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Abstract 
 

Grid service composition has been recognized as a 
flexible way for resource sharing and application 
integration since appearance of service-oriented 
architecture. Approaches are needed to select service 
candidates with various Quality of Service (QoS) levels 
according to use’s performance requirements. In this 
paper We model this problem as the Multi-Constrained 
Optimal Path Selection Problem (MCOP), due to the 
dynamic property of grid service, adaptive mechanism 
is introduced to ensure the whole QoS when some 
service candidates fail. An algorithm QAGSS is 
proposed. Simulation results show that QAGSS has 
greater success rate and lower cost than previous 
algorithms. 
 
Keywords: Grid, QoS adaptation, Composite service, 
DAG, MCOP. 
 
 
1. Introduction 
 

Open Grid Service Architecture (OGSA) [1] as a 
Service Oriented Architecture (SOA) provides a 
combination framework, in which physical resources 
are virtualized to the user in the form of grid services. 
Grid services use standard interfaces for invoking. 
Using standard interfaces individual services can be 
combined into a composite service, by which 
complicated application can be completed. Since many 
services have the same functional properties while 
different non-functional properties, such as QoS, cost 
etc. and service-oriented grid requires deliver seamless 
QoS, so algorithms that can rapidly and efficiently 
select service candidates to form a composite service 
for applications is needed. 

Candidates of composite service and their 
relationship can be represented by directed acyclic 
graph (DAG), in which QoS and cost can be seen as 
weight. Hence the problem above can be modeled as 
MCOP, which is to select a suitable path satisfying 
multi-constraints meanwhile minimizing the global cost. 
Algorithms for solving MCOP are introduced to web 
services selection problem in many previous.  Different 

from web service, the state of grid service varies 
dramatically. Existing services may change QoS level, 
fail or even withdraw at any moment, while new 
services may join. In this case, adaptive mechanism is 
worth being considered for QoS level assurance. In this 
paper, we model the problem as MCOP and an effective 
algorithm QAGSS is proposed, which takes QoS 
adaption into account. 

The rest of this paper is organized as follows. In 
Section 2 we will present a brief overview of related 
work about QoS and service selection. We introduce an 
approach for QoS parameters standardization in Section 
3. The details about algorithm will be narrated and 
discussed in Section 4. In Section 5 experiment results 
are presented, and we make a brief analysis. Finally, the 
paper is concluded in Section 6 and future work is also 
discussed here. 
 
2. Related work 
 

Foster etc. propose GARA in [2]. GARA supports 
reservation and adaptation, which support the 
management of end-to-end QoS in service-oriented grid 
environment. This is the initial work on grid 
architecture to support QoS. Rashid Al-Ali proposed a 
Grid-QoS management framework (G-QoSM) [3], in 
this framework Rashid etc. classify services into three 
types based on different QoS levels: guaranteed, 
controlled load and best effort.  Adaption strategies are 
used to support resource capacity sharing [4]. 

QoS parameters are classified into five categories 
and a hierarchical structure of grid QoS is proposed in 
[5]. The heuristic algorithm based on the structure is 
confirmed to be effectively by experiment results, but 
algorithm considered no composite service as well as 
the cost it takes. 

T. Yu etc. study the end-to-end QoS issues of 
composite service by using a QoS broker in [6]. The 
problem is modeled in two ways: the combinatorial 
model defines the problem as a Multi-dimension Multi-
choice Knapsack Problem (MMKP) and the graph 
model defines the problem as a Multi-Constrained 
Optimal Path Problem(MCOP) and novel algorithms 
are designed to meet the  global QoS constraints while 
maximize the user defined utility function. These 
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algorithms can solve the problem by finding near 
optimal solutions in polynomial time, and it is proved to 
be suitable for web services, but due to the dynamic 
nature of grid service, whether it is adapt to grid service 
is still need to be confirmed. 

Composite service selection is modeled as MCOP 
Problem, for one dimension of QoS, the MCOP 
Problem is known as NP-complete [10]. To cope with 
this problem, many pseudo-polynomial-time algorithms 
such as jaffe’s algorithm [8] are proposed, but their 
complexities depend both on the actual values of the 
edge and scale of the problem.  An efficient heuristic 
algorithm is introduced in [7] to minimize the nonlinear 
cost function for finding a feasible path while also 
incorporating the cost optimization of the selected 
feasible path, however, the complexity of computation 
will increase as μ increases, and here μ is an adjustable 
parameter used to calculate the cost function in 
algorithm. In this paper we improve this algorithm by 
introducing upper bound of μ to reduce the 
computational complexity. It is proved that the time 
complexity of QAGSS proposed in this paper is the 
same as that of Dijkstra’s algorithm [9]. 

 
3. QoS parameter standardization 
 

QoS describes a service’s capability to meet 
consumer’s demands. There are many properties to 
describe QoS, such as concurrent processing 
capabilities, duration, throughput, reliability, 
availability, accuracy, security, and so on. The 
performance of service can be reflected by these 
parameters from different perspectives, which can be 
roughly classified into additive and non-additive. For 
the additive parameters such as duration, throughput it 
is the sum of the additive parameter value from end to 
end. In contrast, value with respect to a non-additive 
parameter, such as bandwidth is determined by the 
value of that constraint at the bottleneck part. For 
constraints associated with non-additive parameters, we 
can simply remove services that do not satisfy these 
constraints. So in this paper we will mainly discuss 
additive QoS parameters. The user’s QoS requirements 
may be different with parameters, for example, user 
may demand delay less than 5ms, while throughput no 
less than 100, also different service classes may have 
different quantification standards for the same QoS 
parameter. Hence, we present an approach to 
standardize QoS parameters. We assume that m is the 
number of service classes and n is the dimension of 
QoS, qk(i) represent the ith dimension QoS parameter of 
service class Si, all QoS parameters are positive, so we 
get a n*m matrix as follow: 
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We roughly put parameters into positive criterion 
and negative criterion. Positive criterion donates the 
higher value the higher quality such as throughput, 
while negative criterion donates the lower value the 
higher quality such as duration. In this paper two 
approaches are provided respectively to both criteria. 

Translation approach for parameters belongs to 
positive criterion is shown in equation (1): 
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Translation approach for parameters belongs to 
negative criterion is shown in equation (2): 
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We can simply define QoS constraint relationship 
r(q, u), it is a binary relationship, the first one of the 
pair indicates service QoS parameter, the target service 
value user expected is represented by the other. There is 
only one element in the set of constraint relationship: 
R={≥}. 
 
4. QoS Adaption aware Algorithm 
 
4.1. Service composition model 
 

The services we discussed can be divided into 
various service class based on functionality, a service 
class is a set of services with common functionality but 
different non-functional properties such as QoS levels 
and costs etc. The services requested by a user or 
application can be classified into two categories — 
individual service and composite service, the first one 
means request can be accomplished by a single service 
class while the other implies request should be 
completed by a set of service classes. DAG composite 
service shown in Figure 1 is a general kind of 
composite service described by DAG, in which node 
represents service class and directed edge represents 
collaborative relationship among service classes. DAG 
composite service has several execution paths, pipeline 
composite service is one of them, so it can be 
considered as special case of DAG composite service, 
and in this paper we discuss DAG composite service for 
general purpose. Each service class may have many 
candidate services, and each service has its own QoS 
level, but users do not care about it, usually they put 
forward end-to-end QoS requirements. Consequently, 
the problem need to be solved by service selection is 
how to select a feasible and optimal path from a mass of 
candidate ones in Figure 2 to achieve the user’s QoS 
requirements meanwhile minimize costs.  
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Figure 1.  DAG Composite Service 
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Figure 2.  Service Candidate Graph 
 

In Figure 2 we add two nodes—source node and 
destination node, from source node S we draw edges to 
all nodes that do not have predecessors, in the same 
way from all nodes that do not have subsequences we 
draw edges to destination node D. Each candidate 
represented by a node has its own QoS parameter 
values and cost, here we give an approach to move QoS 
parameter values and costs from nodes to edges, and 
definition is shown as follows: 
Definition 1 Consider a composite service that is 
represented by DAG graph G=(V, E), where V is the set 
of nodes and E is the set of edges. e(i, j) donates the 
directed edge (si, sj), each edge is associated with n 
additive QoS parameters ek(i, j) and cost c(i, j), 
k=1,2,…,n.  
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in Figure 2 the both nodes S and D are added without 
QoS parameters and costs, so we can set n parameter 
values and costs of both nodes are zeros. Hence, we 
model service selection problem as MCOP using ek (i, j) 
as QoS parameters c(i, j) as costs respectively instead of 
Qk(i) and c(i), the definition is given below: 
Definition 2 MCOP: Consider a composite service that 
is represented by DAG graph G= (V, E), where V is the 
set of nodes and E is the set of edges. Each edge is 
associated with n additive QoS parameters ek (i, j) and 
c(i, j), k=1,2,…,n. Given n constraints uk, k=1,2,…,n, 
the problem is to find a path p from source node S to 

destination node D subject to: 
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feasible paths satisfying (i). 
For a path p the sum of values of nodes that belong 

to p equals to that of edges belong to p, and the values 
include QoS parameter values and costs. 
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4.2. Introduction to the QAGSS Algorithm  
 

From above definitions, we now present the 
following cost function Cμ (p) for the service selection 
problem: 

1 2

1 2

( ) ( ) ( ) ... ( )
( ) ( ) ( )

n

n

uu uC p
e p e p e p

μ μ μ
μ = + + +            (5) 

where μ ≥ 1. Then we conclude the following 
conclusions on the performance of algorithm that return 
a path p by minimizing the cost function (5) for a given 
μ ≥ 1. 
Theorem 1 Suppose that there is at least one feasible 
path exists, and p is a path that minimizes the cost 
function Cμ (p) for a given μ≥ 1. Then  

(i) uk ≤ ek (p) for at least one k  
(ii) ( )k ke p nuμ≥  for all other k’s  
(iii)  The likelihood of finding a feasible path 

increases as μ increases. 
Proof of Theorem 1in detail can be found in [7]. 

Now we present our heuristic algorithm QAGSS, which 
is composed of three parts, one is feasible part, second 
is optimal part and last is adaptive part. For the feasible 
part, QAGSS tries to minimize the objective function 
Cμ for μ ≥ 1. It first finds optimal path from each node x 
to D using function Reverse_Dijkstra [9] with some 
modifications to relaxation process, then it starts from S 
and discovers each node  based on the minimization of 
Cμ (p), where p is a complete path passing through node 
x. This path is determined heuristically at node x by 
connecting the already traveled segment from S to x 
and the remaining segment from x to D, and this can be 
done by calling function Look_Ahead_Dijkstra [9] also 
with some modifications to relaxation process in [7]. 
The main QAGSS algorithm is described as follows, 
and Table 1 shows the description of variables 
algorithm used. 

Main QAGSS Algorithm 
Input: G=(V, E), S, D, u 
Output: A suitable composite service 
1   Reverse_Dijkstra (G, e, D)  
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2   If (t[S]>n) then 
3       return failure 
4    End If 
5    μ ← MAX_NUM 
6    Look_Ahead_Dijkstra (G, e, c, S)  
7    If (Hk[x] ≥ uk for k∈[1,n]) then 
8        return suitable composite service Ssui 
9    Ada_Set (Ssui) 
10 End If 
11 return failure 

Table 1. Description of variables 
Variable Description 

t[x] 
 

Tk[x] 
 

Pt[x] 
 

C[x] 
 

Hk[x] 
 
 

PC[x] 
c[x] 

 
u 

The cost of the shortest path from x to D 
under the cost function Cμ (p) 

The individually accumulated edge values 
along the path 

Predecessor of x on optimal path that from 
x to D 

The cost of a foreseen complete path via 
node x based on the cost function Cμ (p) 

The individually accumulated edge values 
along the already traveled segment of the 

path from S to x 
Predecessor of x on the path from S to x 

The cost along the already traveled 
segment of the path from S to x 

The set of uk, k∈[1,n] 

There are two directions in the algorithm, backward 
from S to D and forward from D to S. The backward 
direction is depicted by lines 1-4 in QAGSS, which 
estimate the cost of the remaining segment using μ = 1. 
Reverse_Dijkstra returns a path p from S to D. Before 
moving to forward direction, QAGSS checks whether 
t[S]>n or not, if true it means no feasible path exist, 
which is based on Theorem 1. If not true, path p may be 
a feasible path. If path p is feasible, we use 
Look_Ahead_Dijkstra to find a path q with condition 
c(q) ≤ c(p), if not we use it to find a path q with 
condition Cμ (q) ≤ Cμ (p), in both cases, we set  μ as 
MAX_NUM that is a constant we set in the algorithm, 
which could be changed to alter the possibility of 
finding a feasible path. This is based on Theorem 2 
described as follows: 
Theorem 2 Suppose Reverse_Dijkstra returns path p, 
and Look_Ahead_Dijkstra returns path q, then 

(i) if p is feasible, q is feasible too and c(q) ≤ c(p) 

(ii) if p is not feasible, Cμ (q) ≤Cμ (p). 

Proof in detail can also be found in [7], and the 
following is relaxation process of Reverse_Dijkstra: 

Reverse_Dijstra_Relax  
Input: Two nodes x, y∈V 
Output: Predecessor of y on the path 
1  If (

1
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3     Tk[x] ← Tk[y] + ek(x, y) for k [1,n]∈  
4 Pt[y] ← x 
5  End If 

In forward direction, QAGSS invokes 
Look_Ahead_Dijkstra to identify if there is another 
path q which possibly improves the performance over 
path p. 

Look_Ahead_Dijkstra_Relax  
Input: Two nodes x, y∈V 
Output: Predecessor of y on the path and 

accumulated cost 
1 Set t as a temporary node 
2 c[t] ← c[x] + c (x, y) 

3 
1

[ ]
[ ] ( , ) [ ]

n
k k k

k k k k

u u uC t
H x e x y T y

μ

=

⎛ ⎞
← + +⎜ ⎟

⎝ ⎠
∑  

4 Hk[t] ← Hk[x] + ek(x, y) for k [1,n]∈  
5 Tk[t] ← Tk[y] for k [1,n]∈  
6 If (Select_best (t, y) = t) then 
7  c[y] ← c[t]    
8  C[y] ← C[t] 
9  Hk[y] ← Hk[t] for k [1,n]∈  
10  PC[y] ← x 
11 End If 

The above function firstly judge the value of μ, if 
μ=1 it is no need to compute cost function Cμ, otherwise 
use Cμ with μ = MAX_NUM to select feasible path. 
Then we use function Select_best to choose the next 
node for performance improvement. It selects one of 
input nodes such that the selected one should minimize 
cost if foreseen complete path passing through these 
nodes are feasible, otherwise, it selects one that 
minimizes the cost function Cμ. 

Ada_Set 
Input: Suitable composite service Ssui 
Output: Adaptive service set 
SCi : the ith service class in Ssui 
Sj : the jth one in l candidates 
Sg : the selected candidate in a service class 
Ai : the backup service set of SCi 
1  For each SCi in Ssui 
2    If (Sg ∈Ai) then 
3     remove Sg from Ai 
4    End If 
5    If (Qk(g) ≥ Qk(Ai) for k∈[1,n] ) then 
6     find l candidates∈SCi subject to Qk(j) ≥ 

Qk(g) for j∈[1,l] k∈[1,n] and cost are low 
7     For each Sj  
8       If Sj≠NULL then 
9        Add Sj to Ai  
10       End If 
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11      End For 
12    End If 
13  End For 

For the enhancement of service adaptive capacity, 
function Ada_Set is designed. It reserves a backup 
service set for every service class on the path. 
Whenever a suitable path is found, Ada_Set is called to 
find l candidates subject to Qk(j) ≥ Qk(g) for j∈[1,l] k
∈ [1,n] and cost are low, and add these to Ai. The 
intention of setting up Ai is to compensate for changing 
or failure of selected services. When QAGSS find 
suitable path, it can select candidates from backup 
service set, after a suitable path is found, Ada_Set 
check whether a backup service is on the path, if true 
remove it. 

The QAGSS algorithm determines whether there is 
possibility of path existence by invoking function 
Reverse_Dijkstra. If true continues to invoke function 
Look_Ahead_Dijkstra to find a more suitable path. 
Ada_Set is introduced for assurance of end-to-end QoS 
in grid environment. Since the modified Dijkstra’s 
algorithm is executed two times at most, the QAGSS 
algorithm has the same time and space complexities 
with Dijkstra. 
 
5. Experiment 
 
5.1. Configuration 
 

In this paper we conduct the simulation experiment 
to estimate the performance of QAGSS algorithm we 
proposed, and compare it with jaffe’s algorithm [8] 
which is used to solve the MCP problem. MCP problem 
is a slightly different version of MCOP problem, aims 
only at finding feasible path that satisfies multi-
constraints. For more than two dimensions MCP 
problem is known to be NP-complete. In [8] the author 
considers 2-dimension MCP problem, and uses 
Dijkstra’s shortest path algorithm with two adjustable 
parameters α, β to minimize objective function. 
Simulation arrangement is described below. 

In the simulation, we use a Request_generator to 
generate user’s requests, which is composed of service 
classes included and corresponding QoS constraints. 
The number of service classes in each request is 
classified into two groups [1, 5] and [5, 10]. For brevity, 
we define that every service class has 10 candidates, 
QoS dimension is 2 and capacity of backup set is 1. So 
the number of candidate nodes in DAG also has two 
ranges [10, 50] and [50, 100]. Each node has 2-
dimension QoS parameters and cost information, we 
use Node_inf_generator to generate these values 
respectively. Without loss of generality, every 
dimension QoS parameters are generated by different 
distributions, and mean of each dimension QoS 
parameters are calculated. We use these mean instead of 

edge mean to evaluate the average value of a path, as 
equation (6) shows:      Ak = (Nsc/2)*mk               (6) 
Ak represents the kth dimension average value of a path, 
Nsc is the average of service classes included in a 
request, so the average length of a path can be 
represented by expression Nsc/2 and mk describes the 
kth dimension QoS parameters mean. The QoS levels of 
requests have significant effect on the performance. For 
comparison of performance under different situations, 
we divided the QoS requests into three groups: 

(i) 75% QoS request ck smaller than average 
value Ak for k [1,n]∈  

(ii) 50% QoS request ck smaller than average 
value Ak for k [1,n]∈  

(iii) 25% QoS request ck smaller than average 
value Ak for k [1,n]∈  

In each group, we divide requests into two groups, 
one with range from 1 to 5 service classes and the other 
with range from 5 to 10. For each group the simulation 
is repeated 100 times respectively and the results 
reported in the subsequent sections are average values. 

 
5.2. Results and Analysis 

 
In Figure 3 the cost of composite service selected by 

QAGSS is lower than Jaffe’s, since QAGSS algorithm 
requires at most two iterations of Dijkstra’s algorithm 
while jaffe’s requires one. The cost of path returned by 
second iteration is no larger than that of first. Success 
rate in equation (7) is introduced to make contrast 
between different algorithms under different situations. 

Success rate = number of requests satisfied／total 
number of requests            (7) 

From Figure 4 we conclude that success rate 
improves as MAX_NUM increases, especially among 
the range from 1 to 10, which is consistent with 
theorem 1. When MAX_NUM exceeds 10, there is little 
improvement in success rate. It is due to the nature of 
the heuristic algorithm, one can expect few anomalies 
in the general trend. We also observe the smaller the 
number of service classes included in a request the 
greater success rate is. Contrast between Jaffe’s 
algorithm and QAGSS algorithm is described in Figure 
5. It is obviously that success rate of ours is larger than 
that of jaffe’s. QAGSS execute in two directions, when 
path returned from backward direction is not feasible, it 

 
Figure 3. Cost returned by QAGSS and Jaffe’s
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Figure 4.  The success rate performance of QAGSS with MAX_NUM 

 

 
Figure 5. Success rate  performance of QAGSS and Jaffe’s

will continue to move to forward direction if there exist 
possibility. According to theorem 2(ii) cost function 
may be minimized, then increases success possibility. 
 
6. Conclusion and Future work 

 
This paper studies composite service selection 

problem in grid environment.  QoS classification is 
discussed briefly and approach for standardization is 
also provided. We model the problem as MCOP, and 
then QAGSS algorithm is proposed to select least cost 
composite service while satisfying end-to-end QoS 
requirements. Adaptive mechanism is considered in 
QAGSS to adapt to the dynamic characteristic of grid 
service. In addition, QAGSS has the same time 
complexity with Dijkstra’s, which is suitable for making 
runtime decisions. Experiment results show that 
QAGSS performs better among similar algorithms in 
success rate and cost. 

In future, we plan to investigate performances of 
QAGSS in large-scale distributed grid environment. We 
will also make some improvements on adaptive 
mechanism to achieve higher performances and to be 
more suitable for grid services selection. 
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