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Abstract

Resource searching is an important function for 
resource sharing and cooperative work in large-scale 
distributed networks like grid and peer-to-peer (P2P). 
Many works have focused on optimizing network topology 
in order to improve search performance. However, these 
works rarely take into account the interaction of nodes’ 
optimizing behaviors and the connection cost. We propose 
a Non-coopErative game based Topology OPtimization 
model (NETOP) to enhance search performance in 
unstructured P2P networks. Each participating node in 
NETOP is a rational player who selects optimizing strategy 
(its node degree) according to both its private information 
and the public information. We prove the existence and 
uniqueness of Nash Equilibrium (NE) of the game, and 
present the performance analysis of this model. Moreover, 
we also take network dynamics into account and extend 
our model to adapt to the node churn. Experimental results 
show that NETOP network converges rapidly and achieves 
higher performances. When compared with Power-law 
and Square-root topologies in a static condition, NETOP 
network achieves the same success rate with 33.3% and 6% 
lower connection cost, 18% and 13.2% lower average hop 
count, and 4.6% and 6.5% fewer messages, meanwhile in 
a dynamic condition, it achieves 28.9% and 11.5% lower 
connection cost, 14.3% and 7.7% lower average hop count, 
and 26.6% and 28.7% fewer messages.

Keywords:	 Peer-to-peer, Topology optimization, Search, 
Game theory.

1   Introduction

Grid and peer-to-peer networks provide good scenarios 
for multiple applications over the large-scale distributed 
networks like resource sharing and cooperative work in a 
distributed manner. All resources are generally disseminated 
across all participating nodes, and there is no centralized 
directory server for storing these resources information 
in such a large-scale distributed network, especially 
for the fully decentralized unstructured P2P network, 
it is impossible to make precise control over network 
topology and resource deployment. When we search for 
a particular resource without a centralized server, the 

queries should be propagated node by node for matching. 
This kind of distributed searching manner avoids the risk 
of single-point failure and shifts the searching loads to all 
participating nodes. Meanwhile, it also brings the problem 
of searching efficiency and scalability, which poses a great 
challenge to resource searching in the distributed networks. 
Furthermore, the dynamic nature of grid and P2P networks 
makes the searching problem more complicated. To address 
the problem, there currently are three kinds of research 
ideas on the following aspects:

yy Search approaches or algorithms, which study the 
propagation of query messages among the nodes. 
Flooding [1] and random walk [2] are two commonly 
used methods for propagating queries. It is noted that the 
searching success rate lies on the number of nodes visited 
by queries from the perspective of probability. When a 
node cannot match the query it will propagate the query 
to all its neighbors according to flooding method, which 
results in revisits to some nodes, and generates more 
invalid query messages. LightFlood [3] is proposed to 
cut down the number of invalid messages by dividing 
the flooding into two stages while still visit the similar 
number of nodes as that of the standard flooding. Random 
walk requires the request node propagate query randomly 
to k(k ≥ 1) of its neighbors rather than all neighbors. If 
match failure the query will continue to propagate from 
neighbors to neighbors, and it can effectively avoids 
revisits to some nodes. Bin Wu et al. [4] present two 
analytical models to estimate the number of nodes visited. 
We use random walk as search approach in our model.
yy Replication strategies. By proactively deploying resource 
information replicas [5-6] on several other nodes, the 
resources availability can be improved and access 
latency is cut down. Edith Cohen et al. [5] proposes that 
network achieves the optimal search performance only if 
the number of the replicas is proportional to the square-
root of the query frequency. But due to the limitation 
of overall storage space excessive replication of 
information of hot resources will cover that of some cold 
resources, and consequently lead to failure of accessing 
these cold resources. It is unfair for cold resources and 
does not adapt well to the variation of hot resources. 
Furthermore, replicating those resources information will 
raise additional communication and storage overhead. 
BloomCast [7] proposes to spread and store Bloom 
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Filters [8] of resources information instead of the raw 
information so as to reduce the overhead. However, the 
consistency maintenance of replica information should 
also be taken into account.
yy Network topology optimization. In a fully decentralized 
unstructured P2P network, search is carried out by 
propagating and matching queries over the topology, and 
the network uses a combination of self-organization and 
cooperation with other peers to affect search performance 
[9]. This paper aims to provide a topology optimization 
model to improve search performance.

We first  explore the relationship between the 
topological property (node degree) and the searching 
success rate, and design utility function accordingly. Then 
the problem of topology optimization is modeled as a 
multi-person non-cooperative game termed NETOP. By 
calculating the game’s Nash Equilibrium (NE) we obtain 
the optimal distribution of node degrees. This paper mainly 
makes the following contributions:
(1)	 Analyze the relationship between node degree and 

searching success rate from the perspective of a 
resource provider, and present the contribution of an 
individual node to the success rate.

(2)	 Model topology optimization as a multi-person non-
cooperative game, which is used to describe how each 
rational node chooses its connection degree during 
the optimization process. We prove the existence and 
uniqueness of Nash Equilibrium and solve it. To our 
best knowledge, it is the first time to utilize game 
theory for solving search problem.

(3)	 Present the expressions of the expected search 
performance according to Nash Equilibrium, and 
conduct experiment to verify the efficiency and 
effectiveness of NETOP.
The rest of this paper is organized as follows. Section 

2 discusses related work. Section 3 presents NETOP 
model for topology optimization. We extend the model for 
considering network dynamics in Section 4 and discuss 
how to obtain the public information in Section 5. Section 
6 describes the performance evaluation of NETOP. Finally, 
we conclude our work in Section 7.

2   Related Work

Existing studies on topology construction and 
optimization in unstructured P2P networks mainly involve 
the following aspects:

yy Topology construction based on nodes’ interests. Gang 
Chen et al. [10] present a user (node) interest model, and 
suggest to construct a small-world network [11] through 
exploiting users’ common interest patterns captured 
by the model, so as to enhance search performance. 

But this work cannot adapt well to frequent changes of 
users’ interests. Mei Li et al. [12] design an approach for 
constructing a semantic small-world network in order to 
support efficient semantic-based search in P2P networks. 
However, semantics seems too complicated to achieve 
high efficiency.
yy Topology optimization based on lifecycle. The dynamics 
of P2P networks usually exhibits the unpredictable 
join and departure of nodes, which has a great impact 
on search performance. Derek Leonard et al. [13] 
demonstrate that for a given average node degree d, the 
topology of d-regular graph performs the best resilience 
to node churn, and propose to keep high probability of 
network connectivity by selecting nodes from online 
nodes randomly as new neighbors instead of original 
offline neighbors. Zhong-Mei Yao et al. [14] study the 
characteristics of nodes’ lifecycle in P2P networks and 
find it exhibit approximately heavy-tailed distribution. 
When a node updates its neighbors, it is suggested 
to choose long-lived nodes to reduce the probability 
of being isolated. Daniel Stutzbach et al. [15] show 
that the topology of Gnutella [20] network appears an 
“onion-like” structure, which implies nodes with similar 
lifecycle prefer to connect to nodes with the same or 
longer lifecycle, and then those long-lived nodes form 
a stable core that ensures search performance. Most 
of these previous works focus on enhancing search 
performance by reducing the influence of node churn 
only from the perspective of network dynamics. In this 
paper, we propose a topology optimization game model 
to guide nodes to construct the topology to improve 
search performance. Network dynamics is also taken into 
account to extend our model.
yy Topology optimization based on node capability. Yatin 
Chawathe et al. [16] propose a self-organization topology. 
Each node evaluates its neighbors based on the capability 
of dealing with queries, and then connects with those one 
with high values for improving searching success rate. 
Hui-Rong Tian et al. [17] propose a reciprocal capability 
based adaptive topology protocol for P2P networks, 
which takes account of the node’s rational belief of 
maintaining connections. Nodes are willing to establish 
connections only with nodes that are beneficial for them. 
This paper also takes node rationality into consideration, 
but we do work from the perspective of a resource 
provider rather than a resource requestor.
yy Topology optimization based on load balancing. Matei 
Ripeanu et al. [18] propose that Gnutella network shows 
approximate power-law topology [21], which can achieve 
good search performance. A low-diameter unstructured 
P2P overlay called MPO with power-law characteristics 
is presented in [19]. However, high degree nodes in 
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power-law topology do not always have high capabilities, 
and are apt to overloading. Brian F. Cooper et al. [22] 
design a topology self-organization strategy to avoid 
overloading. Each node use connect() operation to form 
an ad hoc search or index connection to another one, and 
use break() operation to break a connection that produces 
too much load. We take connection cost into account for 
avoiding overloading in our work.
yy Topology optimization based on node contribution. 
During a search, if a node satisfies the query, it makes 
contribution to the search from the perspective of a 
resource provider. Guo-Fu Feng et al. [23] investigate 
the relation among the distribution of the degree, 
resource access frequency and the success rate, and 
estimate node contribution. Then an optimal distribution 
of degrees is proposed in terms of node contribution. 
However, it primarily considers the case that each node 
only preserves one kind of resource. The calculation of 
optimal degree for case of multiple resources is simply 
the addition of degree of single resource, and it neglects 
superposition of multi-resources node degree. Brian 
F. Cooper [33] proposes an optimization scheme that 
suggests node degree should be proportional to the square 
root of the query frequency of resources possessed by the 
node. Square-root network is demonstrated to be optimal 
for random walk search algorithm. But it assumes that 
each type of resources has only one resource in the 
network and does not consider the maximum hop limit. 
Furthermore, these works do not take connection cost 
into consideration, and the pre-established network size 
and total connection degree do not reflect the network 
dynamics.

It is suggested to consider the node rationality in 
the process of topology optimization. Game theory [24] 
provides a good idea for solving strategies choice of non-
cooperative rational entities. It wins a considerable amount 
of popularity for studying the problems of network resource 
allocation and task scheduling in grid and P2P networks 
[25-28]. Hong-Gang Zhang et al. [25] propose to model 
the interaction among nodes of unstructured P2P file 
sharing networks as unilateral and bilateral unstructured 
file sharing games, so as to solve the network resource 
(bandwidth) allocation problem. C. K. Tan et al. [26] model 
the problems of channel assignment and power control as 
a non-cooperative game, in which all wireless users jointly 
pick an optimal channel and power level to minimize a 
joint cost function. Krzysztof Rzadca et al. [27] suppose 
that task scheduling in distributed manner is analogous to 
the prisoner’s dilemma game. Vasanth Kumar Ramesh [28] 
develops an auction based game theoretic framework for 
task scheduling in heterogeneous environments. However, 
few works combine game theory and studies of resource 

searching together. This paper introduces game theory into 
topology optimization, and presents a non-cooperative 
game based topology optimization model for solving search 
problems in unstructured P2P networks. 

3   NETOP Model

The classic approaches of topology optimization 
attempt to design a mechanism in which each node selects 
the behaviors of topology construction with the aim of 
optimizing some search performance metrics. However, 
the interaction among rational nodes is absent from those 
approaches, for example, excessive behaviors of some 
nodes optimize their own performance, while it may result 
in the performance degradation of other nodes. Thus it may 
not necessarily guarantee the optimal performance on the 
whole. Game theory can be used to describe the interaction 
among rational nodes. As a rational node in the game, each 
one maximizes its utility by considering its contribution to 
success rate and the cost of maintaining connections. We 
establish the relation between node utility and its behavior 
of topology construction. In this study the behavior of 
topology construction refers to the choice of node degree. 
As a rational node, it chooses an appropriate connection 
degree according to the impact of other nodes on its own 
utility. In unstructured P2P networks each node maintains 
several connections to neighbors, the queries are spread 
out through these connections until the requested resource 
is found (search successfully) or the hop count reaches the 
upper bound (search failed). Assume that the resources are 
uniformly distributed in the network and have the identical 
density. The success rate of searching any resource is 
proportional to the number of nodes visited. From the 
requestor’s point of view, a node wants to propagate the 
queries to more nodes within less hop count by increasing 
connection degree so as to enhance the searching 
success rate and reduce hop count and query messages. 
Nevertheless, the excessive increase in connection degree 
will result in a dense network in which we need high 
maintenance cost to reconnect the broken connects caused 
by node churn. As we know, the queries are satisfied by 
nodes that provide the requested resources when search 
finishes successfully. Node’s dual roles (requestor and 
provider) allow us to study search problem from the 
perspective of resource provider. Node contribution is 
defined as how extent it satisfies queries, which can be used 
to represent the search performance factors. Moreover, we 
consider that node should pay the maintenance cost for 
providing the contribution, and define node utility as the 
difference between contribution and cost. In this way, if 
each node could maximize its utility, we can achieve higher 
search performance with lower cost. 
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3.1	 Node Contribution
In a P2P network with N nodes, it is assumed that each 

node i is equipped with mi (mi  N ) types of resources, 
the total number of resource types is R, and the topology is 
always connected. Each type has several resource instances, 
and the search process aims at finding the instances that 
belong to the required type. To avoid the impact of number 
of resource instances on search, we assume that each type 
of resource has the same number of resource instances, and 
is distributed uniformly in the network.

Node contribution refers to the contribution to the 
search when node acts as a resource provider, and is defined 
as the number of times that it can satisfy the query during 
a search. The contribution value lies on two factors: the 
number of times that the node is visited by the queries and 
the query hit rate on the node.

To make sure a certain node i been visited by the query 
it requires a path between node i and the request node s. In 
terms of random walk algorithm, the request node randomly 
propagates queries to k of its neighbors, and the maximum 
hop limit is set to h, so the path length should not more than 
h. Then we discuss the following two cases.

Case 1: There exists a direct connection between the 
request node s and node i shown in Figure 1(a). As we 
know, a connection connects two terminal nodes (Our 
discussion does not include the case that node connects 
itself) and contributes two degrees to the total node degree. 
Then a connection is considered to be constituted by both 
terminal nodes’ degrees. The probability that there exists 
a connection between s and i through a certain degree of s 

is , where di is node i’s degree, d-i is the sum 

of all node degrees except i, and ds is node s’s degree. We 
use the average node degree d instead of ds to represent an 
arbitrary node s’s degree. Hence we get the probability of 

case 1: . 

h-1 hops

...

...

(a)                                                                 (b)

...

...

query

. . .
The connection is  constituted by  one 

of    s degree and one of   s degree.s ′ i ′

i

s is

Figure 1 (a) There Exists a Direct Connection Between Node s 
and i; (b) There Exists a Connection Between Node i 
and an Arbitrary Node Visited by Queries within h - 1 
Hops

Case 2: There exists a connection between node i 
and an arbitrary node visited by queries within h - 1 hops 
shown in Figure 1(b). We call these nodes intermediate 
nodes. Consider the probability that the node be visited 
repeatedly during a search is low for random walk 
algorithm, so it can be ignored here for consideration of 
simplicity. The number of intermediate nodes is k(h - 1). In 
accordance with the analytical method in case 1, we get the 

probability of case 2: .

Combine the two cases together, the number of times 
that node i is visited during a search pi(h) can be calculated by:

	 �(1)

where ,  are respectively used to represent the 

probability that s’s connection to i is chosen to propagate 
queries and the probability that a intermediate node’s 
connection to i is chosen to propagate queries during a 
search.

We test out our derivation by experiment. The 
experiment is carried out upon a random network with 
10000 nodes, the node degree uniformly distributed from 
1 to 50, and the average node degree is 5. As Figure 2 
shown, high degree nodes receive more queries during the 
experiment and the pairs with higher product of k and h 
have the higher number of being visited during a search, 
which basically accords with Equation 1. The differences 
among pairs are more obvious for the higher degree nodes. 
In general, the number of being visited in the experiment is 
slightly lower than the theoretical value. That is because the 
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Figure 2 The Relation between the Node Degree (di) and Its 
Number of Being Visited By Queries ( pi(h))
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existence of a small number of revisits reduces the size of 
area that query arrives and makes it less than k * h.

It is observed in [30] that there exists a small part of 
resource types which are required with very high frequency 
in P2P networks, and these kinds of resource are known as 
hot resources. Suppose node i has Ri (0 ≤ Ri ≤ mi) types of 
hot resources, then the hit rate on node i is:

	 � (2)

where qhot is the sum of access frequency of all hot 
resources, and it also represents the probability that the 
query is looking for hot resources. We use RH to represent 
the number of hot resource types. Combine the above 
equations together, we get node i’s contribution Fi(h):

	 � (3)

In addition, assume that m is the average value of mi 
(i ∈ {1,..., N}), we calculate the average hit rate by m/R.

3.2	 Topology Optimization Game
We have discussed node contribution to the search 

performance in the first part, and through analyzing 
Equation 3 it is easy to find that the contribution value 
is tightly related to node degree and the hot resources 
possessed by node. In this study we assume that node utility 
is proportional to its contribution value. We also take the 
cost of maintaining connections into account, and assume it 
as Ci = c2 * di for simplicity, which implies it is proportional 
to the node degree. Equation 4 gives the definition of node 
utility ui that is the difference between node contribution 
and its cost, c1, c2 (c1, c2 > 0) are two constants for making 
the twin values comparable.

� (4)

Each node attempts to maximize its utility according 
to the above utility function, then the network can provide 
the best search performance while consume the least 
connection cost. Node can change its connection degree 
to maximize utility (other parameters k, h, Ri remain 
unchanged). Equation 4 implies that node i’s utility lies 
not only on its degree but on degrees of other nodes. The 
change of degree of any other nodes will impact node i’s 
utility, and vice versa. We model the problem as a multi-
person non-cooperative game.

Definition 1. NETOP: the network is composed of N 
nodes, and each one is regarded as a player. The strategies 
space of N players are D1,..., DN, the utility function of them 
are u1,..., uN, and the set of all players’ Qi(i ∈ {1,..., N}) is 

the public information. We use G = {D1,..., DN; u1,..., uN} to 
represent the game.

In this game, the utility of each node is the function 
of N-tuple of all nodes’ strategies. If a node does not 
take others’ strategies into account, it can boost utility by 
changing its strategy unilaterally. For example, a node may 
increase its connection degree appropriately to improve 
utility, but the node does not have the knowledge about 
others’ strategies when it chooses its own strategies. In the 
same way, the other nodes may attempt to boost utilities 
by increasing their connection degrees, which results in 
the utility of each node may not necessarily improved, in 
contrast, the connection cost increases. As a rational node, 
it should take strategies of both its own and others together 
into account. Though the node does not have the knowledge 
about others’ strategies, it can make predictions based 
on the public information, and adjusts its own strategy 
accordingly. The adjusted strategy is regarded as the 
optimal response to others. If all nodes choose strategies in 
this way, the game will reach a state of “strategy stability,” 
namely Nash Equilibrium (NE). We give the definition of 
NE of this game and prove the existence and uniqueness of 
NE as follows.

Definition 2. NE: In NETOP game G = {D1,..., DN; 
u1,..., uN}, when each player i ∈ {1,..., N}chooses strategy 
di resulting in N-tuple strategy profile (d1,..., dN) then player 
i obtains utility ui(d1,..., dN). A strategy profile (d1

*,... dN
* ) is a 

Nash Equilibrium (NE) if no unilateral deviation in strategy 
by any single player is profitable for that player, that is

 

Theorem. NETOP game has a unique NE. 
Proof: In this game, the node’s problem of strategy 

choice can be transformed into an optimization problem as 
follows:

	 � (5)

Calculate the second derivative of utility function we 
get

so ui is continuous and concave in di. Each node’s Di 
is a closed convex set. In terms of theorem 1 and 2 in [31], 
there exists equilibrium point, and the point of optimization 
problem is unique. Hence the game has a unique NE.� □

To solve the NE of this game, let ui' = 0, we obtain:
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	 � (6)

Substitute di + d-i = Nd into Equation 6 and make 
additions to all equations, we have:

Then we obtain the NE solution by substituting the 
above equation into Equation 6.

	 � (7)

3.3	 Performance Analysis
In terms of the game results, we can derive analytically 

the expected search performance of NE. The main 
performance metrics concerned are the number of resource 
instances that are found P(h), the average hop count 
taken to find the resource T(h) and the average number of 
messages M(h). 

When the game reaches NE, P(h) can be represented 
by the sum of all nodes’ contributions.

	 � (8)

Equation 8 shows the relation between the number of 
resource instances found and node degree. We use | P(h) | 
to represent the searching success rate, and qi to denote the 
probability of finding the first requested resource exactly 
at the ith hop, then the searching success rate can also 

be represented by . Now assuming that the 

resource is found successfully within h hop counts, the 

probability of finding the first requested resource instance 

exactly at the ith hop should be , so the average hop 
count can be calculated by:

where qh = | P(h) | - | P(h - 1) |, substitute to above 
equation, we get:

	 � (9)

By analyzing Equation 9, we conclude that T(h) is 
related to both h and | P(h) |, increasing h exclusively may 
not always lead to continuous increase of T(h). In terms of 
random walk algorithm, the request node sends queries to k 
of its neighbors randomly generating k query messages, and 
each query message forms a query route and spreads along 
this route. We assume that the hit node returns a message 
directly to the request node when the resource is found. 
Then the average number of messages is given by:

	 � (10)

where M'(h - 1) denotes the number of messages 
generated by every route which has a length of h - 1. If the 
resource is found on one node on the path (the average hit 
rate is m/R), it will generate a success message, otherwise, 
propagate message to the next node on the path until 
reaching the end of the path. The recursive expression can 
be denoted by:

Since M'(0) = 1, we derive the following equation

Substitute the above equation to Equation 10, we 
obtain:
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	 � (11)

Equation 11 implies that the number of average 
messages is tightly related to both the average hit rate and 
the parameters of search algorithm, and as far as random 
walk concerned it is independent of topology.

4   Model Extension

It is assumed that the nodes (players) of game are 
predefined without change when we define NETOP in 
Section 3, which is inconsistent with the fact of dynamics 
of P2P networks. Node churn will have influence on the 
search performance, so we need to extend NETOP to adapt 
to the description of node churn.

In P2P networks, node churn can be described by using 
node arrival rate and lifecycle. It is noted by [32] that the 
distribution of node lifecycles in P2P networks is often 
heavy-tailed. In this study, we assume that node arrival rate 
obeys Poisson distribution Po(λ ), and node lifecycle obeys 
Pareto distribution that is one of heavy-tailed distributions. 
To allow arbitrarily small lifecycles, Pareto distribution is 
modified in [29] by:

Let the node arrival time is γ (0 ≤ γ  ≤ t), according to 
the properties of Pareto distribution, the probability that a 

node is still alive is . Now we use Palive(t) to 

denote the probability that a node arrives in the network at 
anytime of [0, t], and is still alive at time t.

As we have mentioned, the distribution of node arrival 
rate is Poisson with λ  as its expectation, the network size 
N(t) at time t should be:

	 � (12)

When t → +∞, the network size tends to be λβ /(α  - 1), 
then it reaches a dynamic equilibrium. Therefore, NETOP 
can be extended to be a time-related dynamic game defined 
as follows.

Definition 3. Dynamic NETOP: There exists N(t) 
nodes at time t in the network, and each node is regarded as 
a player. The strategies space of all players are D1,..., DN(t), 

the utility function of them are u1,... uN(t), and the set of 
all players’ Qi (i ∈ {1,..., N(t)}) is the public information. 
We use G(t) = {D1,..., DN(t); u1,... uN(t)} to represent the 
extended game.

According to the derivation of section 3.3, the NE 
solution of the extended game at time t is:

�(13)

The number of resource instances found P(h, t) and 
average hop count T(h, t) at time t are respectively:

� (14)

	 � (15)

The average number of messages propagated during a 
search M(h, t) is calculated by:

where 

Let f = 1 - m/R, since M'(0, t) = 1, when h ≥ 1,we get:

� (16)

where d *(t) is the average node degree at time t. 
Different from the static game discussed in section 3, 
from Equation 16 we find M(h, t) is related to d *(t), which 
implies the average number of messages has close relations 
with the optimized topology at time t in dynamic NETOP.

5   Discussion

In the previous sections, we propose a topology 
opt imizat ion  model  NETOP and analyze  search 
performance accordingly. In terms of definitions of 
NETOP and NE, each participating node needs the public 
information Qi (i ∈ {1,..., N(t)}) to calculate its optimal 
strategy di

*(t) at NE. In this section, we discuss approaches 
to achieve the public information. 

The public information as the global information is the 
set of all nodes’ hit rate {Qi}. The super node is a choice for 

12-JIT_NC-004.indd   7 2011/5/10   上午 10:28:44



Journal of Internet Technology Volume 12 (2011) No.38

collecting and offering the information from a centralized 
point of view, but it may become a bottleneck of the whole 
network. More importantly, the centralized approach is 
contrary to the principle of P2P. We propose a distributed 
approach to send and receive the information. According 
to our approach, each node has two tables: table online 
and table offline shown in Figure 3. Table online is used 
to record all online nodes’ hit rate {Qi} and node i’s table 
online is initially filled out by its own hit rate, while table 
offline is used under the condition of dynamics to record 
the departed nodes. Assume that each node maintains 
connections to its neighbors through sending and receiving 
heartbeat packets periodically. For any neighbor of node i, 
say node j, if node i has not received any packets from it 
for a given period, node i will think node j has departed and 
add it into table offline. In order to collect more information 
to update the tables, the tables are sent out accompanied by 
queries. We use Bloom Filters of tables (BFon, BFoff) instead 
of raw tables to reduce the traffic overhead. The process of 
tables updating is described below:

Node ID             QID

N00001            0.0132

N00345            0.0041   

N01053            0.1281   

N10790            0.0038

. . .                   . . .

Node ID

N03081

N10432  

N30512  

N10018

. . .      

Online Offline

Figure 3 An Example of Twain Tables

(1)	 Each node uses BFoff to update its BFon by eliminating 
the items appeared in BFoff, denoted by BFon - BFoff. 

(2)	 When node j receives node i’s BFion, BFioff, then merge 
both nodes’ Bloom Filters, 

BFion È BFjon, BFioff = BFjoff = BFjoff È BFjoff

and eliminate the offline items

BFion = BFjon = BFion È BFjon - BFioff

In P2P networks, each node is aware of local 
information achieved from its neighbors. Through repeating 
the above updating process our approach utilizes the 
propagation and merge of local information to obtain the 
global information approximately. Consider the dynamic 
situations, node churn including node’s joining and 
departure can be perceived by its neighbors, then they 
will update their own Bloom Filters of tables and send the 

information out accompanied by queries. Our approach uses 
two ways to update tables, one way is active mode, a node 
send out Bloom Filters of tables with queries for updating; 
another one is passive mode, which implies a node 
passively receives Bloom Filters of tables accompanied 
by queries from other nodes and merges together. Hence 
the refresh rate is fast, which also guarantee the rapidity of 
convergence and consistency of public information.

6   Performance Evaluation

In this section, we perform an experimental study to 
evaluate the performance of NETOP, and compare it with 
that of Square-root [33] and Power-law [21] topologies.

Table 1 Experimental Parameters and Their Values

Parameters values
Network size (N) 10000
Node capacity (mi) Uniform distribution [5] [25]
Contribution constant (c1) 1
Connection cost constant (c2) 2.721*10-4
Number of resource types (R) 2000
Node arrival rate Poisson distribution Po(100)
Node lifecycle Pareto distribution (2, 100)
Search algorithm Random walk

6.1	 Experimental Methodology
We implement an unstructured P2P simulator to 

generate different P2P topologies and run searches. There 
are 2000 resource types in total, each type has 50 resource 
instances, and all resources are distributed uniformly in 
the network. The search process proceeds in discrete time 
steps, 100 nodes are chosen randomly to issue queries at 
each step. It is assumed that the resource query frequency 
follows Zipf’s law distribution (τ  = 2.05) [35]. Hot resource 
types are 5 percent of total number of resource types, and 
queries for hot resources are 60 percent of total query 
frequency (qhot = 60%). Nodes’ arrival process follows 
Poisson distribution, and the distribution of lifecycle is the 
shifted Pareto defined in section 4. Here the performance 
metrics concerned are P(h)/C, T(h), M(h) (or P(h, t)/C(t), 
T(h, t), M(h, t)). T(h), M(h) are defined as the average 
hop count taken to find the first resource instance and the 
average number of messages propagated which is discussed 
in section 3, respectively. The connection cost is also 
taken into account, let C denotes the total connection cost 

, and P(h)/C is defined as the number of resource 

instances found divided by the connection cost, which 
is used to measure the search efficiency. According to 
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Equation 7, the node degree at NE is related to the ratio c1/
c2, and we set the ratio as 1 : 2.721 * 10-4 so as to make the 
average node degree at NE less than 5. The experimental 
parameters and their values are listed in table 1. 

6.2	 Experimental Results
6.2.1 Performance of Approach of Achieving Public 

Information
Before optimizing network topology, we firstly 

evaluate the efficiency of the approach discussed in Section 
5. In the case of a static network, the initial network is a 
random network with size of 10000 nodes and the average 
node degree is 5. The search process is executed 50 time 
steps, and 50 * 100 searches are issued in all. Each node 
collects the public information through visiting or being 
visited so as to calculate the sum of 1/Qj ( j ∈ {1,..., N}) 

(namely , which is used in Equation 7). Everyone has 

its own result value, we average all these values and use it 
to measure the integrity of public information. As Figure 4 
described, the average value is low at the first period, and 
then boosts rapidly until the real value. That is because a 
node is only aware of the information within a small area, 
and this area is expanded greatly with the information 
merge among nodes. This also interprets why the 
differences among all nodes’ values (measured by standard 
deviation) are low at first, increases as the area being 
expanded and drops down as the merging degree being 
enhanced. The standard deviation tends to be zero after 20 
time steps, which guarantees the rapidity of convergence 
and consistency of public information.
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Figure 4 The Efficiency of Approach in a Static Network

In the case of a dynamic network, we focus on the 
efficiency of approach under the condition of node churn. 
Figure 9(a) indicates that the network size boosts rapidly 
at first, and stabilizes after 2000 time steps. So we mainly 
evaluate the efficiency within the first 2000 steps. As Figure 
5 indicated, both the average value and real value have 
the similar trend with network size. Because there are new 

nodes joining and old nodes departing the network at the 
last few steps of each statistical point, the information of 
those nodes’ hit rates have no time to spread out and update 
the public information. The difference between the average 
value and real value always exists, but it is very small and 
the low standard deviation guarantees the consistency of 
public information in a dynamic environment to a large 
extent.
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Figure 5 The Efficiency of Approach in a Dynamic Network

6.2.2 Performance Comparison in a Static Network
After collecting the public information, each node 

optimizes the network topology by adjusting its connection 
degree according to the number of hot resources possessed 
by itself and the public information. Figure 6 describes the 
NE of game, and the experimental results are basically in 
conformity with Equation 7. There exist some derivations 
between the experimental and theoretical results, because 
in theoretical analysis we use the number of hot resources 
instead of resource query frequency to calculate the hit 
rate, and the frequency differences among hot resources are 
ignored. Figure 7 shows the distribution of node degrees in 
NETOP network, it is observed that most nodes’ degrees 
concentrate on the interval of [1][15], and the average node 
degree of NETOP is about 4.5. 
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Figure 6 The Relation between the Number of Hot Resources 
Possessed by a Node (Ri) and Its Connection Degree (di) 
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Figure 7 The Topology Optimized by NETOP

Power-law topology is a common used network model, 
and we construct a Power-law network according to [34]. 
Square-root network is proposed to reduce the average 
hot count compared to Power-law network. We construct 
a Square-root network according to square-root-construct 
algorithm described in [33]. Different from the other two 
networks which exclusively focus on the improvement of 
success rate and average hot count, we also take network 
connection cost into account. The experimental result 
is shown in Figure 8(a), compared with Power-law and 
Square-root networks, the value of NETOP is 33.3% and 6% 
higher respectively, which illustrates that NETOP network 
can achieve higher success rate with lower connection cost. 
It is demonstrated by [33] that the Square-root network is 
optimal for random walk search algorithm. But it is based 
on the assumption that each type of resources has only one 
resource instance in the network. It does not always hold 
for the case of multiple instances of each type, since as for 
an arbitrary type of resource, it neglects the superposition 
of contributions of multi-instances. We evaluate the average 
hop count T(h) and messages M(h) among the three types 
of network, and the results are depicted by Figure 8(b) and 
(c). Before h < 40, all types of network almost have the 
identical T(h). As h continues increasing, T(h) of NETOP 
network stabilizes faster, and is lower than that of the 

others, 18% and 13.2% respectively. When h = 90, NETOP 
network consumes 4.6% and 6.5% fewer messages than 
the other two networks. The experimental result of M(h) 
is nearly consistent with Equation 11, and demonstrate 
that it is independent of topology for random walk without 
considering network dynamics.
6.2.3 Performance Comparison Under the Condition of 

Node Churn
In this part of experiment, we evaluate the performance 

of NETOP under the dynamic condition of node churn, and 
also compare it with Square-root and Power-law topologies. 
We adjust network topology every 100 time steps, as for 
NETOP model it is sufficient for nearly all online nodes 
to collect the public information except the new nodes 
coming at the last step before each adjustment. For these 
new nodes, we let them choose a neighbor randomly and 
fetch the public information from their neighbors. Figure 
9 illustrates search performance comparison under the 
condition of node churn. From Figure 9(a) we find the 
network size boost rapidly at first, and stabilize after 2000 
time steps. The network connection cost C increases with 
the boost of network size, which results in the degradation 
of search efficiency. However, NETOP network still 
maintains 28.9% and 11.5% higher value than the others. 
Before stabilization, the small network size may lead to the 
scarcity of some types of resources. The requests for these 
resources call for the higher hop count and more query 
messages. So the average hop count T(h, t) and number 
of messages M(h, t) are higher at first shown in Figure 
9(b) and (c). Moreover, as time increases the nodes’ alive 
probability Palive(t) decreases rapidly till the network comes 
to a dynamic equilibrium, which also interprets why M(h, 
t) drops quickly before stabilization. In terms of Equation 
16, NETOP network with lower average node degree d *(t)
achieves fewer M(h, t). The experimental results show 
that when compared with the other two networks, NETOP 
network requires 14.3% and 7.7% lower average hop count 
and 26.6% and 28.7% fewer messages.
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7   Conclusion

In this paper, we propose NETOP, a non-cooperative 
game based topology optimization model, with the aim of 
enhancing resource searching performance. By exploiting 
the relations among node degree, node contribution to 
searching success rate and connection cost, we present the 
node utility function and model the optimization problem 
as a multi-person non-cooperative game. In the game, 
each node is viewed as a rational player and attempts 
to maximize its utility so as to achieve higher search 
performance with lower connection cost. By calculating the 
NE of game we analyze the expected search performance 
theoretically. Furthermore, we take node churn into 
account, extend NETOP to be a time-related dynamic 
game accordingly and put forward a distributed approach 
for nodes to obtain the public information. We carry out 
the experiments in both static and dynamic conditions, to 
confirm the efficiency and effectiveness of our model. The 
results show that NETOP network converges rapidly and 
achieves higher search performances. When compared with 
Power-law and Square-root topologies in a static condition, 
NETOP network achieves the same success rate with 33.3% 
and 6% lower connection cost, 18% and 13.2% lower 
average hop count, and 4.6% and 6.5% fewer messages, 
meanwhile in a dynamic condition, it achieves 28.9% 
and 11.5% lower connection cost, 14.3% and 7.7% lower 
average hop count, and 26.6% and 28.7% fewer messages. 

This work serves as our elementary work towards 
understanding the relation between topology and search 
performance. As future work, we want to study how to 
update node’s neighbors more effectively based on its 
optimal degree. In addition, replication strategies and 
resource indexing techniques can also be combined to 
appropriately reduce the average hop count and messages.
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