OPT (Npin, M. ,);

13. imein 7é Nmax

14. for N < Npin + 110 Npax

15. for Myeq < M. ,+ 1to M

NN E DD =

ssd
16. Calculate Pyyq, R, Prcj by subjecting N, Mgsq, it = (Hmax; -5 fmax)
to equations (14),(5),(7);
17. if Pyya, R, Prej can meet constraints (1),(2),(3)
18. solution (N, u, Mss4, Cost) <— NLP_OPT (N, Msq);
19. if solution (N, pu, Mssq, Cost) is better than
Opt_solution (N, u, Mssq, Cost)
20. Opt_solution (N, pu, Mssq, Cost) < solution (N, p, Mysq, Cost) ;
21. end if
22. end if
23. end for
24. end for
25. end if

26. return Opt_solution (N, i, Mssq, Mpaa, Cost);

Mgsaq fs(Vssa) + Mpaa fs(paa), but Cost_N, < Cost™, which conflicts with the assumption.
Therefore, Npax should take the value of max (N”, N1, N»). O

The optimization problem is a nonlinear programming problem that generally belongs to NP-
hard problems. To solve the problem, a novel algorithm is proposed, called Resource_provisioning.
In the algorithm, lines 1-3 and 4-11 are used to compute the feasible range of both M, and
N, and then for each N and M, in the feasible ranges, lines 18-20 use NLP_OPT(N, Ms4)
to solve the sub-optimization problem with the fixed value of both N and M,,. Before calling
NLP_OPT(N, M;,), we will filter out some (N, M;4) that does not meet the constraints.

The sub-optimization problem is also a non-linear programming problem, which can be formal-
ized as follows:

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506
DOLI: 10.1002/cpe

COST-EFFICIENT RESOURCE PROVISIONING FOR DHT-BASED CLOUD STORAGE SYSTEMS 4495

Algorithm NLP_OPT(N, M.,,)
Input:

N: the number of index servers;

Msq: the number of storage servers;

~(1): the initial multiplier vector;

c¢: penalty factor;

e: control error, € > 0;

a: amplification factor, a > 1;

b:0<b< 1;

input of Resource_provisioning;
Output:

solution(N, p, M54, Cost): the optimal resource demands;
1. Initialize ;{9 with (fimin, - - ., fmin);
2. T+ 1;
3. while A(7) > ¢

4. Solve unconstrained optimization min F (i, 7(7), ¢(7)) started with (7 =1 and find ;.(7);
5. if % >b

6. AT e,

7. end if

8. Calculate 7§T+1) with equation (19);

9. T+ T4 1;

10. end while

1. p pl;

12. return solution(N, u, Mgsq, Cost);

N
Min Cost = Y f1(pi)+Mssa fs(Vssa) + Mpaa fs(Vnaa).

i=1
s.t. (1) gl(ﬂ) = P;va — Pava <0,
(2) g2(n) = R—R* <0, (16)
(3) g3(n) = PJ,; — Prej <0,
(4) ga(1) = Pmin — i <0,
(5) gs(1) = pi — Pmax < 0.

In this paper, we use the augmented Lagrangian approach to solve the problem. By introducing
slack variable z ;, the inequality constraints become equality constraints, that is, g; (1) — zg =0,
Jj =1,2,...,5. We design the augmented Lagrangian function as follows:

5

1
F(u,y,c) = Cost + e Z {[maX{O, vj + ng(/zb)}]z — J/jz}, a7
j=1

where y is multiplier vector, ¢ is penalty factor, and z% = %max {0, v +cgj (u)}. Thus, the
problem is transformed into a simple unconstrained optimization problem, that is, Min F'(i, y, ¢).
The solution of non-linear programming can be obtained by iteratively solving unconstrained

optimization problem. Iteration rules are as follows:

D) = 4@, (18)

D = max{0, y$? + g (W)} j = 1.2,....5, (19)

where a (a > 1) is the amplification factor. The condition for iteration termination is given by

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506
DOI: 10.1002/cpe

4496 J.ZHOU, J. FAN AND J. JIA

5 @® \?
y.
Ar) = Z {max{gj (1), Cé—r)}} <e, (20)

j=1

where ¢ is the control error. Algorithm NLP_OPT(N, M) is described previously.

5. THE IMPLEMENTATION OF PARALLEL ALGORITHM

The optimization problem will become time consuming when the system scale is large. Because the
feasible range of N and M, becomes larger as the system scale increases, the program loops also
increases. In this section, we design an implementation of parallel algorithm based on MapReduce
paradigm labeled MRRP to solve the problem.

The MapReduce model can split a large problem space into small pieces and automatically par-
allelize the execution of small tasks on the smaller space. We deploy MapReduce to parallelize
the solution of sub-optimization problems that are the most time consuming. The whole execution
model consists of two phases, and the architecture is shown by Figure 5. In the 1st phase, for each
sub-optimization problem, we deploy a set of map and reduce operations to find the sub-optimal
solution. After that, a global selection is required, so in the 2nd phase, we deploy a reduce operation
in order to achieve the optimal solution.

1) The 1st phase: The solution algorithm for sub-optimization consists of an iterative process. How-
ever, the standard MapReduce lacks built-in support for iterative programs. We design our model
based on Hal.oop, an efficient iterative data processing framework [23]. The initial partition is
constructed according to the feasible range of N and M., and the record can be represented
by (Ni, Ms4i). Assuming that the sizes of feasible ranges of N and M, are n and m, respec-
tively. Then the parallel degree can be up to n * m. The map operation reads a record, solves
unconstrained optimization min F' (i, y, ¢), and then submits the result as an intermediate out-
put, as shown in function mapper. The reduce operation is illustrated in function reducer, which
receives the results generated by the map operation and updates the parameters in each iteration.
HaLoop provides a caching mechanism for accelerating processing. Inspired by this mechanism,
we design a reducer output cache. The cache stores the most recent local output and can be
further used to evaluate the termination condition.

2) The 2nd phase: The 2nd phase consists of only one reduce operation that is called at the end
of process. The final reducer collects the intermediate results generated in the 1st phase and
produces the final optimal solution.

As illustrated in Figure 5, the runtime system also needs a master to coordinate the parallel exe-
cution of map and reduce tasks. In function master, partitions are built based on the feasible range

I— The 1* phase 4'

Input:
the fesaible
range of N
and Mg

(N3, M,3)

i{ Reduce:

Initial
partition

Figure 5. MapReduce based architecture for parallel implementation of algorithm.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506
DOI: 10.1002/cpe

COST-EFFICIENT RESOURCE PROVISIONING FOR DHT-BASED CLOUD STORAGE SYSTEMS 4497

Function mapper
Input:
Ni: the number of index servers;
Msqi: the number of storage servers;
Output:
u, Cost;
1. if 4 is null
2 <= (Nminv o a,ufmin);
3. end if
4. if v is null
5. v W,
6
7
8

. end if
. solve min F'(u, 7, ¢) started with 1 and find a new p and the corresponding Cost;
. submit(u, Cost);

Function reducer
Input:

output of mapper;

input of NLP_OPT;
Output:

solution(N, p, Mssq, Cost);
1. read the value of both current A(7) and previous A(T — 1);
2. if 505 > b
3. Tt — gl
4. end if
5. 7+ T1+1;
6
7
8

B

. Calculate 7;.7) with equation (19);
. Calculate A(7) with equation (20);

DifA(T) > €
9. continue loop;
10. end if

11. submit solution(N, u, Mysq, Cost);

of both N and M,,;. For each record in partitions, if constraints (1),(2), and (3) of Equation (16)
can be satisfied, a new job will be launched to solve the sub-optimization problem in parallel. After
all parallel jobs finish, the master collects results from the final reducer and outputs the optimal
solution.

In order to guarantee system performance, we set two trigger mechanisms together with the
proposed approach:

(1) Active mechanism. We set an adjustable time window, and the proposed approach is triggered
to generate the latest resource demands during each time window and adjust the resource
provisioning accordingly. The window size could be altered according to the frequency of load
variation. For example, if the load varies quickly, the size will become small, while if the load
varies slowly, the size will become large so as to avoid the frequent changes in resources.

(2) Passive mechanism. The proposed approach is triggered in case the system performance
becomes lower than the threshold values. The mechanism is used as a complement to the active
one to ensure that the proposed approach could well adapt to the scenario of dynamic load.

6. EXPERIMENTAL EVALUATION

In this section, we implement a prototype of DHT-based cloud storage system. We first introduce
the system design and deployment environment. Then we describe experiment setup followed by

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506
DOI: 10.1002/cpe

4498 J.ZHOU, J. FAN AND J. JIA

Function final_reducer
Input:

solution list generated in the 1% phase;
Output:

Opt_solution (N, p, Mssq, Mpaa, Cost);
1. Opt_solution < null;
2. for each solution in solution list
3 if solution is better than Opt_solution
4. Opt_solution < solution;
5
6
7

end if
. end for
. submit Opt_solution (N, u, M4, Mpaa, Cost) to master;

Function master
Input:
the feasible range of N, andMsq;
input of Resource_provisioning
Output:
Opt_solution (N, p, Mssq, Mpaa, Cost);
1. for each N in the range of NV
2. for each M, in the range of My
3. Calculate Pyyq, R, Prcj by subjecting N, Mq,
1t = (Hmaxs ---» fhmax) t0 equations (14),(5),(7);

4 if Pyya, R, Prej can meet constraints (1),(2),(3)
5. start job;

6. end if

7 end for

8. end for

9. Collecting Opt_solution (N, p, Mssq, Mpaa, Cost) from final_reducer;
10. return Opt_solution (N, p, Mssq, Mpaa, Cost);

the analysis and discussion of the evaluation results of several groups of experiments based on
real-world traces collected from our system and Dropbox.

6.1. System overview

Our system is implemented on top of project Voldemort [24], which is an open source implemen-
tation of Dynamo. The modular architecture is shown in Figure 6. It consists of three layers: (1)
the underlying resources are managed by an infrastructure platform built with OpenStack. Through
mapping virtual machines (VMs) onto physical machines, VM placement module provides server
instances for the system; (2) system layer provides the core functionalities for the system opera-
tion. For example, data needs to be partitioned across multiple nodes through data partition module.
The replication level is controlled by the data replication module, while the indexing module is
responsible for matching of meta data of required data. The proposed provisioning scheme is
implemented in resource provisioning module. This module is responsible for generating cost effec-
tive resource demands according to the current performance; (3) service layer provides some user
oriented services, for example, data store, data sharing, and data query.

The infrastructure platform is built on top of a cluster of 14 IBM HS22 blade servers (2.66 GHz
X5650 Six-core 2C/6*4 GB VLP DDR3/1*146 GB 6 Gbps SAS), and all of them are connected in
a 1 Gbps LAN. Servers in our system can be classified as control servers, index servers, and storage
servers. Control servers are in charge of dispatching requests to index servers, recording run-time
log, and performance statistics. Index servers are in charge of providing the required meta data for
incoming requests, and storage servers are designed to respond to I/O requests. In addition, we
selected six blade servers and mounted an SSD (60 GB) on each of them.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506
DOI: 10.1002/cpe

COST-EFFICIENT RESOURCE PROVISIONING FOR DHT-BASED CLOUD STORAGE SYSTEMS 4499

N
[Service access point]
Service
layer
4 Data store Data sharing Data query
P € S
[Data partition] [Indexing] [Data replication]
System s
ayes Cost Resource Performapce
calculation provisioning analysis
AAL
L 1|)
] 1
=
. Resource
Accountin VM placement)
Infrastr = P monitor
ucture N N v
layer ova ova ova
4 Compute Volume Network
@ y

Figure 6. The modular architecture of our system.

400 350 T mul T
@ ‘ L 1§ |
L | L f %%TW" nen |
/N RSN
£E 00 1IN INRIEN % \ ‘!' WL
ol NN NN
i 100 50 ml ud W W W W‘ﬂ ‘W’
2511 0112 08/12 15/12 2212 25/11 26/11 2711 28/11 29/11 30/11 01112
Date Date
(a) (b)

Figure 7. The arrival rate of requests received by the system.

6.2. Trace-driven evaluation

The system consists of a blade server as control server and one small VM and one medium VM
as index servers, and two blade servers as storage servers. We set up three types of VMs: small
(1VCPU 2 GB RAM, $0.06 per hour), medium (2VCPU 4 GB RAM, $0.12 per hour), and large
(4VCPU 8 GB RAM, $0.24 per hour). The storage server with HDD and SSD are charged $0.0002
per gigabyte per hour, $0.001 per gigabyte per hour. Our pricing is based on Amazon EC2 and
Aliyun. The system has been open to campus users since October 2013, attracted more than 500
users to date, and the total amount of storage data is 223 GB (the maximum storage size for each user
is 1 GB). Files larger than 4 MB are split into several chunks. We collected real-world traces labeled
DCS from November 25, 2013 to December 22, 2013. Figure 7(a) reports the requests received by
the system during the period. The mean number of requests per second became larger as the growth
of users scale from 337 to 512. It reflects a weekly pattern that the amount of concurrent visits is
lower on weekends. A daily pattern is reflected by Figure 7(b). There are two peaks that appeared
in the morning and afternoon separately, and the trough appears at noon and midnight. Note that
request for files larger than 4 MB will be split into several requests, so the actual arrival rate of
requests will be higher. Figure 8 reports separately the CDF of data availability and response delay.
The performance remained stable during our measurements, meaning that the underlying resources
were sufficient for supporting high level services. The little differences in response delay are related
to the requests load.

6.2.1. Evaluation with traces DCS. The amount of concurrent visits was too low to evaluate our
provisioning scheme. We reprocessed the traces by adding the last three weeks dataset to the
first week. Then we used LoadRunner [25] to test our system. LoadRunner is a powerful perfor-
mance load testing tool that can generate actual visit load based on the reconstructed traces. The

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506
DOI: 10.1002/cpe

4500 J.ZHOU, J. FAN AND J. JIA

CDF of data availability CDF of response delay

1 1 (
0.8 0.8
0.6 / 0.6
04 / 0.4

. [.
L/ L

0
88.5 99 99.5 100 360 380 400 420 440 460
Data availability (%) Response delay (ms)

CDF
\
CDF

Figure 8. Distribution of service performance levels.

P*

ssd_rej’

thresholds of P,
0.1%, respectively.

We conducted a group of experiments to verify the feasibility of M/G/1/k. Firstly, we deployed
all types of VM and storage server with HDD and SSD in our system, and used LoadRunner to
replay requests against system for measurement. The capacity values of three types of VM are
232, 525, and 1292, respectively, and the I/O capacities of storage server with HDD and SSD are
316 and 472, respectively. For an index server, its capacity is measured by the number of requests
processed per second, while for a storage server, its capacity is measured by the number of chunks
transmitted per second. Then we substituted capacity values into equations to calculate the sojourn
time and compared with the measured values. We made comparisons under varied visit loads, and
the comparison results showed that the differences between both types of values fall in the range
from 2 ms to 11 ms. The differences are small enough to be acceptable for our evaluation.

Besides our scheme, we implement two resource provisioning schemes as follows for
comparison:

R*, P}

rej’

and Pi;kdd_rej are set as 99%, 500ms, 0.3%, 0.1%, and

(1) UoP: Utilization-oriented Principle (UoP) [26] is a simple and widely used resource provi-
sioning approach and has become state-of-the-art. It tries to reduce cost by improving resource
utilization (i.e., equals p) to a predetermined range. UoP approach does not care about the
specific execution logic, and the only thing it cares about is the resource utilization of every
queue. In order to make a fair comparison, UoP approach is implemented based on M/G/1/k
queue. The ranges are set as [60%, 70%], [70%, 80%], and [80%, 90%], respectively.

(2) DPA: A Dynamic Provisioning Approach (DPA) [14] is proposed for multi-tier applications
that employ a hybrid queuing model. It assumes that the server’s capacities are identical, and
the objective is to minimize the total number of servers. We use the modeling approach in
[14] to model the storage system as a combination of one M/M/c queue and multiple M/M/1
queues. M/M/c queue is used to model the indexing subsystem consisting of ¢ index servers
and M/M/1 queues are used to model the storage subsystem consisting of multiple storage
servers. Then we implement the provisioning approach denoted by DPA by following the same
solving method as [14] and set the type of server used is medium type.

Because of the limited system scale, each index server could maintain full information about all
partitions (index servers) through gossiping each servers routing table. Then meta data can be found
within one hop for each request. Figure 9 shows separately the CDF of P4/ P),, and R/R*.
It is concluded from Equations (7) and (8) that the rejection rate has a positive correlation with
utilization rate. For UoP [60%, 70%] and [70%, 80%] approach concerned, the mean utilization
rate are restricted in a low level without large variations, which results in a low level of rejection
rate without large variations. When the rejection rate is low, the data availability is so high that

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506
DOI: 10.1002/cpe

COST-EFFICIENT RESOURCE PROVISIONING FOR DHT-BASED CLOUD STORAGE SYSTEMS 4501

CDF of Pava/P*ava CDF of R/IR*
1 1 mv
08 0.8 / |
=== Qur scheme / , ‘

= UoP[60%, 70%] | | = Our scheme

06 l _ i
= U0P[70%, 80%] 06 = UoP[60%, 70%]
UoP[80%, 90%] =—— UoP[70%, 80%]
0.4 || == DPA a 04 UoP[80%, 90%] |
/ / / A
02 / 0.2 /

1 1.005 1.01 1.015 %_4 0.6 0.8 1
Pava/P*ava R/R*

CDF
CDF

Figure 9. Comparison of distribution of service performance levels.

1.7 T T T T
Our scheme

UoP[60%, 70%]
1.4 B UoP[70%, 80%] [
N UoP[80%, 90%)]
——DPA
1.1 \

% /
o \/
o
g08 N_\ v / /n\

0.5 J’ \f/

0.2 _/v

25/11 26/11 27/11 28/11 29/11 30/11 01/12
Date

Figure 10. Comparison of cost.

we can neglect the influence of other factors on data availability. For UoP [80%, 90%] approach
concerned, if the arrival rate is low, the system could maintain a high level of both utilization rate
and rejection rate. As the arrival rate increases, in order to satisfy performance constraints, both
utilization rate and rejection rate intend to decrease. DPA models the system as a combination of
one M/M/c queue and multiple M/M/1 queues, which cannot accurately describe the execution logic
of storage services because it ignores the interactions among index servers. The performance levels
of DPA are between UoP [60%, 70%] and [70%, 80%]. Note that compared with the threshold, our
scheme can achieve much closer data availability and response delay.

Figure 10 describes the comparison of hourly server cost by using different provisioning
approaches. UoP approach is sensitive to p*. It appears to be relatively conservative when p* is
in the interval [60%, 70%] and [70%, 80%]. Then excessive provisioning of resources results in a
much higher performance level than the threshold level. Furthermore, the UoP approach pays 72.9%
higher cost than our scheme, that is, the higher cost in exchange of the higher performance level.
When p* is in the interval [80%, 90%], it pays 31.8% higher cost than our scheme. Hence, the cost
can be reduced by increasing p*. However, excessive increase in p* will greatly increase rejection
rate. As a result, the data availability decreases and becomes lower than the threshold. The provi-
sioning solution provided by DPA is counted by the number of servers, and its granularity is too
coarse. The results show that DPA pays 47.6% higher cost than our scheme and it is even worse than
UoP when the utilization rate becomes high.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506
DOI: 10.1002/cpe

4502 J.ZHOU, J. FAN AND J. JIA

Table 1. Datasets overview.

Dataset No. 1 2 3 4

IP addresses 13723 18785 2528 400
Concurrent visit rate [8481,2552] [10498,3123] [1474, 735] [291, 109]
Total volume of data 3.01x10* GB 5.1x10* GB 5.51x103 GB 5.32%x10% GB

In addition, we made a comparison on execution time between algorithms
Resource_provisioning and MRRP. The former runs on a single blade server, and the latter runs
on a Hadoop cluster consisting of six IBM HS22 blade servers. The Hadoop cluster is a public
parallel computing platform, and we have installed Haloop framework upon it for supporting the
iterative structure of MRRP. MRRP was actually scheduled to two servers. The execution time of
both Resource_provisioning and MRRP are 11.25 s and 21.02 s, respectively. Interestingly, paral-
lel algorithm MRRP runs longer than Resource_provisioning. The fixed number of types of VMs
indicates the number of processing capacities available for selection is small, and the system scale
is small as well, which results in the practical execution time of algorithm Resource_provisioning
is not long. However, for parallel algorithm MRRP, although caching mechanisms of Hal.oop
framework can help reducing execution time by 1.85 compared with Hadoop, the processes such as
job initialization and shuffle still occupy a certain percentage of execution time. Especially when the
problem size is not large, time consumed by these processes may dominate the total execution time.

6.2.2. Evaluation with traces Dropbox. We consider a more realistic large-scale scenario and use
Dropbox traces labeled Dropbox [27] collected in a European country from March 24, 2012 to May
5, 2012 for further evaluation. The traces consist of four datasets, and the overview is summarized
in Table I, where we can see the unique user IP addresses, concurrent visit rate, and total volume of
data observed during the whole period. The data we need are the set of visit records including access
filename, file size, and access time. In order to evaluate the effectiveness of our scheme in a large-
scale scenario, we extracted those data from four datasets separately and combined them together
as the source of requests to do simulation. Figure 11 reports the mean request rate that appears
a weekly pattern as well. In this scenario, each index server maintains only partial information,
namely, the information about a limited number of others, and so indexing often requires multi-hop
forwarding of requests. We compared the parallel algorithm MRRP with Resource_provisioning.
The former runs on an IBM fat node (2.4 GHz X3850 eight-core 2C/32 GB VLP DDR3/1 TB
6 Gbps SAS), and MRRP was scheduled to five servers in Hadoop cluster for execution. In addi-
tion, we have adjusted some parameters in the cluster to optimize job executions. The execution
time of both Resource_provisioning and MRRP are 5.6 h and 91.7 s, respectively. Therefore, the
proposed algorithm MRRP can deal with resource provisioning problem efficiently in large-scale
cloud storage systems.

Figure 12 shows the comparison of distribution of service performance levels. Our scheme
remains achieving much closer data availability and response delay. Compared with the results
reflected by Figure 9, the differences between provisioning approaches did not become larger with
the growth of system scale. Meanwhile the system using UoP as well as DPA should pay much
higher cost than our scheme (57.2%, 43.1%, 30.8%, and 34.4% higher), as shown in Table II.

6.2.3. Evaluation under failure scenarios.. In a production environment comprised of multiple
servers, server failure may happen at any given time. Redundancy is the only way to avoid data
loss incurred by server failures. Replication and erasure code are two types of commonly used
redundancy approaches to enhance access performance. To evaluate the proposed scheme in a
more practical environment with failure scenarios, we implement both types of approaches for
comparison.

(1) Replication: In practice, the distribution of data access frequency is often nonuniform, and then
there exist both hot data and frozen data. Both of them should not be replicated based on the same
factor. The popularity of data stored in our system was depicted by Figure 13, where we can see

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506
DOI: 10.1002/cpe

COST-EFFICIENT RESOURCE PROVISIONING FOR DHT-BASED CLOUD STORAGE SYSTEMS 4503

1.45

I AR
VALV T

VRN V.

\

Mean number of requests per second

0.7
24/03 31/03 07/04 14/04 21/04 28/04 05/05

Figure 11. The arrival rate of requests in Dropbox.

CDF of Pava/P*ava CDF of RIR*
1 r 1
0.8 I 0.8 ‘ I
= Our scheme l == Our scheme
06 —— UoP[60%, 70%] | | 06 — UoP[60%, 70%] |_|
= UoP[70%, 80%] = U0P[70%, 80%]
& BEF/;[BO%’ 90%] & UoP[80%, 90%]
o , ’ o m— DPA
04 04
0.2 ,J 0.2
0 /
1 1.005 1.01 1.015 %_4 0.6 0.8 1
Pava/P*ava R/R*

Figure 12. Comparison of distribution of service performance levels.

that files that occupy the first 20% of data size were accessed with frequency as high as 70%. We
choose two replication approaches for comparison: proportional and square-root approach [28].
The former requires that each file is replicated based on a factor proportional to file frequency,
while the latter requires the replication factor is proportional to the square-root of file frequency.

(2) Erasure code: In general, the erasure code can be represented by a tuple (x, y) for simplicity,
where x is the total number of chunks after coding, and y is the number of chunks before coding.
We have implemented an erasure coding scheme based on Reed Solomon code in our system.
The reason why we choose Reed Solomon code [29] is that it has strong fault tolerance as well
as high scalability. Currently, the implementation of Reed Solomon coding has been integrated
in many storage systems such as Google Colossus [30], Amazon S3 and Hadoop.

We make the comparison under the scenario that servers fail at the probability of 10%, and the
other settings remain the same as Section 6.2.1. From the results depicted by Figure 14, we have
observed that both data availability and response delay are improved along with the increase of
redundancy level (equivalent to cost increase). The proportional approach tends to cause excessive
replication for hot data, and extra replicas of hot data could help to enhance data availability under
failure scenarios. Hence, compared with square-root approach, proportional approach achieves a lit-
tle bit higher improvement. Meanwhile, more replicas imply that most requests for hot data can get

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506
DOI: 10.1002/cpe

4504 J.ZHOU, J. FAN AND J. JIA

Table II. Cost comparison with traces Dropbox.

Server cost ($)

UoP UoP UoP
Date Our scheme [60%, 70%] [70%, 80%] [80%, 90%] DPA
Week 1 5278.8 8116.1 7503.8 6896.1 7076
Week 2 5131.2 7825.4 7213.1 6666.2 6813.8
Week 3 5419.4 8572 7916.5 7122.7 7331.2
Week 4 5369.2 8302 7721.6 7028.9 7237.1
Week 5 5506.5 8930.9 7980.5 7270 7483.4
Week 6 5203.1 8400.2 7328.5 6767.8 6931.8
Total 31908.2 50146.6 45664 41751.7 42873.3

UoP, Utilization-oriented Principle; DPA, Dynamic Provisioning Approach.

CDF of data frequency

0.8

0.6
0.4 /
0.2

0 44.6 89.2 133.8 178.4 223
Data size (GB)

CDF

Figure 13. Distribution of data frequency in our system.

a faster reply, and the mean response delay for all data decreases as well. Compared with replica-
tion approaches, erasure coding could achieve the same level of data availability with much lower
redundancy level. Interestingly, the response delay of erasure coding is much higher than others,
although it can achieve a relative high data availability. It is because the system needs more time to
recover the data on the failed server, and the recovery process increases the load of other servers. We
also make the comparisons after reprovisioning resources based on our scheme (denoted by #-RSP).
In order to preserve the threshold of data availability, replication approaches require about 40% of
cost increment, while erasure coding requires only 20% of cost increment. However, erasure coding
requires 27% higher cost than replication approaches to keep response delay under the threshold.
Obviously there is a trade-off between performance and cost, and the best approach depends on the
performance preferences, which may be used to explain the coexistence of both types of redundancy
approaches in many cloud storage systems.

In addition, we run a group of experiments to further evaluate the influence of different approaches
under different percentages of server failure. During the experiments, each server, including index
server and storage server, is assumed to fail at a predefined probability. Table III shows the compari-
son results. The system has a poor fault tolerance when no redundancy. Redundancy approaches can
help system achieve a good performance on fault tolerance. Erasure coding performs best in terms
of both cost and data availability that remains above 80% even if 40% of servers fail. However,
its response delay increases much higher as the increment of failed servers. In production environ-
ments, service provider is suggested to make a trade-off between cost and fault tolerance according
to budget and quality of service.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506
DOI: 10.1002/cpe

COST-EFFICIENT RESOURCE PROVISIONING FOR DHT-BASED CLOUD STORAGE SYSTEMS 4505

/ — 900 7\
9% I} S —8— Proportional B
96 1 —&— Square-root

| o—© —&— Erasure coding B
94 /E;e/ /r\ \ —&— Proportional-RSP

100

<
L

©
a
o

@
o
=

S / / / g_ 750 —e— Square-root-RSP [
2 92 / / //0/ > 700 —4— Erasure coding-RSP
§ 920 —&— Proportional - § // \
.‘E / / ,ﬂ/ —&— Square-root 2 650
o 88 o —o— Erasure coding — 3 // \\ \
© —&— Proportional-RSP 2
a8 / // / @ 600
86 —e—Square-root-RSP [© \
/ // —— Erasure coding-RSP 550 N
84 (¢ \e\
/ "\ [~
82 500 —>g o
80 450
0 20 40 60 80 0 20 40 60 80
Percentage of cost increment (%) Percentage of cost increment (%)

Figure 14. Performance comparison with different redundancy approaches.

Table III. Cost and performance comparison under different percentages of server

failure.
Percentage of server failure

Redundancy approach ~ Cost Performance 10% 20% 40%
Data availability (%) 81.16 58.95 37.11

No redundancy 68.62 Response delay (ms) 537 749 1022
) Data availability (%) 95.64 82.91 71.03
Proportional 97.68 Response delay (ms) 489 587 703
Data availability (%) 93.78 78.86 69.53

Square-root 92.76 Response delay (ms) 496 602 726
) Data availability (%) 98.16 90.48 83.06

Erasure coding 80.92 Response delay (ms) 569 986 1687

7. CONCLUSIONS AND FUTURE WORK

In this paper, we explore the resource provisioning from personal cloud storage provider’s point of
view and propose a novel resource provisioning model. The model considers the complex interac-
tions among servers during system running by using queuing network and captures the correlation
between performance metrics and the allocated resources. Then based on the model, the resource
provisioning problem is defined as a cost optimization with performance constraints. We put forward
solution algorithms for solving the optimization problem and design a parallel implementation of
algorithm based on MapReduce paradigm for large-scale scenarios. We have built a DHT-based stor-
age system based on real-world traces collected from system and Dropbox. The experimental results
demonstrate that the proposed scheme can reduce cost while guaranteeing both data availability and
response delay.

As a future work, the provisioning model will be extended to support the cloud storage systems
that are built in multi-data center environments. Moreover, we intend to study the influence of data
scheduling across various storage layers including memory, SSD and HDD, and energy saving will
be considered as well.

ACKNOWLEDGEMENTS

This work is supported by the National Natural Science Foundation of China (No. 61502328, No. 61572337,
No. 61201212), the Joint Innovation Funding of Jiangsu Province (No. BY2014059-02), the Natural Sci-
ence Foundation of the Higher Education Institutions of Jiangsu Province (No. 15KJB520032), the Research

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506
DOI: 10.1002/cpe

4506 J.ZHOU, J. FAN AND J. JIA

Starting Funding of Soochow University (No. Q411800314), the Open Project Funding of Soochow
University (No. S811800114), and the Collaborative Innovation Center of Novel Software Technology and
Industrialization.

REFERENCES

. DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasubramanian S, Vosshall P, Vogels

W. Dynamo: Amazons highly available key-value store. Acm Symposium on Operating Systems Principles (SOSP),
Stevenson, WA, USA, 2007; 205-220.

. Lakshman A, Malik P. Cassandra: a decentralized structured storage system. Operating Systems Review 2010;

44(2):35-40.

. Chen F, Mesnier MP, Hahn S. Client-aware cloud storage. The 30th Symposium on Mass Storage Systems and

Technologies (MSST), Santa Clara, CA, USA, 2014; 1-12.

. Wang H, Shea R, Wang F, Liu J. On the impact of virtualization on dropbox-like cloud file storage/synchronization

services. IEEE/ACM International Symposium on Quality and Service (IWQOS), Coimbra, Portugal, 2012; 1-9.

. Butler B. Personal cloud subscriptions expected to reach half a billion this year, Network World, 2012. (Avail-

able from: http://www.networkworld.com/article/2159722/cloud-computing/personal-cloud-subscriptions-expected-
to-reach-half-a-billion-this-year.html) [Accessed on 7 September 2012].

. Marketsandmarkets. Public/private cloud storage market by solution, by software - worldwide forecasts & anal-

ysis, 2014. (Available from: http://www.marketsandmarkets.com/Market-Reports/cloud-storage-market-902.html)
[Accessed on 15 April 2014].

. Drago I, Mellia M, Munaf MM, Sperotto A, Sadre R, Pras A. Inside dropbox: understanding personal cloud storage

services. Acm Internet Measurement Conference (IMC), Boston, MA, USA, 2012; 481-494.

. Ghemawat S, Gobioff H, Leung S-T. The google file system. ACM Symposium on Operating Systems Principles

(SOSP), Bolton Landing, NY, USA, 2003; 29-43.

. Zhang Q, Zhani MF, Boutaba R, Hellerstein JL. Dynamic heterogeneity-aware resource provisioning in the cloud.

IEEE Transactions on Cloud Computing 2014; 2(1):14-28.

10. Xiong K, Perros HG. Service performance and analysis in cloud computing. SERVICES I, Los Angeles, CA, USA,
2009; 693-700.

11. Shi Y, Jiang X, Ye K. An energy-efficient scheme for cloud resource provisioning based on cloudsim. /EEE
International Conference on Cluster Computing (CLUSTER), Austin, TX, USA, 2011; 595-599.

12. Zhu Z, Bi J, Yuan H, Chen Y. Sla based dynamic virtualized resources provisioning for shared cloud data centers.
The IEEE International Conference on Cloud Computing (CLOUD), Washington, DC, USA, 2011; 630-637.

13. Zhang C, peng Chen H, Gao S. Alarm: autonomic load-aware resource management for p2p key-value stores in
cloud. The 9th IEEE International Conference on Dependable,Autonomic and Secure Computing (DASC), Sydney,
Australia, 2011; 404—410.

14. Bi J, Zhu Z, Tian R, Wang Q. Dynamic provisioning modeling for virtualized multi-tier applications in cloud data
center. The IEEE International Conference on Cloud Computing (CLOUD), Miami, FL, USA, 2010; 370-377.

15. Lama P, Zhou X. Efficient server provisioning with control for end-to-end response time guarantee on multitier
clusters. IEEE Transactions on Parallel and Distributed Systems 2012; 23(1):78-86.

16. Zhou J, He W. A novel resource provisioning model for dht-based cloud storage systems. The I 1th IFIP International
Conference on Network and Parallel Computing (NPC), Ilan, Taiwan, 2014; 257-268.

17. Gross D, Shortle JF, Thompson JM, Harris CM. Fundamentals of Queueing Theory (4th edn). Wiley: New York, NY,
USA, 2008.

18. Tijms HC. Stochastic Modelling and Analysis: A Computational Approach. Wiley: New York, NY, USA, 1986.

19. Cooper RB. Introduction to Queueing Theory (2nd edn). Elsevier North Holland: New York, NY, USA, 1981.

20. Smith JM. Properties and performance modelling of finite buffer m/g/1/k networks. Computers & Operations
Research 2011; 38(4):740-754.

21. Yang Q, Ren J. I-cash: Intelligently coupled array of ssd and hdd. The 17th International Conference on High
Performance Computer Architecture (HPCA), San Antonio, Texas, USA, 2011; 278-289.

22. Chen F, Koufaty DA, Zhang X. Hystor: making the best use of solid state drives in high performance storage systems.
The 25th International Conference on Super Computing (ICS), Tucson, AZ, USA, 2011; 22-32.

23. Bu Y, Howe B, Balazinska M, Ernst MD. Haloop: efficient iterative data processing on large clusters. Proceedings
of the VLDB Endowment 2010; 3(1):285-296.

24. Sumbaly R, Kreps J, Gao L, Feinberg A, Soman C, Shah S. Serving large-scale batch computed data with project
voldemort. The 10th USENIX Conference on File and Storage Technologies (FAST), San Jose, CA, USA, 2012; 1-18.

25. Hp loadrunner tutorial, 2010.

26. Aws elastic beanstalk. (Available from: http://aws.amazon.com/elasticbeanstalk/) [Accessed on 2015].

27. Dropbox traces. (Available from: http://traces.simpleweb.org/dropbox/) [Accessed on 2015].

28. Tewari S, Kleinrock L. Proportional replication in peer-to-peer networks. The 25th IEEE International Conference
on Computer Communications(INFOCOM), Barcelona, Catalunya, Spain, 2006.

29. Plank JS, Luo J, Schuman CD, Xu L, Wilcox-O’Hearn Z. A performance evaluation and examination of open-source
erasure coding libraries for storage. The 7th USENIX Conference on File and Storage Technologies (FAST), San
Francisco, CA, USA, 2009; 253-265.

30. McKausick K, Quinlan S. GFS: evolution on fast-forward. Commun. ACM 2010; 53(3):42-49.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4485-4506

DOI: 10.1002/cpe

http://www.marketsandmarkets.com/Market-Reports/cloud-storage-mark et-902.html
http://aws.amazon.com/elasticbeanstalk/
http://traces.simpleweb.org/dropbox/

	A cost-efficient resource provisioning algorithm for DHT-based cloud storage systems
	Summary
	INTRODUCTION
	RELATED WORK
	RESOURCE PROVISIONING MODEL
	Performance modeling
	Performance analysis for index servers.
	Performance analysis for storage servers

	Resource provisioning problem formulation

	RESOURCE PROVISIONING ALGORITHM
	THE IMPLEMENTATION OF PARALLEL ALGORITHM
	EXPERIMENTAL EVALUATION
	System overview
	Trace-driven evaluation
	Evaluation with traces DCS
	Evaluation with traces Dropbox
	Evaluation under failure scenarios.

	CONCLUSIONS AND FUTURE WORK
	REFERENCES

