
JPR: Exploring Joint Partitioning and Replication
for Traffic Minimization in Online Social Networks

Jingya Zhou∗†, Jianxi Fan∗†
∗School of Computer Science and Technology, Soochow University, Suzhou, China 215006

†Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing, China 210023

Email:{jy zhou, jxfan}@suda.edu.cn

Abstract—A scalable storage system becomes more important
today for online social networks (OSNs) as the volume of user
data increases rapidly. Key-value store uses consistent hashing
to save data in a distributed manner. As a defacto standard,
it has been widely used in production environments of many
OSNs. However, the random nature of hashing always leads to
high inter-server traffic. Recently, partitioning and replication
are respectively proposed in many existing works where the
former aims to minimize the inter-server read traffic and the
latter aims to optimize the inter-server write traffic. Nevertheless,
the separated manners of optimization cannot efficiently reduce
the traffic. Because the inter-server read traffic is changed during
replication. In this paper, we suggest that performing partitioning
and replication simultaneously could provide probability to fur-
ther optimize traffic. Then we formulate the problem as a revised
graph partitioning with overlaps, since overlaps partitioning
naturally corresponds to replication. To solve the problem, we
propose a Joint Partitioning and Replication (JPR) scheme.
Through extensive experiments with a real world Facebook trace,
we evaluate that JPR significantly reduces inter-server traffic
with slightly sacrificing storage cost compared to hashing, and
preserves a good load balancing across servers as well.

I. INTRODUCTION

Online social networks (OSNs) could make the commu-

nication more efficiently among users, especially for users

geographically separated, and are becoming extremely popular

nowadays (e.g., Facebook, Twitter, LinkedIn). Facebook had

1.44 billion monthly active users as of March 2015, and the

total size of user data is more than 300 petabytes [1].

Facing such a big data, OSN service providers need to build

an efficient storage system in a distributed manner. Currently,

many popular OSNs build their storage systems based on key-

value stores (e.g., Cassandra [2], Voldemort [3]) that have

become the defacto standard for big data storage. In a key-

value store system, user data are assigned among servers

randomly based on consistent hashing [4] which could help

system to achieve a good load balancing. However, different

from traditional web applications, OSNs need to deal with

highly interactive operations. For example, when a user logins

her Facebook account, she often browses some of her friends’

profile pages, which requires fetching data from friends.

Usually these friends’ data are distributed across multi-server,

and then the inter-server communication is inevitable.

Social locality is often used to describe how extent users

and their friends are co-located together. Obviously, perfect

social locality implies that each user’s request can be served

at a single server. Unfortunately, consistent hashing fails to

preserve social locality well and often produce high inter-

server traffic. To address the problem, existing studies use

partitioning and replication approaches based on the under-

lying social graph. In general, the social graph is partitioned

into multiple groups with minimal cut weight based on graph

partitioning algorithms such as METIS [5]. Partitioning is able

to reduce the inter-server traffic to some extent. SPAR [6]

co-locates the data of users’ every friend in the same server

by replication, so that social locality can be preserved well.

However, in order to preserve social locality on a cluster of 512

servers, SPAR needs to create nearly twenty replicas on aver-

age for every user. Although replication helps SPAR to avoid

most of inter-server read operations, it raises significantly the

inter-server write traffic incurred by replicas synchronization.

To improve the traffic performance, recent works [7], [8],

[9], [10] propose to combine partitioning and replication in a

separated fashion. However, they cannot optimize the traffic, as

both optimizations of partitioning and replication affect each

other. Therefore, it is challenging to design a scheme that can

minimize both read and write traffic across servers.

In this paper, we firstly use an example to prove that the

traffic can never be optimized unless both partitioning and

replication are conducted simultaneously. Motivated by this

fact, we propose a Joint Partitioning and Replication scheme

(JPR). JPR formulates the problem as a revised partitioning

with overlaps. It can realize the synchronized optimization, as

users inside the overlapping area belong to multiple partitions,

and naturally corresponds to multiple replicas on different

servers. At the same time, a master replica placement is

designed to optimize the location of master replicas for each

user.

II. RELATED WORK

Due to random nature of hashing, many friends’ data are

stored randomly on different servers, which leads to multi-

get hole problem [11]. Pujol et al. [6] proposed to partition

social graph as well as replicate friends’ data across servers,

and implemented a middleware SPAR. In order to preserve

social locality perfectly, SPAR ensures the co-location of every

pair of friends by replication, which inevitably results in the

increase in storage cost as well as consistency maintaining

traffic. To avoid excessive replication, Tran et al. [12] explored

the data replication under a fixed storage space and update

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.100

268

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.100

1147

cost required for replication, and proposed a socially-aware

replication scheme. The scheme attempts to reduce visit cost

by placing replicas of each user i to the servers that host most

friends of user i.
Liu et al. [7] focused on data replication for different OSN

users, and suggested creating various numbers of replicas

according to the heterogeneous requesting rates. They jointly

considered both read rate and update rate. Jiao et al. [8] sum-

marized the relationships of entities in OSNs, and presented a

multi-objective data placement scheme. The main goal of [7],

[8] is to reduce inter-data center communication traffic as well

as response latency. They took distance between user and data

center instead of load balancing into account, due to elasticity

feature of data center. Tran et al. [9] investigated the socially

aware data partitioning by modeling it as a multi-objective

optimization problem, and proposed to utilize evolutionary

algorithms to minimize server load and keep a good load

balancing. Like SPAR, they did not differentiate read rate from

write rate, which is apt to incur more write traffic than the

reduced read traffic.

Chen et al. [13] suggested to use interaction graph [14]

instead of social graph, and identify self-similarity underlying

the graph on popular OSNs. Based on the observation, they

proposed a simple data placement strategy by optimizing so-

cial locality. But they did not consider to improve performance

by creating replicas. Yu et al. [15] employed the hypergraph

partitioning approach to optimize the associated data place-

ment under the scenario without replicas, and then proposed

an iterative method ADP to solve the problem of routing and

replica placement. Although it is interesting to model multi-

participant interactions for OSNs based on hypergraph, similar

to [7-9], the separated execution manner of partitioning and

replication loses the opportunity to optimize result maximally.

Based on the basic idea of [7], Tang et al. [10] studied two

issues: the optimal replication given the partition, and the

change in traffic accompanied by repartitioning, and proposed

TOPR, a combined approach of partitioning and replication.

TOPR attempted to optimize the traffic by solving two issues

alternatively. However, TOPR did not implement simultaneous

optimization of both partitioning and replication in nature,

which hurts its optimization effect significantly.

III. MODELING FRAMEWORK

A. Interaction Graph Modeling
Many previous works modeled an online social network

as a social graph, where each edge represents the social link

between a pair of users. From the analysis on Facebook trace,

we find that a large proportion of those social links rarely

interact one another. This phenomenon was also identified by

[16]. Obviously, those inactive social links cannot actually

reflect the behaviors of OSN users, and social graph is not

appropriate for modeling OSNs.

We use an interaction graph instead of social graph to model

the online social network. As shown in Fig. 1, an interaction

graph G = (V,E), is a directed connected graph, where V
represents the set of every user and its data stored in the

� � � �

� � �

	

��

	

��

	
��
	
��

	
��

	

��	
��

	
��
	
��
	
��

	
��
	
��

	
��

	

��

	
��

	
��
	
��
	
��

�
��

�
��

�
�� �
��

�
��

�
��

�
��

Fig. 1. An example of OSN represented by an interaction graph

system, and E represents the set of interaction links between

every pair of users. Each interaction link eij has a direction and

is associated with a weight which represents the interaction

rate from user i to j. Here we use read rate to denote the

interaction rate that is defined as the number of views per

time slot. Besides read behavior, a user may often update her

data. For clarity, each vertex in Fig. 1 is associated with a

write rate that is defined as the number of write operations

per time slot. Each user has two sets of friends denoted

by F+
i = {j ∈ V |eij ∈ E} and F−i = {j ∈ V |eji ∈ E},

respectively.

B. Network Performance

In the OSN’s backend storage system, user data are often

stored in a manner of single-master and multi-slave. The

manner requires that each user i has only one replica of her

data as the master replica stored on one server and the server

is called her master server, denoted by mi. The other replicas

work as slave ones stored on a set of slave servers, denoted

by si. We define a binary function C(i, x) to decide whether

server x is i’s slave server,

C(i, x) =

{
1, if x is i′s slave server,
0, otherwise.

(1)

Then the set of slave servers can be defined by

si = {x ∈ S|C(i, x) = 1} , (2)

where S denotes the set of available servers.

1) Inter-server communication traffic: A server may act as

both master server and slave server at the same time since

it can store a great number of user data replicas. The reason

why we differentiate master replica from slave one is derived

from the different handling manners against them. When a user

i logins her account, i’s requests initially access her master

server mi, and both read and write operations are applied to

master replica. If user i’s friend j wants to visit i’s data, j does

not necessarily access master server mi, and just access one of

i’s slave servers say a server near to j’s master server mj . At

that time j’s master server mj acts as a relay node and fetches

the required data from one of i’s replicas, which certainly

generates inter-server read traffic. When user i updates her

data, server mi acts as source node to propagate the update

to all of i’s slave servers for data consistency. Consistency

maintenance generates inter-server write traffic.

The inter-server communications consist of both read and

write traffic, and become the main metric we try to optimize.

For a pair of neighboring users i and j, the inter-server read

2691148

traffic is incurred if and only if i’s master server does not host

j’s replica including master replica and slave replica, i.e.,

g(i, j) =

{
1, mi /∈ sj ∪mj ,
0, otherwise.

(3)

The inter-server write traffic is incurred by synchronizing all

slave replicas, denoted by
∑
i∈V

(wi |si|), where wi represents

user i’s write rate and |si| represents the number of i’s
slave servers. As a result, the total inter-server traffic can be

calculated by

T =
∑
i∈V

∑
j∈F+

i

rijg(i, j) +
∑
i∈V

(wi |si|). (4)

2) Load balancing: The workload a server x need to handle

depends on the set of users whose data are stored on it, i.e.,

Dx = {i ∈ V |mi = x ∨ x ∈ si } . (5)

Here we use the set size |Dx| to measure server x’s load, i.e.,

Lx = |Dx|. Load balancing across servers is another metric

we try to preserve. There are a variety of statistics to measure

the degree of load balancing, we use Gini coefficient, which

is defined as a ratio between the sum of value differences and

the sum of values, i.e.,

LB =

∑
x∈S

∑
y∈S

|Lx − Ly|

2n
∑
x∈S

Lx
, (6)

where n is the size of server set, i.e., n = |S|. We choose Gini

coefficient since it naturally captures the fairness of the load

distribution, and is independent of system sizes and absolute

values, with a value of 0 expressing perfect balance and a

value of 1 worst imbalance. Note that our model is compatible

with every type of measure, rather than just enforces Gini

coefficient.

C. Problem Formulation

Data partitioning is equivalent to design a data-to-server

mapping function which specifies the master server mi of each

user i’s data. Its objective is to optimize traffic performance

as well as to preserve good load balancing. Data replication

are often designed to enhance the optimization effect. We

formulate the problem as follows:

minimize : T
subject to : (i) |mi|+ |si| ≥ 1,

(ii)mi ∩ si = ∅,
(iii)LB ≤ LB∗.

Given the set of users V , the set of servers S, the set of

user’s read rates {rij |i, j ∈ V }, and the set of user’s write

rates {wi |i ∈ V }, we are interested in finding out the optimal

placement solution {mi, si |i ∈ V } that minimizes the total

inter-server traffic denoted by Eq. (4), and guarantees load

balancing under a threshold LB∗ as depicted in constraint

(iii). Constraint (i) ensures that each user has at least one

replica (i.e., master replica), and constraint (ii) ensures that

each user does not have more than one replica located in the

same server. The problem can be proved to be NP-hard, and

we skip the formal proof here because of space limitations.

In this paper we focus on heuristics that can reduce traffic

towards the optimum.

IV. DESIGN OF JPR

A. Motivation

In a typical key-value store system such as Hadoop, Cassan-

dra and etc., user data are assigned among servers randomly

based on hashing. For example, Fig. 2(a) shows an interaction

graph with 7 vertices, and those vertices need to be assigned

to 2 servers. Fig. 2(b) illustrates the partitioning results by

using Hashing scheme. It randomly partitions the interaction

graph into two components, and each one contains 3 and 4

vertices, respectively. Hashing scheme preserves a very good

load balancing (0.036) and there is no write traffic. However,

the read traffic between servers is very high due to its random

operations without any optimization.

METIS [5] is a well-known approximation algorithm for

graph partitioning with the aim of minimizing the cut weight

of partitions as well as preserving load balancing. The inter-

server communication traffic can be optimized by applying

METIS to our problem, and the results are illustrated in Fig.

2(c). Since METIS is a type of partitioning optimization, no

additional write traffic will be generated.

From analysis on the results of METIS, we find that the

effect of single partitioning optimization is limited, since the

inter-server read traffic can never be avoided at all. By using

replication SPAR [6] can achieve zero inter-server read traffic.

However, more replicas inevitably lead to the higher inter-

server write traffic for synchronization. As shown in Fig. 2(d),

SPAR achieves a lower traffic than METIS, but the write traffic

is high and should be decreased.

Each user’s data are associated with both read rate and

write rate. Considering the difference between them, selective

replication (SR) [7] creates replicas if and only if they can

save the total inter-server traffic. We apply SR to optimize

Hashing scheme, denoted by Hashing&SR, and Fig. 2(e)

shows the results. The total inter-server traffic brings down

obviously compared with Hashing (from 235 to 130). Interest-

ing, Hashing&SR achieves perfect load balancing. However,

the effect of single replication optimization is still limited.

Then we combine SR with METIS, denoted by METIS&SR.

METIS&SR firstly applies METIS to achieve a minimal cut

weight with no replicas, and then applies SR to conduct

replication optimization. Fig. 2(f) shows that METIS&SR

can achieve the lowest traffic compared with anyone of the

previous schemes. Besides, we also conclude that adding

replication could help to further improve load balancing.

Though it largely verifies the effectiveness of joint opti-

mization of both partitioning and replication, the existing joint

manners can never achieve the optimal traffic performance.

Let P ∗ be the optimal partition which specifies the optimal

location for each user i, i.e., mi, and the traffic produced

by P ∗ is denoted by T ∗P . R∗ is the optimal replication for

partition results, and it creates optimal replicas for each user

i, i.e., si, so as to achieve the minimal traffic denoted by

2701149

� � � �

� � �
	

��

	

��

	
��
	
��

	
��

	

��

	
��

	
��

	
��
	
��

	
��
	
��

	
��

	

��

	
��

	
��
	
��
	
��

�
��

�
��

�
�� �
��

�
��

�
��

�
��

� � � �

� � �

	
��
	
��

	
��

	
��
	
��

	
��
	
��

	
��
	
��
	
��

�
��

�
��

�
�� �
��

�
��

�
��

�
��

��� ����	
� �
�� �����	�� ���� ��	�
 �����	�� �

����� �����	�� ���� ���� ����
�	
�� �����

� � � �

� � �

	

��

	

��

	
��
	
��

	

�� 	
��

	
��
	
��

	

��

	
��
	
��
	
��

�
��

�
��

�
�� �
��

�
��

�
��

�
��

��� !�"# �
�� �����	�� $��� ��	�
 �����	�� �

����� �����	�� $��� ���� ����
�	
�� �����

����	�	������ ������	������

��� "
�
����	�
 ���%�

	

��

	

�� 	

��	
��

	
��

	
��

	

��

	
��

	
��

	
��

	
��
	
��

	
��

	
��

� � � �

� � �

	
��
	
��

	
��

	
��
	
��

	
��
	
��

	
��
	
��
	
��

�
��

�
��

�
�� �
��

�
��

�
��

�
��

�
� ����	
�&#� �
�� �����	�� '�� ��	�
 �����	�� (�

����� �����	�� $��� ���� ����
�	
�� �

	
�
�

	

��

	
��

	
��

�

� �

	
�
�	
��

�

�

�

� �

� �

	

�� 	
��

	
��
	
��

	

��

	
��

	
��
	
��

�
��

�
��

�
��

�
��

��� !�"#&#� �
�� �����	�� ��� ��	�
 �����	�� '�

����� �����	�� $��� ���� ����
�	
�� ����(

� �

� �

	

��

	

��

	
��
	
��

	
��

	
��

	
��

�
�� �
��

�
��

�

�
��

	

��

	
��

���� 	
��

	 � 	
��

	
��

�

�

�

�

�

�

� �
��

� � � �

� � �

	

��

	

��

	
��
	
��

	
��

	

��	
��

	
��

	
��
	
��
	
��

	
��

	
��

	
��
	
��

�
��

�
��

�
�� �
��

�
��

�
��

�
��

�

�

���)�	
� �%�	*	+��	�
 �
�� �����	�� ��� ��	�
 �����	�� '�

����� �����	�� ,�� ���� ����
�	
�� ����(

�	
��
�
��

�
��

		
��	
�
�

� � � �

� � �

	

��

	

��

	
��
	
��

	
��

	

��	
��

	
��

	
��
	
��
	
��

	
��

	

��

	
��

	
�� 	
��

�
��

�
��

�
�� �
��

�
��

�
��

�
��

��� #-.� �
�� �����	�� �� ��	�
 �����	�� $$�

����� �����	�� $$�� ���� ����
�	
�� �����

�

�

� 	
��

� 	
��

��
���� ��
��

	
 �
��

���� �
��

Fig. 2. An example of comparison among different schemes

T ∗P+R. For a user i, if we change mi from server x to y, the

traffic changes accordingly. x is the optimal position without

replicas, but it does not hold after replication, which means the

traffic can be lower than T ∗P+R via changing user locations.

As illustrated in Fig. 2 (g), it brings down the traffic to 75,

and outperforms other schemes. The conclusion is contradict

to assumption that the joint of optimal partition and optimal

replication produces the minimal traffic. The reason behind

the conclusion is the separated execution manner of partition

and replication. To avoid the mutual influence of two types

of optimization, they should be conducted simultaneously to

further explore the reduction of traffic.

B. An Overview of JPR

Motivated by the conclusion discussed in Section IV-A,

we propose a joint partitioning and replication (JPR) scheme.

The basic idea of JPR is to formulate the joint optimization

problem as a revised graph partitioning problem with overlaps.

Different from traditional partitioning problem that requires

each vertex belonging to only one partition, we allow vertices

being attributed to multiple partitions. Hence there exists

overlaps among partitions, and overlaps can be used here to

represent data replication. For example, user i is attributed to

three partitions after partitioning, and then three replicas are

created on three different servers. Specifically, the partitioning

is accomplished by replication, but it does not distinguish the

role of replicas, i.e., master or slave. So we need to combine

master replica placement into the partitioning problem. As

illustrated above, one important reason why the separated

manner cannot achieve the optimal traffic performance is that

partitioning and replication affect each other. JPR conducts

both partitioning and replication simultaneously and mainly

focuses on the minimization of write traffic, and then master

replica placement is combined to reduce read traffic. Note that

master replica does not affect the optimized write traffic.

C. Heuristic algorithms

As noted in Section I, OSN users typically connect one

another with varied relationships. It is wise to partition a user

to multiple groups based on different relationships. To achieve

this goal, we need to solve the graph partitioning with overlaps.

Inspired by [17], we convert a graph G to a line graph LG
where the vertex set is the edge set of G. The formal definition

of line graph is given below:

Definition 1. Given a graph G = (V,E), a line graph
LG = (V ′, E′) is produced from G, where ∀eij ∈ E
corresponds to a vertex vij ∈ V ′, for each pair of (vij , vjk)
there exists an edge between them if and only if they share a
common vertex j in G.

Fig. 3(a) shows an example of how to produce a line graph

from an existing graph. Vertex 3 is associated with four edges

in G, and each edge corresponds to a vertex in LG. The

corresponding four vertices share a common vertex 3 in G, and

they connect with one another in LG. Note that line graph is

an undirected graph, while the interaction graph we discussed

here is a directed graph. We need to transform interaction

graph into undirected graph. The transformation rule is simple,

create an edge between vertices i and j if there exists an edge

2711150

�

�
�

�

� ��

��
��

��

��
��

��� � ���%� /	�� � 0
��	�
� �
� 	�� ����
�%�
�	
� �	

 ���%� /	�� � 0
��	�
�

��� � %���	�	�
 �� �	

 ���%� �
� ��
 ����
�%�
�	
� %���	�	�
 �� ���%�

��

��
��

��

��
��

�

�
� �

�

�
��������������

��

��

��

��

��

��

��
��

��

��

��

�

�

� �

�

���

��

��

��

���
� ��

������������
�����

��� �
���
� %���	�	�
 �� �	

 ���%� �
� ��
 ����
�%�
�	
� %���	�	�
 �� ���%�

Fig. 3. An example of line graph and the calculation of its cut weight

eij or eji in the directed graph. And the edge weight between

i and j in an undirected graph is the sum of wij and wji. In

addition, each edge (vij , vjk) in a line graph corresponds to a

vertex j in the original graph, so the weight of edge (vij , vjk)
equals wj , i.e., user j’s write rate.

As shown in Fig. 3, we partition line graph LG into two

groups, and project the partitioning result back into the original

graph G. Interestingly, partitioning a line graph can realize

the partitioning and replication simultaneously for the original

graph. In this paper, we define the cut weight of a partition

in a line graph as the sum of different weights been cut. Fig.

3(b) and (c) show how to calculate the weight of a partition,

when the partition cut many edges that associated with the

same vertex in the original graph, the weight is count only

one time. Note that the cut weight of a partition calculated by

the definition equals the inter-server write traffic.

We propose a JPR scheme that partitions interaction graph

with overlaps as well as places master replicas. Algorithm

1 shows the pseudo code of the main algorithm. Before

partitioning, the original graph must be converted to a line

graph (lines 1-2). To efficiently solve the n-way min-cut line

graph partitioning, the algorithm was designed based on the

multi-level paradigm that is used by METIS. It decomposes

the partitioning operations into three phases. In the first phase,

line graph is coarsen successively by continuously merging

selected vertices together (lines 5-8). The initial partition of

the coarsest graph is obtained at the end of second phase (lines

11-23). The partition is refined as it is projected back into the

original line graph in the last phase (lines 24-29). The load

balancing is always required to be preserved throughout three

phases. Thus we obtain the optimal partition q that minimizes

the inter-server write traffic. q consists of n terms, and each

one is a set of users stored on a server, i.e., Dx. METIS

works quite well for large graph partitioning, and we modify

it upon the calculation of cut weight and the refining rules to

address our problem. Then function placeMaster() is called to

determine the placement of master replicas.

Note that the location of master replica has a strong corre-

Algorithm 1 JPR(G, n, LB∗)
1: Transform G into undirected graph UG;

2: Produce line graph LG based on UG;

3: LG0 ← LG;

4: k ← 0; � initialize coarsening level

5: while LGk cannot be coarsen do � coarsening phase

6: Coarsen LGk into a smaller graph LGk+1;

7: k ← k + 1;

8: end while
9: Cutmin(LG

k)←∞; � initialize cut weight of LGk

10: q ← null; � initialize the optimal partition

11: for each possible partition p do � partitioning phase

12: Cutp(LG
k)← 0;

13: for each cut edge (vij , vjm) in p do
14: if wj has never been count then
15: Cutp(LG

k)← Cutp(LG
k) + wj ;

16: end if
17: end for
18: Calculate LBp based on Eq. (6);

19: if LBp ≤ LB∗ ∧ Cutp(LG
k) < Cutmin(LG

k) then
20: Cutmin(LG

k)← Cutp(LG
k);

21: q ← p;

22: end if
23: end for
24: for t← k − 1 to 0 do � refining phase

25: do
26: Adjust q in LGt such that Cutmin(LG

t) is reduced

27: and LB∗ is satisfied;

28: while(Cutmin(LG
t) can be reduced)

29: end for
30: placeMaster (q);

31: return {mi, si |i ∈ V };

lation with inter-server read traffic. For instance, Fig. 4 shows

the comparison of different master replica placements. Users

who have more than two replicas, (users 1 and 3) need to

determine the locations of their master replica. Among four

possible cases, case 4 outperforms the others. The differences

among them stem from the traffic incurred by master’s read op-

erations. The goal of master replica placement is to minimize

traffic by further reducing read traffic without deteriorating

optimized write traffic. Assuming that the average number of

replicas for every user is δ, the solution space should be δ|V |

which is extremely large especially for large scale OSNs. In

fact, the space can be scaled down, and we have the following

theorem:

Theorem 1. Given the number of users |V | and the average
number of replicas δ, the solution space for master replica
placement is δ|V |.
Proof. For an arbitrary user, the optimal location of her master

replica is the server that produces the minimal inter-server

read traffic. The solution space for a single user is δ. If there

is/are edge(s) between users i and j, change of i’s master

location does not have influence on j’s read traffic, and vice

versa. Therefore, the locations of different master replicas are

2721151

� � � �

� � �

	

��

	

��

	
��
	
��

	
��

	

��	
��

	
��

	
��
	
��
	
��

	
��

	
��

	
��
	
��

�
��

�
��

�
�� �
��

�
��

�
��

�
��

�

�

��� ���
 ' �
�� �����	�� ��� ��	�
 �����	�� '�

����� �����	�� ,�� ���� ����
�	
�� ����(

�� 	
��

�
��

�
��

	
��

� � � �

� � �

	

��

	

��

	
��
	
��

	
��

	
��

	
��
	
��

	
��

	
��

	
��
	
��

�
��

�
��

�
�� �
��

�
��

�
��

�
��

�

�

��� ���
 $ �
�� �����	�� ,�� ��	�
 �����	�� '�

����� �����	�� $$�� ���� ����
�	
�� ����(

�	
��

�
��

�
��
	
��

	
��

� � � �

� � �

	

��

	

��

	
��
	
��

	

��	
��

	
��

	
��
	
��
	
��

	
��

	
��

	
��
	
��

�
��

�
��

�
�� �
��

�
��

�
��

�
��

�

�

��� ���
 � �
�� �����	�� ��� ��	�
 �����	�� '�

����� �����	�� $��� ���� ����
�	
�� ����(

�� 	
��

�
��

�
��

�

	
��

	
��	
�
�

� � � �

� � �

	

��

	

��

	
��
	
��

	

��	
��

	
��
	
��

	
��

	
��
	
��

�
��

�
��

�
�� �
��

�
��

�
��

�
��

�

�

��� ���
 � �
�� �����	�� $��� ��	�
 �����	�� '�

����� �����	�� $'�� ���� ����
�	
�� ����(

�	
��

�
��

�
��

	
��

	
��

	

	
��

	
��

	
��

	

��

	

��

	
��

Fig. 4. The comparison of different master replica placements

determined separately, and the solution space is the sum of δ,

i.e., δ|V |.
Algorithm 2 shows the pseudo code of master replica

placement. The input of Algorithm 2 is the partitioning results.

Before placement all replicas are slave ones. It is easy get the

set of servers that store an arbitrary user’s replicas, i.e., si (line

1). For a user i, each server x ∈ si is a potential candidate

for master server. A user has to read other servers only when

her master server does not host her friends’ replica (line 8).

Hence the inter-server read traffic is calculated by i’s aggregate

read rate issued from server x (line 9). Finally, server with the

minimal read traffic is selected (line 17).

D. Discussions

1) Scalability: The scalability is mainly determined by the

time complexity of JPR.

Theorem 2. The time complexity of JPR is
O ((|E|+ θ) log n), where E is the set of edges in original
graph, n is the number of servers and θ is the number of
edges in the corresponding line graph.
Proof. In Algorithm 1, transforming a graph into an undirected

graph takes O(|E|) time, and producing a line graph takes

O(θ). For a vertex i with degree di in the undirected graph,

Algorithm 2 placeMaster (q)

1: Get si for each user i from q; � si is the server set for i
2: for each user i ∈ V do
3: Tmin ←∞; � initialize traffic with a maximum value

4: y ← null; � initialize master server for i
5: for each server x ∈ si do
6: T (x)← 0;

7: for each user j ∈ F+
i do

8: if x /∈ sj then � x does not host j’s replica

9: T (x)← T (x) + rij ; � the aggregate read

traffic

10: end if
11: end for
12: if T (x) < Tmin then
13: Tmin ← T (x);
14: y ← x;

15: end if
16: end for
17: mi ← y; � find the optimal location

18: end for

the number of associated edges in the line graph is
di(di−1)

2 ,

and then we have θ = 1
2

∑
i∈V

di(di − 1). For example, there are

five vertices in the graph in Fig. 3, four vertices with degree 2

and one vertex with degree 4, and its corresponding line graph

has 10 edges. Three phases take O ((|E|+ θ) log n) time [5].

In Algorithm 2, it takes O(|V |n) time to obtain the set of

si. According to Theorem 1, finding the master servers for all

users takes O(|V |nδ) time. Therefore, the complexity of JPR

is O ((|E|+ θ) log n+O(|V |nδ)). Specially |E| >> |V | and

θ > |V | δ, the complexity is simplified into the dominant

component, i.e., O ((|E|+ θ) log n).

Though JPR’s complexity is linearly increased with social

network size, for today’s OSNs with billions of users and

still increasing, it may become somewhat time consuming to

conduct JPR. To enhance the scalability of JPR, Algorithm

1 could be improved by integrating parallelization of label

propagation into the multi-level framework [18]. For example,

[18] is able to partition a graph with 3.3 billion edges in less

than 16 seconds.

2) Interaction modeling: In general, the interactions a-

mong OSN users can be classified into visible interactions

like sending comments and messages to friends, and silent

interactions such as browsing friends’ profiles [19][16]. Silent

interactions imply read operations to friends’s data, while

visible interactions imply write operations to friends’ data

besides read. For silent interactions, there is no explicit trace of

the behavior remains. So the social graph constructed in terms

of silent interactions is called latent interaction graph in [16].

Benevenuto et al. [19] studied the silent interactions on Face-

book, MySpace, LinkedIn and etc. by capturing anonymized

HTTP traces at ISP level. The results indicated that the silent

interactions dominate users’ interaction behaviors. In this pa-

per, we do not explicitly distinguish both types of interactions.

The inter-server traffic is counted by primarily considering

2731152

silent interactions. However, for a visible interaction, it can

be divided into two operations that are a read operation to a

friend’s data and the friend updating her own data. That is to

say, we can use the following equation to account for visible

interactions: {
rij = rij + wij ,
wj = wj + wij ,

(7)

where wij corresponds to a visible interaction rate. Therefore,

JPR can be easily generalized to account for both types of

interactions occurred in OSNs.

3) Handling dynamics: As we know, OSN is a dynamic

system where user behavior changes over time. For example,

a user may update her status more frequently when she is

traveling. We concluded three basic types of dynamic events

together with corresponding adjustments shown below:

• Variation of a user. When a new user is added, it is an

isolated vertex. So we place it to the server with the

lowest load. When a user is deleted, we must remove

all of her replicas and her friends’ slave replicas stored

on the same master server.

• Variation of a relationship. When a new relationship is

created between two users, nothing need to do. When a

relationship eij is broken, we need to further determine

whether users i and j are co-located. If they are co-

located, and we have
∑

k∈F−j ∩Dx−i

rkj < wj , then delete

j’s replica on server x. Otherwise, do nothing.

• Variation of interaction rate. It can be further divided into

read rate and write rate. When read rate rij changes,

if users i and j are co-located, nothing need to do.

Otherwise, if we have
∑

k∈F−j ∩Dx

rkj > wj , create a j’s

replica on server x. When write rate wj changes, if∑
k∈F−j ∩Dx

rkj > wj , delete j’s replica if it exists on server

x. Otherwise, create a new j’s replica if server x does

not have one before.

Furthermore, we design a mechanism to make JPR adapt

to dynamics. After determining the final data placement,

each server stores a group of users’ data. We cluster these

groups into
⌊
n
m

⌋
larger groups, and each larger one has m

groups (the last one may have more than m groups), and

continue the clustering again and again until the whole graph

is clustered as a group. According to this bottom-up method,

we construct a tree with the whole graph as its root, and its

height is
logmn�+1. Each node in the tree corresponds to a

community, and the whole graph consists of lots of hierarchical

communities. The hierarchical structure of OSNs has been

evaluated in several existing works [20][13].

Fig. 5 shows a multi-layer clustering tree constructed based

on above rules. The total inter-server traffic is the sum of traffic

in each layer. We set a different threshold of traffic for each

layer, and check the traffic in bottom-up order. If the value is

higher than the threshold in this layer, then continue to check

until the value is under threshold in one layer, or arriving at

the root. For example, the traffic 3 across groups from 1 to

8 exceeds the threshold Th3 in layer 3, but the traffic 2 is

lower than threshold Th2 in layer 2. Then we take group 2.1

as the input of JPR, and it will be repartitioned into 8 new

groups. If we found that the traffic 1 exceeds the threshold

Th1 in layer 1, JPR is recalled to optimize the whole graph.

Our mechanism is called periodically to check. The previous

work [13] has proven that there are many communities and sub

communities hidden in the social network, and they appear the

feature of self-similarity. It implies that the interactions have

social locality, and the traffic in lower layers dominates the

total traffic. Here lower layer corresponds to layer with larger

number, e.g., layer i+ 1 is lower than layer i. Therefore, we

should have Th1 < Th2 < Th3, so as to be able to localize

adjustment operations and avoid repartitioning the larger graph

(even whole graph) when dealing with dynamics. The specific

configuration of thresholds for different layers mainly depends

on the migration traffic incurred by adjustment and the cycle

for checking, and is discussed in Section V-C.

4) Load definition: According to the definition in Section

III-B, server load is measured by the number of users it hosts,

i.e., Lx = |Dx|. In fact, the distribution of users’ requests

is uneven, and a high value of |Dx| does not always incur

the high load. To better measure the server load, it should be

redefined as the aggregate request rates (including read rates

and write rates) on the server, i.e.,

Lx =
∑
i∈Dx

⎛
⎝ ∑

j∈F−i

rji + wi

⎞
⎠. (8)

Note that JPR is compatible with different measurements of

server load. Considering that the location variation of master

replica may affect the value defined in Eq. (7). We just need to

modify Algorithm 2 by adding the server load calculation and

the judgment of load balancing before determining the master

server. Consequently, the modification will slightly increase

time consuming.

V. EXPERIMENTAL EVALUATION

A. Dataset

We crawled Facebook during November and December

2015 by the way of Metropolis-Hasting random walk [21]

and collected 25,831 users with 947,276 social relations. For

each crawled user, we record her profile, friend list and wall

post. We pretreated the crawled traces by filtering out inactive

relations on which there is no interactions occurred during a

period of one month. Based on the treated traces, we created

an interaction graph with same number of users and 626,767

directed edges. The edge weight was assigned with the value of

interaction rate from one user to another. Since OSN providers

are probably reluctant to offer their own data, and they even

defend against large-scale crawls. It is difficult for us to obtain

the traces of silent interactions like profile browsing. The

interaction data used here mainly consists of wall post records,

and the data only reflect the visible interactions rather than

the actual interaction events. To simulate a more practical

environment, we decide to generate profile browsing events

2741153

���
���

 	�!!����

 	�!!����

�������

������	

������
 ���

���

���
�������

� "

 	�!!����
���

��� ���
��"

 	�!!���� 	�!!���� 	�!!���� 	�!!����

�����1�����	�121 �����	�1$131 �����	�1�131 �����	�1�� � �

��� ��"

��� ���

��# ����

���

Fig. 5. A multi-layer clustering tree (n = 128,m = 8)

based on the findings reported in [22]. Each user’s profile

browsing rate, i.e., read rate, is generated according to a Zipf

distribution,

ri = βλi
−α, (9)

where ri is user i’s read rate, and corresponds to how often

user i is viewed, i.e., ri =
∑

j∈F−i
rji, and λi refers to the rank

number of user i sorted by read rate. The total interaction

rates include wall post rates (visible interactions) collected,

and profile browsing rates (silent interactions) generated.

B. Experiment Settings

In this evaluation, we primarily focus on two types of

metrics: inter-server traffic and load balancing, which are

specifically described as follows:

1) Inter-server traffic, includes the inter-server communica-

tion traffic incurred by both of read and write operations, and

its value is defined in Eq. (4).

2) Load balancing, is measured by a Gini coefficient defined

in Eq. (6). A lower value implies a better load balancing.

Besides, we also compare the storage cost which is mea-

sured by the number of replicas. Hashing and METIS do not

conduct replication, so they have the lowest storage cost. The

cost values of other schemes are normalized and divided by

that of Hashing (or METIS).

We implement several state-of-the-art schemes including

Hashing, METIS [5], SPAR [6], Hashing&SR, METIS&SR

and TOPR [10], and compare them with our proposed JPR.

Table I lists the default parameter settings, where R/W
refers to the ratio between read rate and write rate, and its

value is set according to the statistics reported in [19]. Based

on the fitting result reported in [22], α and β are set as 0.72

and 697 respectively.

TABLE I
DEFAULT PARAMETER SETTINGS

Parameter n LB∗ R/W α β
Value 128 0.1 11 0.72 697

C. Results

1) Influence of interaction rate: In this experiment, we

studied the influence of interaction rate upon the inter-server

traffic through adjusting R/W ratio. Fig. 6(a) depicts the inter-

server traffic under varied ratios. At the beginning, METIS and

METIS&SR outperform all other schemes. Zipf distribution

with α = 0.72, β = 697 generates a very skew distribution

of read rates, which means a small number of users have

very high read rates. When the R/W ratio is small (equals

1), there are probably a number of users whose write rates

are higher than their read rates. If they are replicated, the

increment of write traffic is higher than the read traffic reduc-

tion by using replication. Then METIS&SR and Hashing&SR

approximately degenerated back into METIS and Hashing

respectively. As the ratio increases, read operations begin

to dominate the interactions, and the traffic of METIS and

Hashing increase with the increasing read rate. By contrast,

the advantage of replication begins to take place as the ratio

increases. METIS&SR and Hashing&SR outperform METIS

and Hashing respectively. TOPR achieves a lower traffic by

means of optimizing partitioning and replication alternatively.

However, different from JPR, these schemes cannot optimize

partitioning and replication simultaneously. SPAR is apt to

create more replicas for perfect social locality and its effect

on traffic reduction is limited. JPR outperforms SPAR, Hash-

ing&SR, METIS&SR and TOPR by 39.2%, 47.8%, 26.4% and

16.1%, respectively. We conclude that schemes with replica-

tion optimization is applicable to read dominant circumstances,

and most of modern OSNs have this feature.

Fig. 6(b) reports the variations of storage cost. All schemes

2751154

1 1 1 1 1
���1"
�
�4�
�0
�1�����	�15
�
�10��	
�1�6�1���	��1 1 1 1 ���17��*��	+
�1������
1����15
�
�10��	
�1�6�1���	��1

�

���

�

���

�

���

� � � � 	 �� �� ��

��
��

��
��

�	
��

��
��

�
�

���

��
������
����� ����

��������� ��������
����

�����

�

�

�

�

��

� � � � 	 �� �� ��

�
��

�
��

�
��

��
��

��
�

��
��

���

�� ����

��������� ��������
����

Fig. 6. Influence of interaction rate

1 1
���1"
�
�4�
�0
�1�����	�15
�
�10��	
�1�8$

9
1 1 1 1 1 1 1 1 1 1 1 ���1"
�
�4�
�0
�1�����	�15
�
�10��	
�1�8�

9
1

�

���

�

���

�

���

��
��

��
��

�	
��

��
��

�
�

����

��
������
����� ����

��������� ��������
����

��

�����

�

���

�

���

�

���

�

���

��
��

��
��

�	
��

��
��

�
�

����

��
������
����� ����

��������� ��������
����

��

�����

Fig. 7. Inter-server traffic vs. Load balancing

1 1
���1"
�
�4�
�0
�1�����	�15
�
�10��	
�1�� 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ���17��*��	+
�1������
1����15
�
�10��	
�1�1

�

���

�

���

�

���

�

�� �� ��� ���

��
��
��
��
�	
��

��
��
�
�

�

��
������ �����
����
��������� ��������
����

����

�

�

��

��

��

�� �� ��� ���

�
��
�
��

�
��

��
��
��
�

��
��

�

�� ����

��������� ��������
����

Fig. 8. Influence of number of servers

�

���

�

���

�

���

� � 	 �� �� �� �� �	
��

��
��

��
�	

��

��

��
�
�

�
��
����

��
������
����� ����

��������� ��������
����

�����

Fig. 9. Inter-server traffic in dynamic
environments

�

�

��

��

��

��

��

� � �� �� �� ��

�

�

��
�
�

�

��

��
�
�

�����
�
��

�!"�!"�! �!"�!"�!

�!"�!"���! �!"�!"�!�����

���"����"�����

Fig. 10. Impact of Thresholds and
cycle sizes

except SPAR have an increased storage cost along with the

increment of ratio. It is because SPAR does not take interaction

rate into account. In many key-value store systems, replication

is often used to enhance data availability. For example, HDFS

creates three replicas for each data item by default. The

normalized cost value of JPR is less than 4, and it implies

that compared to state-of-the-art scheme, JPR could obtain a

significant traffic reduction with a slight sacrifice on storage

cost.

2) Tradeoff between traffic and load balancing: Fig. 7

illustrates how load balancing constraints may influence inter-

server traffic. We measured the balancing LB1 and LB2 based

on two types of load defined in Section III-B and Eq. (8) re-

spectively. Note that a lower value of load balancing implies a

more even distribution of user data, and it will become a tighter

constraint that weakens the optimization of cut weight in graph

partitioning. Hence, the increase of threshold is helpful to

improve the traffic performance, which is evaluated by results

described in Fig. 7. In either case, i.e., LB1 and LB2, the

improvement does not tend to getting better as the threshold

increases continuously. Since a larger constraint value has

a less effect on graph partitioning. The traffic improvement

decreases along with the increase of threshold. Compared with

case (a), the threshold of LB2 should be set larger to achieve

a stable traffic performance. When server load is measured

by request rate, skew distribution of read rates tends to cause

larger differences among servers. The results depicted in Fig.

7 illustrate that most of schemes except Hashing can obtain a

stable traffic performance as the threshold of load balancing

increases. There is no optimization design for Hashing, it

always generate the highest traffic meanwhile it could achieve

a relative good load balancing, and is almost unaffected by

load balancing constraint. Compared with other schemes, JPR

always generates the lowest traffic. It is because partitioning

line graph instead of original graph weakens the impact of

load balancing to some extent.

3) Influence of number of servers: Fig. 8 illustrates how

the number of servers impacts the inter-server traffic and

storage cost. As the number of servers increases from 64 to

512, more and more social edges have to be cut, and the

inter-server traffic increases accordingly. SPAR tries to use

replication to preserve social locality and reduces inter-server

read traffic, but its aggressive replication manner incurs higher

storage cost and inter-server write traffic with the increase

of number of servers. Selective replication can help Hashing

and MEITS to significantly save storage cost as well as inter-

server read traffic without incurring more inter-server write

traffic. Different from Hashing&SR and METIS&SR, TOPR

performs asynchronous optimizations of partitioning and repli-

cation iteratively, and improves the traffic performance to some

extent. By contrast, JPR conducts synchronous optimizations

and always performs best under different numbers of servers.

4) Dynamic scenario: Finally, we explore the performance

of JPR and other schemes in a dynamic scenario. To simulate

a dynamic environment, we divided time into multiple slots.

And during each slot, we randomly choose 5% of users leaving

social network and the same number of new users joining in

social network. Each new user is assigned the unique read rate

2761155

and write rate, and randomly choose users including other new

users to view. Besides, at the beginning of each slot, we choose

10% of users to switch their update rates, and choose 10% of

interaction edges to switch their read rates, so that the ratio

between read and write remains unchanged. The number of

servers is set to 128 by default, and the multi-layer clustering

tree is constructed based on Fig. 5. The thresholds for layer

1, 2 and 3 are 2%, 5% and 5.5% of the current inter-server

traffic, respectively. The cycle for checking is set to 10 slots.

Fig. 9 compares the inter-server traffic of different schemes

in dynamic environments. JPR generates the lowest inter-

server traffic, and its performance fluctuation is very slight.

The settings of multi-layer thresholds can detect the traffic

variation, and adjust data placement timely to avoid perfor-

mance degradation quickly. Compared with other schemes, the

performance fluctuation of Hashing is also not large, but its

traffic is too high. METIS and METIS&SR can effectively

reduce the traffic, but it requires to periodically repartition

the whole graph and incurs more migration traffic. We set the

cycle for METIS and METIS&SR to 10 slots, and we can find

the traffic of METIS has a reduction every 10 slots.

We further investigate the migration traffic incurred by

JPR’s dynamic mechanism. Fig. 10 illustrates how the thresh-

olds and cycle size affect the migration traffic. The traffic

value is the aggregated migration traffic within 50 slots. The

multi-layer thresholds (Th1 : Th2 : Th3) correspond to the

threshold values in layer 1, 2 and 3. The lower value of

Th3 and the smaller cycle size often leads to more frequent

adjustments, and the aggregated traffic is high. A slightly

increase of Th3 and Th2 can help to achieve a relative low

migration traffic. However, assume that Th3 is set larger than

5.5 and cycle size is larger than 10, then JPR’s sensitivity to

changes decline, which leads to make adjustments in the higher

layer and produce more migration traffic. In our experiments,

(2%: 5%: 5.5%) performs best in both traffic value and

stability.

VI. CONCLUSION

In this paper, we studied user data placement problem in

OSNs from two perspectives of partitioning and replication,

and explored to join them together in a synchronized fashion

to minimize inter-server traffic. We defined the problem as

a minimization problem with load balancing constraint and

proposed a novel scheme JPR. JPR formulates the problem

as a revised graph partitioning with overlaps to realize si-

multaneous optimization of both partitioning and replication.

We designed heuristic algorithms to implement partitioning

together with master replica placement. Finally, we evaluated

the proposed scheme via extensive experiments on a real

world trace. The experimental results show that JPR can

significantly reduce inter-server traffic as well as preserve load

balancing, and compared with other replication schemes, it

has the lowest storage cost. In the future, we will implement

parallel algorithms to address the data placement for larger

OSNs.

ACKNOWLEDGMENT

This work is supported by National Natural Science Founda-

tion of China (No. 61502328, No. 61572337), Natural Science

Foundation of the Higher Education Institutions of Jiangsu

Province (No. 15KJB520032, No. 14KJB520034).

REFERENCES

[1] “http://newsroom.fb.com/company-info/.”
[2] A. Lakshman and P. Malik, “Cassandra: a decentralized structured

storage system,” Operating Systems Review, pp. 35–40, 2010.
[3] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah,

“Serving large-scale batch computed data with project voldemort,” in
FAST, 2012.

[4] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, and M. S. Levine,
“Consistent hashing and random trees: Distributed caching protocols for
relieving hot spots on the world wide web,” in STOC, 1997, pp. 654–
663.

[5] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on Scientific Computing,
vol. 20, pp. 359–392, 1998.

[6] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra,
and P. Rodriguez, “The little engine(s) that could: Scaling online social
networks,” IEEE/ACM Trans. Netw., vol. 20, no. 4, pp. 1162–1175, 2012.

[7] G. Liu, H. Shen, and H. Chandler, “Selective data replication for online
social networks with distributed datacenters,” in ICNP, 2013, pp. 1–10.

[8] L. Jiao, J. Li, W. Du, and X. Fu, “Multi-objective data placement for
multi-cloud socially aware services,” in INFOCOM, 2014, pp. 28–36.

[9] D. A. Tran and T. Zhang, “S-put: An ea-based framework for socially
aware data partitioning,” COMNET, pp. 504–518, 2014.

[10] J. Tang, X. Tang, and J. Yuan, “Optimizing inter-server communication
for online social networks,” in ICDCS, 2015, pp. 215–224.

[11] “Facebook’s memcached multiget hole: More ma-
chines != more capacity,” 2009. [Online]. Avail-
able: http://highscalability.com/blog/2009/10/26/facebooks-memcached-
multiget-hole-more-machines-more-capacit.html

[12] D. A. Tran, K. Nguyen, and C. Pham, “S-clone: Socially-aware data
replication for social networks,” COMNET, pp. 2001–2013, 2012.

[13] H. Chen, H. Jin, and N. Jin, “Minimizing inter-server communications
by exploiting self-similarity in online social networks,” in ICNP, 2012,
pp. 1–10.

[14] M. P. Wittie, V. Pejovic, L. B. Deek, and B. Y. Zhao, “Exploiting locality
of interest in online social networks,” in CoNEXT, 2010, pp. 1–12.

[15] B. Yu and J. Pan, “Location-aware associated data placement for geo-
distributed data-intensive applications,” in INFOCOM, 2015, pp. 603–
611.

[16] C. Wilson, A. Sala, K. P. N. Puttaswamy, and B. Y. Zhao, “Beyond
social graphs: User interactions in online social networks and their
implications,” TWEB, pp. 17:1–31, 2012.

[17] T. S. Evans and R. Lambiotte, “Line graphs, link partitions and over-
lapping communities,” Physical Review E, vol. 80, pp. 1–9, 2009.

[18] H. Meyerhenke, P. Sanders, and C. Schulz, “Parallel graph partitioning
for complex networks,” in IPDPS, 2015, pp. 1055–1064.

[19] F. Benevenuto, T. Rodrigues, M. Cha, and V. A. F. Almeida, “Char-
acterizing user behavior in online social networks,” in IMC, 2009, pp.
49–62.

[20] Y. Y. Ahn and J. P. Bagrow, “Link communities reveal multiscale
complexity in networks,” Nature, vol. 446, pp. 761–765, 2010.

[21] M. Gjoka, M. Kurant, and C. T. Butts, “Walking in facebook: A case
study of unbiased sampling of osns,” in INFOCOM, 2010, pp. 2498–
2506.

[22] J. Jiang, C. Wilson, X. Wang, W. Sha, P. Huang, Y. Dai, and B. Y. Zhao,
“Understanding latent interactions in online social networks,” TWEB,
p. 18, 2013.

2771156

