

QoS Adaption aware Algorithm for Grid Service Selection

Jingya Zhou, Junzhou Luo, Zhiang Wu
School of Computer Science and Engineering, Southeast University, Nanjing, P.R.China

Key Laboratory of Computer Network and Information Integration Ministry of Education,
Nanjing, P.R.China

jyz@seu.edu.cn; jluo@seu.edu.cn; zawu@seu.edu.cn

Abstract

Grid service composition has been recognized as a
flexible way for resource sharing and application
integration since appearance of service-oriented
architecture. Approaches are needed to select service
candidates with various Quality of Service (QoS) levels
according to use’s performance requirements. In this
paper We model this problem as the Multi-Constrained
Optimal Path Selection Problem (MCOP), due to the
dynamic property of grid service, adaptive mechanism
is introduced to ensure the whole QoS when some
service candidates fail. An algorithm QAGSS is
proposed. Simulation results show that QAGSS has
greater success rate and lower cost than previous
algorithms.

Keywords: Grid, QoS adaptation, Composite service,
DAG, MCOP.

1. Introduction

Open Grid Service Architecture (OGSA) [1] as a
Service Oriented Architecture (SOA) provides a
combination framework, in which physical resources
are virtualized to the user in the form of grid services.
Grid services use standard interfaces for invoking.
Using standard interfaces individual services can be
combined into a composite service, by which
complicated application can be completed. Since many
services have the same functional properties while
different non-functional properties, such as QoS, cost
etc. and service-oriented grid requires deliver seamless
QoS, so algorithms that can rapidly and efficiently
select service candidates to form a composite service
for applications is needed.

Candidates of composite service and their
relationship can be represented by directed acyclic
graph (DAG), in which QoS and cost can be seen as
weight. Hence the problem above can be modeled as
MCOP, which is to select a suitable path satisfying
multi-constraints meanwhile minimizing the global cost.
Algorithms for solving MCOP are introduced to web
services selection problem in many previous. Different

from web service, the state of grid service varies
dramatically. Existing services may change QoS level,
fail or even withdraw at any moment, while new
services may join. In this case, adaptive mechanism is
worth being considered for QoS level assurance. In this
paper, we model the problem as MCOP and an effective
algorithm QAGSS is proposed, which takes QoS
adaption into account.

The rest of this paper is organized as follows. In
Section 2 we will present a brief overview of related
work about QoS and service selection. We introduce an
approach for QoS parameters standardization in Section
3. The details about algorithm will be narrated and
discussed in Section 4. In Section 5 experiment results
are presented, and we make a brief analysis. Finally, the
paper is concluded in Section 6 and future work is also
discussed here.

2. Related work

Foster etc. propose GARA in [2]. GARA supports
reservation and adaptation, which support the
management of end-to-end QoS in service-oriented grid
environment. This is the initial work on grid
architecture to support QoS. Rashid Al-Ali proposed a
Grid-QoS management framework (G-QoSM) [3], in
this framework Rashid etc. classify services into three
types based on different QoS levels: guaranteed,
controlled load and best effort. Adaption strategies are
used to support resource capacity sharing [4].

QoS parameters are classified into five categories
and a hierarchical structure of grid QoS is proposed in
[5]. The heuristic algorithm based on the structure is
confirmed to be effectively by experiment results, but
algorithm considered no composite service as well as
the cost it takes.

T. Yu etc. study the end-to-end QoS issues of
composite service by using a QoS broker in [6]. The
problem is modeled in two ways: the combinatorial
model defines the problem as a Multi-dimension Multi-
choice Knapsack Problem (MMKP) and the graph
model defines the problem as a Multi-Constrained
Optimal Path Problem(MCOP) and novel algorithms
are designed to meet the global QoS constraints while
maximize the user defined utility function. These

523

978 -1-4244-1651-6/08/$25.00 © 2008 IEEE

algorithms can solve the problem by finding near
optimal solutions in polynomial time, and it is proved to
be suitable for web services, but due to the dynamic
nature of grid service, whether it is adapt to grid service
is still need to be confirmed.

Composite service selection is modeled as MCOP
Problem, for one dimension of QoS, the MCOP
Problem is known as NP-complete [10]. To cope with
this problem, many pseudo-polynomial-time algorithms
such as jaffe’s algorithm [8] are proposed, but their
complexities depend both on the actual values of the
edge and scale of the problem. An efficient heuristic
algorithm is introduced in [7] to minimize the nonlinear
cost function for finding a feasible path while also
incorporating the cost optimization of the selected
feasible path, however, the complexity of computation
will increase as μ increases, and here μ is an adjustable
parameter used to calculate the cost function in
algorithm. In this paper we improve this algorithm by
introducing upper bound of μ to reduce the
computational complexity. It is proved that the time
complexity of QAGSS proposed in this paper is the
same as that of Dijkstra’s algorithm [9].

3. QoS parameter standardization

QoS describes a service’s capability to meet
consumer’s demands. There are many properties to
describe QoS, such as concurrent processing
capabilities, duration, throughput, reliability,
availability, accuracy, security, and so on. The
performance of service can be reflected by these
parameters from different perspectives, which can be
roughly classified into additive and non-additive. For
the additive parameters such as duration, throughput it
is the sum of the additive parameter value from end to
end. In contrast, value with respect to a non-additive
parameter, such as bandwidth is determined by the
value of that constraint at the bottleneck part. For
constraints associated with non-additive parameters, we
can simply remove services that do not satisfy these
constraints. So in this paper we will mainly discuss
additive QoS parameters. The user’s QoS requirements
may be different with parameters, for example, user
may demand delay less than 5ms, while throughput no
less than 100, also different service classes may have
different quantification standards for the same QoS
parameter. Hence, we present an approach to
standardize QoS parameters. We assume that m is the
number of service classes and n is the dimension of
QoS, qk(i) represent the ith dimension QoS parameter of
service class Si, all QoS parameters are positive, so we
get a n*m matrix as follow:

1 1(1) ()

(1) ()n n

q q m

q q m

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

K

M O M

L

We roughly put parameters into positive criterion
and negative criterion. Positive criterion donates the
higher value the higher quality such as throughput,
while negative criterion donates the lower value the
higher quality such as duration. In this paper two
approaches are provided respectively to both criteria.

Translation approach for parameters belongs to
positive criterion is shown in equation (1):

2

1
() () / () ,

0,

m

k k k
i

Q i q i q i
=

⎧
= ⎪
⎨
⎪
⎩

∑
2

1

2

1

() 0

() 0

m

k
i

m

k
i

if q i

if q i

=

=

≠

=

∑

∑

 (1)

Translation approach for parameters belongs to
negative criterion is shown in equation (2):

2

1

() () / (),

0,

m

k k k
i

Q i q i q i
=

⎧
= ⎪
⎨
⎪
⎩

∑
2

1

2

1

() 0

() 0

m

k
i

m

k
i

if q i

if q i

=

=

≠

=

∑

∑

 (2)

We can simply define QoS constraint relationship
r(q, u), it is a binary relationship, the first one of the
pair indicates service QoS parameter, the target service
value user expected is represented by the other. There is
only one element in the set of constraint relationship:
R={≥}.

4. QoS Adaption aware Algorithm

4.1. Service composition model

The services we discussed can be divided into
various service class based on functionality, a service
class is a set of services with common functionality but
different non-functional properties such as QoS levels
and costs etc. The services requested by a user or
application can be classified into two categories —
individual service and composite service, the first one
means request can be accomplished by a single service
class while the other implies request should be
completed by a set of service classes. DAG composite
service shown in Figure 1 is a general kind of
composite service described by DAG, in which node
represents service class and directed edge represents
collaborative relationship among service classes. DAG
composite service has several execution paths, pipeline
composite service is one of them, so it can be
considered as special case of DAG composite service,
and in this paper we discuss DAG composite service for
general purpose. Each service class may have many
candidate services, and each service has its own QoS
level, but users do not care about it, usually they put
forward end-to-end QoS requirements. Consequently,
the problem need to be solved by service selection is
how to select a feasible and optimal path from a mass of
candidate ones in Figure 2 to achieve the user’s QoS
requirements meanwhile minimize costs.

524

Service
class 5

Service
class 2

Service
class 1

Service
class 3

Service
class 4

Service
class 6

Figure 1. DAG Composite Service

S11

S12

Service
class 6

S9

S10

Service
class 5

S6

S7

S8

Service
class 4 S4

S5

Service
class 3

S3

Service
class 2

S1

S2

Service
class 1

DS

Figure 2. Service Candidate Graph

In Figure 2 we add two nodes—source node and
destination node, from source node S we draw edges to
all nodes that do not have predecessors, in the same
way from all nodes that do not have subsequences we
draw edges to destination node D. Each candidate
represented by a node has its own QoS parameter
values and cost, here we give an approach to move QoS
parameter values and costs from nodes to edges, and
definition is shown as follows:
Definition 1 Consider a composite service that is
represented by DAG graph G=(V, E), where V is the set
of nodes and E is the set of edges. e(i, j) donates the
directed edge (si, sj), each edge is associated with n
additive QoS parameters ek(i, j) and cost c(i, j),
k=1,2,…,n.

(() ()) / 2, (,)
(,) () () / 2, (,)

() / 2 (), (,)

k k

k k k

k k

Q i Q j if si S sj D
e i j Q i Q j if si S sj D

Q i Q j if si S sj D

+ ≠ ≠⎧
⎪= + = ≠⎨
⎪ + ≠ =⎩

 (3)

(() ()) / 2, (,)
(,) () () / 2, (,)

() / 2 (), (,)

c i c j if si S sj D
c i j c i c j if si S sj D

c i c j if si S sj D

+ ≠ ≠⎧
⎪= + = ≠⎨
⎪ + ≠ =⎩

 (4)

in Figure 2 the both nodes S and D are added without
QoS parameters and costs, so we can set n parameter
values and costs of both nodes are zeros. Hence, we
model service selection problem as MCOP using ek (i, j)
as QoS parameters c(i, j) as costs respectively instead of
Qk(i) and c(i), the definition is given below:
Definition 2 MCOP: Consider a composite service that
is represented by DAG graph G= (V, E), where V is the
set of nodes and E is the set of edges. Each edge is
associated with n additive QoS parameters ek (i, j) and
c(i, j), k=1,2,…,n. Given n constraints uk, k=1,2,…,n,
the problem is to find a path p from source node S to

destination node D subject to:

(i)
(,)

() (,)k k k
e i j p

e p e i j u
∈

= ≥∑ for k = 1,2,…,n, and

(ii)
(,)

() (,)
e i j p

c p c i j
∈

= ∑ is minimized over all

feasible paths satisfying (i).
For a path p the sum of values of nodes that belong

to p equals to that of edges belong to p, and the values
include QoS parameter values and costs.

(,)
() (,) ()

e i j p si p
c p c i j c i

∈ ∈

= =∑ ∑

(,)
() (,) ()k k k

e i j p si p
e p e i j Q i

∈ ∈

= =∑ ∑

4.2. Introduction to the QAGSS Algorithm

From above definitions, we now present the
following cost function Cμ (p) for the service selection
problem:

1 2

1 2

() () () ... ()
() () ()

n

n

uu uC p
e p e p e p

μ μ μ
μ = + + + (5)

where μ ≥ 1. Then we conclude the following
conclusions on the performance of algorithm that return
a path p by minimizing the cost function (5) for a given
μ ≥ 1.
Theorem 1 Suppose that there is at least one feasible
path exists, and p is a path that minimizes the cost
function Cμ (p) for a given μ≥ 1. Then

(i) uk ≤ ek (p) for at least one k
(ii) ()k ke p nuμ≥ for all other k’s
(iii) The likelihood of finding a feasible path

increases as μ increases.
Proof of Theorem 1in detail can be found in [7].

Now we present our heuristic algorithm QAGSS, which
is composed of three parts, one is feasible part, second
is optimal part and last is adaptive part. For the feasible
part, QAGSS tries to minimize the objective function
Cμ for μ ≥ 1. It first finds optimal path from each node x
to D using function Reverse_Dijkstra [9] with some
modifications to relaxation process, then it starts from S
and discovers each node based on the minimization of
Cμ (p), where p is a complete path passing through node
x. This path is determined heuristically at node x by
connecting the already traveled segment from S to x
and the remaining segment from x to D, and this can be
done by calling function Look_Ahead_Dijkstra [9] also
with some modifications to relaxation process in [7].
The main QAGSS algorithm is described as follows,
and Table 1 shows the description of variables
algorithm used.

Main QAGSS Algorithm
Input: G=(V, E), S, D, u
Output: A suitable composite service
1 Reverse_Dijkstra (G, e, D)

525

2 If (t[S]>n) then
3 return failure
4 End If
5 μ ← MAX_NUM
6 Look_Ahead_Dijkstra (G, e, c, S)
7 If (Hk[x] ≥ uk for k∈[1,n]) then
8 return suitable composite service Ssui
9 Ada_Set (Ssui)
10 End If
11 return failure

Table 1. Description of variables
Variable Description

t[x]

Tk[x]

Pt[x]

C[x]

Hk[x]

PC[x]
c[x]

u

The cost of the shortest path from x to D
under the cost function Cμ (p)

The individually accumulated edge values
along the path

Predecessor of x on optimal path that from
x to D

The cost of a foreseen complete path via
node x based on the cost function Cμ (p)

The individually accumulated edge values
along the already traveled segment of the

path from S to x
Predecessor of x on the path from S to x

The cost along the already traveled
segment of the path from S to x

The set of uk, k∈[1,n]

There are two directions in the algorithm, backward
from S to D and forward from D to S. The backward
direction is depicted by lines 1-4 in QAGSS, which
estimate the cost of the remaining segment using μ = 1.
Reverse_Dijkstra returns a path p from S to D. Before
moving to forward direction, QAGSS checks whether
t[S]>n or not, if true it means no feasible path exist,
which is based on Theorem 1. If not true, path p may be
a feasible path. If path p is feasible, we use
Look_Ahead_Dijkstra to find a path q with condition
c(q) ≤ c(p), if not we use it to find a path q with
condition Cμ (q) ≤ Cμ (p), in both cases, we set μ as
MAX_NUM that is a constant we set in the algorithm,
which could be changed to alter the possibility of
finding a feasible path. This is based on Theorem 2
described as follows:
Theorem 2 Suppose Reverse_Dijkstra returns path p,
and Look_Ahead_Dijkstra returns path q, then

(i) if p is feasible, q is feasible too and c(q) ≤ c(p)

(ii) if p is not feasible, Cμ (q) ≤Cμ (p).

Proof in detail can also be found in [7], and the
following is relaxation process of Reverse_Dijkstra:

Reverse_Dijstra_Relax
Input: Two nodes x, y∈V
Output: Predecessor of y on the path
1 If (

1

[]
[] (,)

n
k k

k k k

u ut x
T y e x y=

⎛ ⎞
> +⎜ ⎟

⎝ ⎠
∑) then

2
1

[]
[] (,)

n
k k

k k k

u ut x
T y e x y=

⎛ ⎞
← +⎜ ⎟

⎝ ⎠
∑

3 Tk[x] ← Tk[y] + ek(x, y) for k [1,n]∈
4 Pt[y] ← x
5 End If

In forward direction, QAGSS invokes
Look_Ahead_Dijkstra to identify if there is another
path q which possibly improves the performance over
path p.

Look_Ahead_Dijkstra_Relax
Input: Two nodes x, y∈V
Output: Predecessor of y on the path and

accumulated cost
1 Set t as a temporary node
2 c[t] ← c[x] + c (x, y)

3
1

[]
[] (,) []

n
k k k

k k k k

u u uC t
H x e x y T y

μ

=

⎛ ⎞
← + +⎜ ⎟

⎝ ⎠
∑

4 Hk[t] ← Hk[x] + ek(x, y) for k [1,n]∈
5 Tk[t] ← Tk[y] for k [1,n]∈
6 If (Select_best (t, y) = t) then
7 c[y] ← c[t]
8 C[y] ← C[t]
9 Hk[y] ← Hk[t] for k [1,n]∈
10 PC[y] ← x
11 End If

The above function firstly judge the value of μ, if
μ=1 it is no need to compute cost function Cμ, otherwise
use Cμ with μ = MAX_NUM to select feasible path.
Then we use function Select_best to choose the next
node for performance improvement. It selects one of
input nodes such that the selected one should minimize
cost if foreseen complete path passing through these
nodes are feasible, otherwise, it selects one that
minimizes the cost function Cμ.

Ada_Set
Input: Suitable composite service Ssui
Output: Adaptive service set
SCi : the ith service class in Ssui
Sj : the jth one in l candidates
Sg : the selected candidate in a service class
Ai : the backup service set of SCi
1 For each SCi in Ssui
2 If (Sg ∈Ai) then
3 remove Sg from Ai
4 End If
5 If (Qk(g) ≥ Qk(Ai) for k∈[1,n]) then
6 find l candidates∈SCi subject to Qk(j) ≥

Qk(g) for j∈[1,l] k∈[1,n] and cost are low
7 For each Sj
8 If Sj≠NULL then
9 Add Sj to Ai
10 End If

526

11 End For
12 End If
13 End For

For the enhancement of service adaptive capacity,
function Ada_Set is designed. It reserves a backup
service set for every service class on the path.
Whenever a suitable path is found, Ada_Set is called to
find l candidates subject to Qk(j) ≥ Qk(g) for j∈[1,l] k
∈ [1,n] and cost are low, and add these to Ai. The
intention of setting up Ai is to compensate for changing
or failure of selected services. When QAGSS find
suitable path, it can select candidates from backup
service set, after a suitable path is found, Ada_Set
check whether a backup service is on the path, if true
remove it.

The QAGSS algorithm determines whether there is
possibility of path existence by invoking function
Reverse_Dijkstra. If true continues to invoke function
Look_Ahead_Dijkstra to find a more suitable path.
Ada_Set is introduced for assurance of end-to-end QoS
in grid environment. Since the modified Dijkstra’s
algorithm is executed two times at most, the QAGSS
algorithm has the same time and space complexities
with Dijkstra.

5. Experiment

5.1. Configuration

In this paper we conduct the simulation experiment
to estimate the performance of QAGSS algorithm we
proposed, and compare it with jaffe’s algorithm [8]
which is used to solve the MCP problem. MCP problem
is a slightly different version of MCOP problem, aims
only at finding feasible path that satisfies multi-
constraints. For more than two dimensions MCP
problem is known to be NP-complete. In [8] the author
considers 2-dimension MCP problem, and uses
Dijkstra’s shortest path algorithm with two adjustable
parameters α, β to minimize objective function.
Simulation arrangement is described below.

In the simulation, we use a Request_generator to
generate user’s requests, which is composed of service
classes included and corresponding QoS constraints.
The number of service classes in each request is
classified into two groups [1, 5] and [5, 10]. For brevity,
we define that every service class has 10 candidates,
QoS dimension is 2 and capacity of backup set is 1. So
the number of candidate nodes in DAG also has two
ranges [10, 50] and [50, 100]. Each node has 2-
dimension QoS parameters and cost information, we
use Node_inf_generator to generate these values
respectively. Without loss of generality, every
dimension QoS parameters are generated by different
distributions, and mean of each dimension QoS
parameters are calculated. We use these mean instead of

edge mean to evaluate the average value of a path, as
equation (6) shows: Ak = (Nsc/2)*mk (6)
Ak represents the kth dimension average value of a path,
Nsc is the average of service classes included in a
request, so the average length of a path can be
represented by expression Nsc/2 and mk describes the
kth dimension QoS parameters mean. The QoS levels of
requests have significant effect on the performance. For
comparison of performance under different situations,
we divided the QoS requests into three groups:

(i) 75% QoS request ck smaller than average
value Ak for k [1,n]∈

(ii) 50% QoS request ck smaller than average
value Ak for k [1,n]∈

(iii) 25% QoS request ck smaller than average
value Ak for k [1,n]∈

In each group, we divide requests into two groups,
one with range from 1 to 5 service classes and the other
with range from 5 to 10. For each group the simulation
is repeated 100 times respectively and the results
reported in the subsequent sections are average values.

5.2. Results and Analysis

In Figure 3 the cost of composite service selected by

QAGSS is lower than Jaffe’s, since QAGSS algorithm
requires at most two iterations of Dijkstra’s algorithm
while jaffe’s requires one. The cost of path returned by
second iteration is no larger than that of first. Success
rate in equation (7) is introduced to make contrast
between different algorithms under different situations.

Success rate = number of requests satisfied／total
number of requests (7)

From Figure 4 we conclude that success rate
improves as MAX_NUM increases, especially among
the range from 1 to 10, which is consistent with
theorem 1. When MAX_NUM exceeds 10, there is little
improvement in success rate. It is due to the nature of
the heuristic algorithm, one can expect few anomalies
in the general trend. We also observe the smaller the
number of service classes included in a request the
greater success rate is. Contrast between Jaffe’s
algorithm and QAGSS algorithm is described in Figure
5. It is obviously that success rate of ours is larger than
that of jaffe’s. QAGSS execute in two directions, when
path returned from backward direction is not feasible, it

Figure 3. Cost returned by QAGSS and Jaffe’s

527

Figure 4. The success rate performance of QAGSS with MAX_NUM

Figure 5. Success rate performance of QAGSS and Jaffe’s

will continue to move to forward direction if there exist
possibility. According to theorem 2(ii) cost function
may be minimized, then increases success possibility.

6. Conclusion and Future work

This paper studies composite service selection

problem in grid environment. QoS classification is
discussed briefly and approach for standardization is
also provided. We model the problem as MCOP, and
then QAGSS algorithm is proposed to select least cost
composite service while satisfying end-to-end QoS
requirements. Adaptive mechanism is considered in
QAGSS to adapt to the dynamic characteristic of grid
service. In addition, QAGSS has the same time
complexity with Dijkstra’s, which is suitable for making
runtime decisions. Experiment results show that
QAGSS performs better among similar algorithms in
success rate and cost.

In future, we plan to investigate performances of
QAGSS in large-scale distributed grid environment. We
will also make some improvements on adaptive
mechanism to achieve higher performances and to be
more suitable for grid services selection.

Acknowledgement

This work is supported by National Natural Science
Foundation of China under Grants No. 90604004 and
60773103, Jiangsu Provincial Natural Science
Foundation of China under Grants No. BK2007708 and
Jiangsu Provincial Key Laboratory of Network and
Information Security under Grants No. BM2003201.

References
[1] I. Foster, C. Kesselman JM Nick, S. Tuecke. The

physiology of the grid: An open grid services architecture
for distributed systems integration. 2002.

[2] I. Foster, A. Roy, and V. Sander. A quality of service
architecture that combines resource reservation and
application adaptation. In International Workshop on
Quality of Service, 2000, pp.181–188.

[3] R. Al-Ali, O. Rana, D. Walker, S. Jha, and S. Sohail. G-
QoSM: Grid service discovery using QoS properties
Computing and Informatics Journal, Special Issue on Grid
Computing, 21(4), 2002, pp.363–382.

[4] R. Al-Ali, A. ShaikhAli, O. Rana, D. Walker, QoS
adaptation in service-oriented girds. In Proceedings of the
1st International Workshop on Middleware for Grid
Computing (MGC2003).

[5] Zhiang Wu, Junzhou Luo and Aibo Song. QoS-Based
Grid Resource Management. Journal of Software, Vol.17,
No.11, November 2006, pp.2264-2276.

[6] T. Yu, Y. Zhang and K. J. Lin, Effective Algorithms for
Web Services Selection with End-to-End QoS Constraints.
ACM Transactions on the Web (TWEB), Vol. 1,
May. 2007.

[7] T. Korkmaz, M. Krunz, Multi-Constrained Optimal Path
Selection. In Proc. of 20th Joint Conf. IEEEComputer &
Communications Societies (INFOCOM), 2001, pp.834-
843.

[8] J. M. Jaffe, Algorithms for finding paths with multiple
constraints, Networks, vol. 14, 1984, pp. 95–116.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,
Introduction to Algorithms, The MIT press and McGraw-
Hill book company, sixteenth edition, 1996.

[10] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network
Flows: Theory, Algorithms, and Applications, Prentice
Hall, Inc., 1993.

528

