
1173Improving the Scalability of Online Social Networks with Hypergraph-Based Data Placement

Improving the Scalability of Online Social Networks with
Hypergraph-Based Data Placement

Jingya Zhou, Jianxi Fan
School of Computer Science and Technology, Soochow University, China

{jy_zhou, jxfan}@suda.edu.cn

Abstract

Online social networks (OSNs) have become one of
today’s most popular internet services, and are growing at
a phenomenal rate. With the huge amount of users, OSNs
have to face the scalability problem of how to place users’
data to thousands of distributed servers within a data center.
Key-value stores use consistent hashing to fix the problem,
and have been turned into a defacto standard. Nevertheless,
random placement manner of hashing cannot preserve
social locality, which leads to high intra-data center traffic
as well as unpredictable response time. To preserve social
locality or interaction locality, many existing works
model the data placement problem as a graph partitioning
problem. Although the partitioning problem is well-studied
in these works, the social graph or interaction graph is
formed based on ordinary pairwise graph that cannot fully
reflect multi-participant interactions occurred in OSNs.
Moreover, in a specific network topology of data center,
servers communicate with one another upon different paths
with varied distances, which is not considered in previous
works. In this paper, we focus on the data placement with
the aim of reducing intra-data center traffic as well as
preserving load balance. We formulate the problem as a
hypergraph partitioning problem together with a partition-
to-server assignment problem. Specifically, we propose a
hypergraph-based data placement (HDP) scheme that using
round-robin hypergraph partitioning to maximally preserve
both interaction locality and distance locality. Through
extensive experiments with a large scale Facebook trace,
we evaluate that HDP significantly reduces intra-data center
traffic without deteriorating load balancing across servers.

Keywords:	 Online social networks, Data placement,
Hypergraph partitioning, Tree-based data
center networks.

1	 Introduction

Online social networks (OSNs) are extremely popular
nowadays, (e.g., Facebook, Twitter, LinkedIn). For OSN
users, their social relations and social activities in real-
life are mapped to the cyber space, which makes the
communication more efficiently among them, especially

for users geographically separated [1]. Facebook has 1.44
billion monthly active users as of March 2015, and the total
size of user data is more than 300 petabytes [2]. As one of
data intensive applications [3], dealing with such big data
[4-5], it poses great challenges to implement a scalable
backend system that supports users’ data storage and
access.

Currently, key-value stores (e.g., Cassandra [6],
Voldemort [7]) are adopted by many popular OSNs and
become a defacto standard for big data storage. In a key-
value store system, users’ data are assigned among servers
randomly based on consistent hashing [8]. Consistent
hashing essentially could help system to achieve good
load balance. However, different from traditional web
applications, OSNs deal with highly interactive operations
[9]. For example, when a user logins her Facebook account,
she may interact with her friends, such as browsing status,
leaving comments, etc., which requires retrieving her
friends’ data from different servers. Social locality is used
to depict the scenario that both user’s own data and all
her friends’ data are stored on the least number of servers.
Obviously, perfect social locality implies that each user’s
request can be served on a single server. A Facebook user
has 300 friends on average. Unfortunately, consistent
hashing assigns these friends’ data to multiple servers
randomly, and fails to preserve social locality. As a result,
dealing with a single request must access multiple servers,
with unpredictable response time determined by the server
with the highest latency. More importantly, requests must
be forwarded to all the servers hosting friends’ data, which
raises high intra-data center traffic.

To address these problems, existing studies use
replication approach based on the underlying social graph.
SPAR [10] co-locates the data of users’ every friend in
the same server by replication, so that social locality can
be preserved well. However, in order to preserve social
locality on a cluster of 512 servers, SPAR needs to create
at least 20 replicas for every user. It will raise the storage
cost and intra-data center traffic incurred by maintaining
data consistency. For example, there are about 3.2 billion
daily comments created in Facebook [11]. Assumed that
the average comment size is 1 kilobytes, the synchronizing
traffic may grow up to 60 terabytes every day. The storage
capacity can be scaled up by simply adding more disks to

*Corresponding author: Jingya Zhou; E-mail: jy_zhou@suda.edu.cn
DOI: 10.6138/JIT.2016.17.6.20160115b

Journal of Internet Technology Volume 17 (2016) No.61174

we evaluate both effectiveness and efficiency of the
proposed scheme based on trace-driven experiments.

The remainder of this paper is organized as follows.
Section 2 summarizes the related work. Section 3 shows
the background and motivation. Section 4 formally defines
the problem. Section 5 provides the details of our proposed
scheme for OSN data placement. In Section 6, the scheme
is evaluated through extensive experiments, and Section 7
concludes the paper.

2	 Related Work

Currently, many popular OSNs adopt hasing-based
key-value stores to deal with data storage in large scale
environments (e.g., Facebook relies on Cassandra [6],
LinkedIn relies on Voldemort [7], etc.). Due to random
nature of hashing, many friends’ data are stored randomly
on different servers, which leads to multi-get hole problem
[19]. Pujol et al. [10] proposed to partition social graph
as well as replicate friends’ data across servers, and
implemented a middleware SPAR. In order to preserve
social locality perfectly, SPAR ensures the co-location
of every pair of friends by replication, which inevitably
results in the increase in storage cost as well as consistency
maintaining traffic. To avoid excessive replication, Tran et
al. [16] explored the data replication under a fixed storage
space and update cost required for replication, and proposed
a socially-aware replication scheme. The scheme attempts
to reduce visit cost by placing replicas of each user i to
the servers that host most friends of user i. Yuan et al. [20]
proposed to preserve social locality for different OSN users
at different time periods through partitioning social graph
along the time dimension.

Liu et al. [21] focused on data replication for different
OSN users, and suggested creating various numbers of
replicas according to the heterogeneous requesting rates.
They jointly considered both read rate and update rate.
Jiao et al. [22] summarized the relationships of entities
in OSNs, and presented a multi-objective data placement
scheme. However, the main goal of [21-22] is to reduce
inter-data center communication traffic as well as response
latency without considering the specific network topologies
of data center, while our work primarily focuses on the
minimization of intra-data center traffic. Chen et al. [15]
suggested using interaction graph [14] instead of social
graph, and identified self-similarity underlying the graph
on popular OSNs. Based on the observation, they proposed
a simple data placement strategy by optimizing interaction
locality. Tran et al. [17] investigated the socially aware
data partitioning by modeling it as a multi-objective
optimization problem, and proposed to utilize evolutionary
algorithms to minimize server load and keep a good load

the existing servers, but networks are commonly shared by
multiple servers and often become the bottleneck of scaling
in production data centers [12-13]. Therefore, reducing
intra-data center traffic can save more network resources
and improve the scalability of OSNs.

As a matter of fact, OSN users do not interact with
all of their friends every time. For example, for the vast
majority of Facebook users, 20% of their friends account
for up to 70% of all interactions [14]. Based on the
observation, the interaction graph can accurately reflect the
actual interactions occurred in OSNs. We use interaction
locality to depict the scenario that both user’s own data
and the data of her often contact friends are stored on the
least number of servers. In this paper, we focus on the
traffic-aware OSN data placement within a data center. It
is challenging to solve this problem that both preserves
interaction locality and reduces intra-data center traffic.

Existing works [15-17] mainly leverage the properties
of social/interaction graphs, and yield data placement
schemes based on graph partitioning. The OSN interactions
among users in these social/interaction graphs are depicted
by social links which only represent relationships of pairs
of users (e.g., a user and one of her friends). The pairwise
relationship cannot directly reflect the interactions among
more than two users, while each OSN user commonly
interacts with hundreds of her friends. Besides, the intra-
data center traffic depends not only on the number of
servers involved in every request but on the distance
between every pair of involved servers. In a specific data
center network, for instance, the tree-based topologies
[18] that are very commonly used data center network
structures, the greater distance between servers, the higher
traffic will be generated. We use distance locality to depict
the scenario that the required data are stored on the servers
with the shortest distance across them. Existing works only
address social locality or interaction locality, and overlook
the influences of distance locality upon traffic.

The main contributions of this work are summarized as
follows:

yy We propose to use hypergraph for the construction of
interaction graph, so as to capture the feature of multi-
participant interactions occurred in OSNs, and explicitly
take into account network topologies of data center
together with distance locality.
yy To preserve both interaction locality and distance
locality, we formulate the problem as a hypergraph
partitioning problem together with a partition-to-server
assignment problem. Moreover, we demonstrate that the
n-way balanced min-cut partitioning is equivalent to the
original problem.
yy Following the principle of traffic localization, we propose
an efficient scheme for data placement. At the same time,

1175Improving the Scalability of Online Social Networks with Hypergraph-Based Data Placement

balance.
Most of these existing works study OSN data

placement based on social graph or even interaction graph.
These graphs are generally described by an ordinary graph,
which cannot depict multi-participant interactions occurred
in OSNs. Quamar et al. [23] addressed the problem of
data placement for transactional workloads on relational
databases, and used a hypergraph to model the workload
where multiple data items are involved in each transaction.
[23] is the work most related to ours in graph modeling,
but its solution relaxes the group association to pairwise
at an early phase, and furthermore, it does not consider
the influence of data center network topology. We focus
on data placement upon the specific topologies and further
minimize intra-data center traffic by optimizing distance
locality.

3	 Background and Motivation

In this section, we start with modeling OSNs based on
hypergraph. Then we briefly introduce three data center
network topologies, including tree, fat tree and VL2. We
also discuss our motivation and present the objectives of
our work.

3.1	 Hypergraph-Based OSNs Modeling
According to the interactions among users we model

the OSN as an interaction graph. Different from the
interaction graph discussed in previous works [14-15],
where each edge represents the interaction between a pair of
users, we use hypergraph to represent the interaction graph,
G = (V, E), where each one in the vertex set V is used to
represents every user’s data stored in the system, and each
hyperedge e ∈ E represents a user’s visit request. The set of
vertices Ve ⊆ V spanned by hyperedge e represents the data
of user’s friends required to be accessed by the request.

Figure 1 shows the interaction graph based on ordinary
graph and hypergraph. In the first graph, 3 edges are used
to reflect the pairwise interactions between every two users.
In contrast, there are 4 hyperedges in the second graph,
denoted by e1 (user 1, user 2), e2 (user 1, user 2, user 4), e3
(user 3, user 4) and e4 (user 2, user 3, user 4), and each one
represents a user’s interaction with others. One interaction
corresponds to one request. The paradigm of accessing
multiple user data in one request is a very common
operation in OSNs. For example, Facebook status browsing
needs to access the data of a user’s recent active friends.
We use active friends in this paper to represent the friends
in an interaction graph. Each OSN user has multiple active
friends, and the set of both user i’s active friends and user i
herself, denoted by AFi ∪ {i}, corresponds to a hyperedge
ei. Each hyperedge is associated with an edge weight wei

which will be defined later in Section 4. We also use AFi

∪ {i} to denote the set of data belonged to users in AFi ∪
{i}. Compared with the ordinary graph, hypergraph can use
hyperedges to depict the complex interactions involving
more than two users, and does not lose the relationship
among multiple users as well. To preserve interaction
locality perfectly, the user data involved in any hyperedges
should be co-located on the same server. But it is
impossible to do this if we do not use replication approach.
Because interaction graph is generally a connected graph,
and a single server cannot host all users’ data.

(a)	Ordinary
interaction graph

(b)	Hypergraph-based
interaction graph

Figure 1 Interaction Graph Modeling in OSNs

3.2	 Data Center Network Topologies
Currently, tree topology and its variants such as fat tree

[24] and VL2 [25], are widely used in designing data center
networks, and become the defacto standard of data center
network architectures [18]. Tree-based topologies consist
of three-layer switches, i.e., core, aggregation and edge,
with the server as leaves. As illustrated in Figure 2(a), in a
typical three-layer tree, the higher-layer switches need to
support communication traffic among more servers. Thus
switches with higher performance are placed on the higher
layer. The number of servers is limited by the numbers
of ports on the switches. Assume that the fan-out of edge
switches, aggregation ones and core ones are pe, pa and pc,
respectively, and then the network can host pcpape servers at
most.

Fat tree is an extended version of tree topology, and
it is designed based on a complete binary tree as shown in
Figure 2(b), where all switches are identical, i.e., they have
the same number of ports p. In a fat tree, there are p pods
with p/2 edge switches and p/2 aggregation switches in
each pod. Each pod is connected with p2/4 core switches,
and the maximum number of servers is p3/4.

VL2 is a new topology with a distinguished feature
that the core layer and the aggregation layer form a
Clos structure [26] as shown in Figure 2(c), where the
aggregation switches are connected with the core ones by
forming a complete bipartite graph. More specifically, the
cross-rack communication will go through a random core

Journal of Internet Technology Volume 17 (2016) No.61176

switch as an intermediate destination, and then back to
the actual destination. We use pi-port intermediate and pa-
port aggregation switches to construct a VL2 topology,
and there are pa/2 intermediate, pi aggregation and papi/4
edge switches. If the fan-out of edge switches is pr, then the
maximum number of servers a VL2 topology can host is
prpapi/4.

(a) A three-layer tree topology

(b) A three-layer fat tree topology

(c) A three-layer VL2 topology

Figure 2 Tree-Based Network Topologies of Data Center

3.3	 Motivation and Objectives
The objective of this paper is to design a scheme for

the efficient data placement upon the specific data center
networks based on hypergraph model, so as to improve
the scalability of large-scale OSNs. Two metrics are used
to measure the performance: (1) intra-data center traffic,
which mainly depends on interaction locality and distance
locality; (2) load balancing, which reflects the fairness of
load distribution across servers.
3.3.1	 Interaction locality

In an OSN, user i’s request initially accesses the server
x that hosts user i’s own data. If the data of some of user
i’s active friends were stored on other servers, server x
needs to fetch the required data from those servers, which
certainly increases intra-data center traffic. In our model,

the server that a user’s request initially accessed to forwards
requests to other servers, so it plays the roles of issuing
requests as well as responding requests. Let Sx denote the
set of users’ data stored on server x. So AFi ∪ {i} ∩ Sy can
be used to represent the set of data of user i’s active friends
stored on server y. This expression can be simplified as
AFi ∩ Sy when user i’s data stored on server x. We define a
binary function C(i, y) to decide whether server y hosts the
data of user i’s active friends,

	 C(i, y) = 0, if AFi∩Sy = φ ,
1, otherwise.

� (1)

For each pair of servers x and y, the request rate from
server x to server y is represented by

	 Rxy = Σ
i ∈ Sx

 C(i, y)ri,� (2)

where ri represents user i’s request rate. Let N denote the
set of servers, and consequently we calculate the request
rate issued by server x by

	 Rx = Σ
y ∈ N

 Rxy� (3)

A lower Rx implies less active friends’ data stored on
other servers, i.e., achieving a better interaction locality.
Hence, we optimize interaction locality through minimizing
the sum of Rx, x ∈ N.
3.3.2	 Distance locality

The goal of interaction locality is to minimize the inter-
server communication. The inter-server communication
should go through a path that connects a pair of servers.
In tree-based topologies, the long distance between two
servers implies that the inter-server communication must
pass through more switches on the upper layers. Here we
use distance to refer to the path length between a pair of
servers, and is measured by the number of links on the path.
Obviously the intra-data center traffic will be increased with
longer distance. Therefore, we consider not only interaction
locality but also distance locality to further improve intra-
data center traffic.

In a tree topology, servers connected to the same edge
switch may be able to communicate at full bandwidth (e.g.,
server 1 and 2 in Figure 2(a)), but for servers connected
potentially across multiple layers of switches, the bandwidth
between them is limited by the bandwidth available at
the root of tree. The bandwidth of links at higher level is
more valuable than that of links at lower level. Many data
centers introduced oversubscription to define the ratio of
the worst case aggregate bandwidth among the servers to
the total bisection bandwidth of a tree topology [24]. For a

1177Improving the Scalability of Online Social Networks with Hypergraph-Based Data Placement

is localized in the lower layers, i.e., achieving a better
distance locality. Combining interaction locality and
distance locality together, we summarize the inter-server
traffic between any pair of servers as

	 Txy = Rxydxy.� (7)

Therefore, the total intra-data center traffic equals

	 Ttotal = Σ
x ∈ N

Σ
y ∈ N

Txy.� (8)

3.3.3	 Load Balancing
For the purpose of illustration, in this paper, we use

Gini coefficient to measure the degree of load balancing
across servers. Generally Gini coefficient is defined as a
ratio between the sum of value differences and the sum of
values, and we give its definition below:

	 LBGini =
 |Lx - Ly|

2n Σ
x ∈ N

 Lx

Σ
x ∈ N

Σ
y ∈ N � (9)

where Lx represents server x’s load that can be measured by
using different manners. For simplicity, it is measured by
the number of users whose data are stored on server x, i.e.,
Lx = |Sx|. However, a large |Sx| does not necessarily incur the
high load due to the uneven distribution of request rates. In
order to accurately measure the server load, we take request
rates into account, and define the load as the requests
arrived at the server per time unit, whose definition is given
below:

	 Lx = Σ
i ∈ Sx

Σ
j ∈ AFi∪{i}

rj.� (10)

Note that Gini coefficient is independent of system
size, and a lower Gini value implies a better load balancing.

4	 OSNs Data Placement Problem

In this section we present formally the definition of data
placement problem in OSNs and analyze its complexity.

4.1	 Problem Formulation
In modern storage systems of OSNs, users’ data are

stored on the servers in a distributed manner. Consider a
distributed storage system consisting of a set N of n servers
to store the data of a set V of users. Then data placement
problem is equivalent to design a data-to-server mapping
function

	 f: V → N,� (11)

tree topology, the oversubscription typically takes the value
from 2.5:1 to 8:1 [18], which indicates that only 40% to
12.5% of available server bandwidth is available for long
distance inter-communications. Considering the differences
among multi-level links in a tree topology, we define the
distance as follows:

dxy
tree =

0, if x = y,

2, if x ≠ y ∧ | x
pe

| = | y
pe

|,
2β + 2, if x ≠ y ∧ | x

pe
| ≠ | y

pe
| ∧ | x

pepa
| = | y

pepa
|,

2α + 2β + 2, otherwise.

�(4)

If both server x and y are connected to the same edge
switch, the distance between servers is 2. If both servers
are connected to the same aggregation switch instead of
edge one, and then the distance should be 4. In the worst
case, server x and y connects through a core switch, and
the distance get the highest value. In Equation (4), α
corresponds to the scenario that the path should go through
core layer and β corresponds to the scenario that the path
should go through aggregation layer, and both of them
are used to leverage links of different layer. Note that the
bandwidth of links at higher layer is more valuable than
lower layer, so we set α > β > 1.

	 dxy
fat tree =

0, if x = y,

2, if x ≠ y ∧ |2x
p | = |2y

p |,
4, if x ≠ y ∧ |2x

p | ≠ |2y
p | ∧ | 4x

p2 | = | 4y
p2 |,

6, otherwise.

� (5)

For fat tree and VL2 topologies, since both the switches
and the bandwidth at different layers are identical, there
is no oversubscription [27]. Hence we never distinguish
the links at different layers by using varied weights. In a
fat tree topology, the distance can be defined similarly by
Equation (5).

In a VL2 topology, since that the communication
originated from the edge switches always passes through
the intermediate switches, the distance between two servers
only depends on whether both servers are connected to one
edge switches, and the distance is given by

	 dxy
VL2 =

0, if x = y,

2, if x ≠ y ∧ | x
pr

| = | y
pr

|,
6, otherwise.

� (6)

A lower distance implies that the inter-server traffic

Journal of Internet Technology Volume 17 (2016) No.61178

which specifies the storage location of each user i’s data.
Then the set of users’ data stored on server x can be
described by

	 Sx = {i ∈ V | f(i) = x}.� (12)

Our primary objective is to improve the traffic
performance via proper data placement that is represented
by the set of users’ data stored on every server {Sx ⊆ V | x ∈
N}. To guarantee the worst-case recovery time upon server
failure, load balancing across servers is considered as well.
Finally, we formulate data placement problem as follows:

Given V, the set of users, N, the set of servers, {ri | i ∈
V}, the set of each user’s request rate, and the data center
networks -- tree-based topologies, find the optimal
placement solution {Sx ⊆ V | x ∈ N} such that it minimizes
the total intra-data center traffic Ttotal, meanwhile keeps load
balancing under a threshold LB*

Gini.

4.2	 Problem Complexity Analysis
It is difficult to solve the data placement problem

directly and there is no existing solutions can obtain the
optimal placement. We divide the original problem into two
sub-problems based on the divide and conquer principle:
hypergraph partitioning and partition-to-server assignment.
We model the first problem as an n-way balanced min-
cut partitioning of the hypergraph, with the objective of
dividing interaction graph into n balanced partitions with
minimum cut weight. For the second problem, based on
the partition results, the problem is further formulated as
a quadratic assignment problem that solves partition-to-
server assignment, with the aim of minimizing intra-data
center traffic generated by inter-server communications.
Both of the problems have been proven to be NP-hard,
and specifically the quadratic assignment problem is more
difficult, since even finding a constant approximation
solution is NP-hard as well [28].

5	 Hypergraph-Based Data Placement
Scheme

Supposed that n partitions and n servers are already
known, we can obtain two matrices: request rate matrix
with the request rate Rij between a pair of partitions as its
element, and distance matrix with the distance dxy between
a pair of servers as its element. Both of them have n2

elements, and we renumber the elements and sort them to
the increasing order respectively, i.e., R(1) ≤ R(2) ≤ ... ≤
R(n2), d(1) ≤ d(2) ≤ ... ≤ d(n2). According to the theorem
of inequality [29] we can obtain the bounds of traffic as
follows:

[Σ
i = 1

n2

 R(i)d(n2 - i + 1), Σ
i = 1

n2

R(i)d(i)].
Therefore, the principle of solving the problem is

to maximally place the pair of partitions with higher
request rate to the pair of servers with shorter distance,
i.e., traffic localization. We propose a hypergraph-based
data placement (HDP) scheme. HDP solves the problem
in a round-robin manner as shown in Figure 3. We firstly
partition servers into server-clusters, and the partitioning
follows the principle that the pairs of servers with low
distance belong to the same cluster. Specifically, servers in
tree-based topologies are easy to be clustered based on the
layers. In the first round, we partition servers that connect to
the same aggregation switch or pod into one cluster for tree
or fat tree networks. Note that servers in VL2 networks are
partitioned based on edge switches instead of aggregation
switches due to the inter-communication features of VL2.
The numbers of clusters for three topologies are pc, p and
papi/4, respectively. We partition the interaction graph into
the same numbers of user-partitions respectively so as to
realize the one-to-one assignment from user-partition to
server-cluster. Considering that the distance between any
pair of server-clusters is identical, different assignment
methods yield the same traffic. Hence, we choose random
assignment for simplicity. In the following rounds, we
successively refine the results of previous round by
repeating the same procedure discussed above. Finally, the
server-clusters are further partitioned into n servers, and
user-partitions are partitioned into n partitions as well. For
tree and fat tree topologies, the final assignment can be
obtained after three rounds execution, while VL2 requires
only two rounds.

The pseudo-code for HDP is described in Algorithm 1.
Note that in Algorithm 1, data placement decisions mainly
depend on the hypergraph partitioning. We consequently
focus on the n-way balanced min-cut partitioning of
hypergraph G = (V, E). As discussed in Section 3, vertex set
V represents the set of users and their data, and hyperedge
set E contains every user’s request. For each hyperedge,
there exists a weight wei assigned to it, and we set wei =

Figure 3 The Basic Processing Logic of HDP

1179Improving the Scalability of Online Social Networks with Hypergraph-Based Data Placement

ri. A hyperedge is cut if its vertices fall to more than one
component. The cut weight of a hyperedge is defined as
follows:

	 cutei = (ti - 1)ri,� (13)

where ti (ti > 1) illustrates hyperedge ei being partitioned
into ti components. For the ordinary graph, cutei = ri, which
is a special case of hyergraph. For a hypergraph G, the
cut weight of the partitioningis counted as the sum of cut
weights of all its hyperedges:

	 CutG = Σ
ei ∈ E

 cutei.� (14)

Algorithm 1 Data Placement
Input:
G (V, E): Interaction graph
N: the set of servers within a data center
LB*

Gini: the threshold of load balancing
Output:
{(gk, si)}: the set of partition-to-server assignment pairs
Ttotal: the total intra-data center traffic
1: {sci} ← Partition N into pc / p /

papi

4 server-clusters;
/*corresponds to tree / fat tree / VL2, respectively */
2: d ← (2a + 2b + 2) / 6 / 6; /*distance calculation */
3: ({g1i}, CutG) ← Hypergraph partition (G, pc / p /

papi

4 ,
 LB*

Gini);
4: π: {g1i}→{sci}; /*random assignment */
5: Ttotal ← dCutG;
6: for i = 1 to pc / p /

papi

4 do
7: {ssci} ← Partition server-cluster sci into pa /

p
2 / pr

 sub server-clusters;
8: d ← (2b + 2) / 4 / 2;
9: ({g2j}, Cutg1i) ←Hypergraph partition (g1i, pa /

p
2 /

 pr, LB*
Gini);

10: π: {g2j}→{ssci};
11: Ttotal ← Ttotal + dCutg1i;
12: if data center network is not VL2 then
13: for j = 1 to pe /

p
2 do

14: {si} ← Partition sub server-cluster sscj into pe /

p
2 servers;

15: d ← 2 / 2;
16: ({gk}, Cutg2j) ← Hypergraph partition (g2j,

 pe /
p
2 , LB*

Gini);
17: π: {gk}→{si};
18: Ttotal ← Ttotal + dCutg2j;
19: end for
20: end if
21: end for
22: if data center network is VL2 then

23: return {(g2j, π(g2j))}, Ttotal;
24: else return{(gk, π(gk))}, Ttotal;
25:end if

The primary objective of n-way balanced partitioning
is to minimize its cut weight, i.e., min CutG. For the data
placement, our objective is to minimize the intra-data center
traffic, i.e., min Ttotal. Theorem 1 proves the equivalence
between the two problems.
Theorem 1: We formulate the data placement based on
hypergraph partitioning. Partition the interaction graph G
= (V, E) into n sets of vertices through applying Algorithm
1, from which, we can obtain its cut weight CutG, and intra-
data center traffic Ttotal, such that Ttotal = qCutG, where q is a
constant.
Proof: For an arbitrary hypergraph G′ = (V′, E′), we
partition it into n′ sets of vertices through applying
Algorithm 1. Considering that a hyperedge ei is divided into
ti partitions and its vertices are divided into ti - 1 partitions
except i, we have

ti - 1 = Σ
y ∈ N'

C(i, y)ri.

According to the definition of traffic defined in
Equation (7), the inter-communication traffic between any
pair of servers or server-clusters is

Txy = Rxydxy = Σ
i ∈ Sx

C(i, y)ridxy.

During each round of algorithm, the distance between
any pair of servers or server-clusters is identical, and then it
can be counted as a constant d. Consequently, the intra-data
center traffic is represented by

Tintra = Σ
x ∈ N'

 Σ
y ∈ N'

Txy

 = Σ
x ∈ N'

 Σ
y ∈ N'

 Σ
i ∈ Sx

δC(i, y)ri

 = Σ
x ∈ N'

 Σ
i ∈ Sx

 Σ
y ∈ N'

δC(i, y)ri

 = Σ
x ∈ N'

 Σ
i ∈ Sx

δ(ti - 1)ri.

After partitioning, the vertex set can also be counted
as the union set of vertices at every partition, namely,
V' = ∪x ∈ N ' Sx. As we discussed above, each vertex i (user
i) corresponds to a hyperedge ei. Then the cut weight is
calculated by

CutG’ = Σ
ei ∈ E'

 cutei = Σ
ei ∈ E'

 (ti - 1)ri

 = Σ
i ∈ V'

 (ti - 1)ri = Σ
x ∈ N

 Σ
i ∈ Sx

(ti - 1)ri.

Journal of Internet Technology Volume 17 (2016) No.61180

As a result, for the hypergraph partitioning in each
round, we always have Tintra = dCutG′. Combining the results
of every round together, we obtain

Ttatol = Σ Tintra

 = Σ δCutG'

 = θCutG.

where q is a constant.
To solve the n-way min-cut hypergraph partitioning,

various heuristics have been developed over years, due
to the wide applications of partitioning (e.g., VLSI [30]
and data mining, etc.). We propose an efficient algorithm
based on multi-level recursive approach [31] as shown
in Algorithm 2. The basic idea of the algorithm is to
decompose the partitioning operations into three steps
based on multi-level paradigm. In step 1, coarsen the
original hypergraph successively, and perform partitioning
on the coarsest hypergraph in step 2. Finally in step 3,
refine n-way partitioning as it is projected back into the
original hypergraph. The load balance is always required to
be preserved throughout three steps.

Algorithm 2 Hypergraph partition
Input:
G (V, E): Interaction graph
n: the number of partitions
LB*

Gini: the threshold of load balancing
Output:
{gk}: the set of partitions
CutG: the cut weight
1: G0 ← G;
2: i ← 0;
3: do /* coarsening step */
4: Coarsen Gi into a smaller hypergraphGi+1;
/* Coarsening refers to mergeselected vertices together */
5: i ← i + 1;
6: until Gi cannot be coarsened further
7: {gk} ← Partition Gi such that CutG

i is minimized and
 L*

Gini is satisfied;
 /* obtain the initial partitioning result */
8: for j = i - 1 to 0 do /* refining step */
9: do
10: Move vertices in Gjamong partitions {gk} such
 that CutG

j is reduced and LB*
Gini is satisfied;

11: Update {gk};
12: until CutG

j cannot be reduced further
13: end for
14: return {gk}, CutG;

6	 Evaluation

6.1	 Experiment Settings
6.1.1	 Dataset and Network Configurations

By crawling Facebook in a distributed breadth-first
searching manner, Wilson et al. [32] collected a dataset of
more than 10,000 K users. We chose the largest regional
network from the original dataset as our dataset input for
evaluation. The dataset contains 1,241 K users in London,
UK and their interaction event logs within three months,
including their profiles, friend lists and wall posts. Based on
the dataset we generate a hypergraph and a corresponding
ordinary graph, and both of them are used to represent
the interaction graph. To generate a hypergraph, since
|V| = |E|, we create a hyperedge for each user. User i’s
hyperedge ei contains a group of users that have more than
one interaction record with user i. Edge weight is set to the
visit records of user i. To generate an ordinary graph, we
establish a link between each pair of users such that they
have more than one interaction record and the link weight
is set to the number of interaction records.

To simulate the underlying data center networks, we
generate three tree-based topologies with varied number
of servers and switches. Table 1 lists the details of network
configurations.

Table 1 Data Center Network Configurations

Network topologies Tree Fat tree VL2
Number of ports pc (p or pi) 18 16 18

pa or p 6 16 18
pe (p or pr) 10 16 12

Number of switches Core 6 16 9
Aggregation 18 128 18
Edge 108 128 81

Number of servers 1,080 1,024 972

6.1.2	 Schemes
Besides our scheme HDP, we implemented several data

placement schemes as follows for comparison:
(1)	 Hashing: It places user’s data in terms of hashing

results.
(2)	 METIS [33]: It is a widely used approximation

algorithm for ordinary graph partitioning. We use it
instead of hypergraph partition to implement Algorithm
1.

(3)	 S-PUT: It implements a social aware partitioning
scheme based on evolutionary algorithms.

6.1.3	 Metrics
The metrics we focused on in this evaluation are

specifically described as follows:

1181Improving the Scalability of Online Social Networks with Hypergraph-Based Data Placement

(1)	 Intra-data center traffic: The total inter-server traffic
Ttotal generated within a data center, and its value is
defined in Equation (8).

(2)	 Load balancing: It is measured by Gini coefficient.
Based on server load definitions, we use LBGini1
and LBGini2 to represent two types of load balancing
respectively.

(3)	 Traffic distribution: The percentage of traffic passing
through the upper layers -- TDc, core layer and TDa,
aggregation layer.

(4)	 Interaction locality distribution: The percentage of
number of servers that need to be visited for each user.

6.2	 Results
In the experiment, we made comparisons among several

schemes. The traffic value reported here is normalized with
regard to the obtained value of Hashing under the same
settings. α and β are set to 4 and 2, respectively.

First, we simulated hashing placement in three types of
data center networks, respectively. Figure 4 reports the load
balancing of Hashing upon varied underlying data center
networks. We find that LBGini1 is much better than LBGini2,
because the random manner of Hashing could ensure
that each server holds approximately the same number of
users’ data, but the distribution of request rate is uneven,
which results in the relative high LBGini2. Both types of load
balancing are independent of network topology except
network size. If LBGini is below 0.2, it indicates good load
balancing.

0.25

0.2

0.15

0.1

0.05

0

Network topology

Lo
ad

 b
al

an
ci

ng

Tree Fat tree VL2

LBGini1 LBGini2

Figure 4 The Load Balancing of Hashing

Then we use both LBGini1 and LBGini2 of hashing as
the references to set up the threshold of load balancing.
The traffic performances under varied thresholds are
illustrated in Figure 5 and 6. In Figure 5, the thresholds
are set to 1, 2, 3 and 5 times LBGini1 of hashing, i.e., 0.024,
0.048, 0.072 and 0.12. Note that a lower LBGini1 implies a
more even distribution of users’ data, and it will become
a tighter constraint that weakens the optimization of cut

weight in both initial partitioning and refining steps. Hence,
the increase of threshold is helpful to improve the traffic
performance, which is evaluated by results described in
Figure 5. But it does not always hold with the continuous
increase in threshold, since a larger constraint value has a
less effect on graph partitioning. The traffic improvement
decreases along with the increase of threshold. More
interestingly, when the threshold is small enough, e.g., less
than 0.024, the traffic of HDP is not only higher than that
of Hashing but higher than that of METIS. Otherwise, HDP
always outperform the others by 25% ~ 73%. Therefore, we
can draw a conclusion that ordinary graph partitioning can
get a better cut weight than hypergraph partitioning only if
the balancing constraint is very tight, and we call this “Load
balancing effect.”

In Figure 6, the thresholds are set to 0.5, 1, 2 and 3

1.5

1.2

0.9

0.6

0.3

0

N
or

m
al

iz
ed

 tr
af

fic

1.5

1.2

0.9

0.6

0.3

0

N
or

m
al

iz
ed

 tr
af

fic

0.024 0.048 0.072 0.12
Threshold LB*

Gini2

0.024 0.048 0.072 0.12
Threshold LB*

Gini1

1.5

1.2

0.9

0.6

0.3

0

N
or

m
al

iz
ed

 tr
af

fic

0.024 0.048 0.072 0.12
Threshold LB*

Gini1

(c) VL2

(a) Tree

(b) Fat tree

Figure 5	The Total Intra-Data Center Traffic under Varied
Thresholds (LB*

Gini1)

Journal of Internet Technology Volume 17 (2016) No.61182

times LBGini2 of hashing, i.e., 0.091, 0.182, 0.364 and 0.546.
Similar conclusions are observed in the case of using LBGini2
for the measurement of load balancing. In either case, i.e.,
LBGini1 and LBGini2, the improvement does not tend to getting
better as the threshold increases continuously. In the second
case, Hashing is not the best in terms of traffic under the
same level of load balancing. Even the threshold is set to
half level of Hashing, HDP still achieves a lower traffic
than other schemes except S-PUT. Load balancing is the
primary objective of S-PUT other than its constraint, so
the varied thresholds do not have influence on it. S-PUT
uses METIS to obtain the initial set of partitions, and treats
them as the first generation of evolutionary algorithm for
further optimization. Considering “Load balancing effect,”
it is not difficult to understand that S-PUT outperforms
both HDP and METIS under a tight balancing constraint.
However, S-PUT’s superiority fades as the increase of

threshold. In fact, S-PUT does not consider partition-to-
server assignment, and we use random approach instead in
our implementation, which explains its poor performance.

We notice that in different network topologies, traffic
in VL2 is relatively high. It is because that the inter-
communication feature of VL2 is not conducive to the
traffic optimization. Nevertheless, such an argument
does not necessarily mean both tree and fat tree are more
scalable than VL2, since it depends on many other factors.
Our results only indicate that OSNs can benefit in terms
of scalability when using HDP within tree or fat tree
underlying topology, while the benefit of VL2 is small.

To further investigate the traffic performance, we plot
Figure 7 to compare the traffic distribution across varied
layers in three tree-based networks, which also reflects the
distance locality distribution. In this group of experiments,
we used LBGini2 as threshold metric and set it to 0.364. The
results show that HDP can achieve the lower percentages
of traffic (i.e., TDc, TDa) passing through either core layer
or aggregation layer except the case of aggregation layer in
fat tree. The lower values of both TDc and TDa indicates a
better distance locality. Moreover, as illustrated in Figure
5 and 6, fat tree achieves a larger improvement than tree,
and VL2 comes with the smallest. Figure 7 shows that
comparatively, fat tree has a lower TDc and a higher TDa,

1.5

1.2

0.9

0.6

0.3

0

N
or

m
al

iz
ed

 tr
af

fic

1.5

1.2

0.9

0.6

0.3

0

N
or

m
al

iz
ed

 tr
af

fic

0.091 0.182 0.364 0.546
Threshold LB*

Gini2

0.091 0.182 0.364 0.546
Threshold LB*

Gini2

1.5

1.2

0.9

0.6

0.3

0

N
or

m
al

iz
ed

 tr
af

fic

0.091 0.182 0.364 0.546
Threshold LB*

Gini2

(c) VL2

(a) Tree

(b) Fat tree

Figure 6	The Total Intra-Data Center Traffic under Varied
Thresholds (LB*

Gini2)

(a) Core layer (TDc)

(b) Aggregation layer (TDa)

Figure 7 The Traffic Distribution across Varied Layers

1183Improving the Scalability of Online Social Networks with Hypergraph-Based Data Placement

which implies that it localizes a large percentage of traffic
within aggregation layer.

In our experiments, we further explored the interaction
locality distribution of varied schemes. Here we use the
number of servers need to be visited for each user to reflect
the interaction locality. Since data center topology has
no effect on the interaction locality, we did not take into
account of partition-to-server, and the number of servers
was set to 1,000, and threshold LBGini2 was set to 0.364.
Figure 8 reports the accumulated interaction locality
distribution of varied schemes. The results indicate that
HDP places each user’s active friends to the servers as few
as possible. Because when load balancing constraint is
not very tight, hypergraph partition could achieve a better
partition result compared with corresponding ordinary
graph partition. S-PUT performs better than METIS
because it optimizes the partition result of METIS based
on evolutionary algorithm, which seems contradict to the
results reflected in Figure 6. It is because we did not solve
partition-to-server problem in this experiment. S-PUT uses
random approach to solve the problem while the solution
approach of METIS is the same as HDP, which implies our
approach could achieve a better distance locality.

Figure 8	The Accumulated Interaction Locality Distribution of
Varied Schemes

7	 Conclusion and Future Work

In this paper, we address OSN data placement problem
by jointly considering interaction locality and distance
locality, in order to improve the scalability of backend
storage system in OSNs. We formulate data placement
by using both hypergraph partitioning and partition-to-
server assignment, and prove the equivalence between the
original problem and partitioning problem. Accordingly
a hypergraph-based data placement (HDP) scheme is
proposed to minimize intra-data center traffic. Finally, we

evaluate the proposed scheme via extensive experiments
on a real world trace. The experimental results show that
HDP can significantly reduce intra-data center traffic and
keep a good load balance simultaneously. Its performance
is superior to not only Hashing, but also state-of-the-art
schemes including METIS and S-PUT.

Interaction locality can be improved through replicating
user i’s data to the servers that i’s active friends located on,
which may also decrease intra-data center traffic. We intend
to integrate replication into data placement in the future
work. Besides, inspired by tagging practices on OSNs [34],
we also consider to enhance the performance by means
of analyzing the hidden community structures of social
networks.

Acknowledgements

This work is supported by National Natural Science
Foundation of China (No. 61502328, No. 61572337),
Natural Science Foundation of the Higher Education
Institutions of Jiangsu Province (No. 15KJB520032, No.
14KJB520034), Joint Innovation Funding of Jiangsu
Province (No. BY2014059-02).

References

[1]	 Y. W. Zhao, W.-J. van den Heuvel and X. Ye, A
Framework for Multi-faceted Analytics of User
Behaviors in Social Networks, Journal of Internet
Technology, Vol. 15, No. 6, pp. 985-994, November,
2014.

[2]	 Facebook Newsroom, 2016, http://newsroom.fb.com/
company-info/

[3]	 J. U. In and J. H. Park, SPHINX: A Scheduling
Middleware for Data Intensive Applications on a Grid,
International Journal of Internet Protocol Technology,
Vol. 6, No. 3, pp. 184-194, November, 2011.

[4]	 C. Lin, Z. H. Huang, F. Yang and Q. Zou, Identify
Content Quality in Online Social Networks, IET
Communications, Vol. 6, No. 12, pp. 1618-1624,
August, 2012.

[5]	 J. Contreras-Castillo, S. Zeadally and J. A. G. Ibanez,
Solving Vehicular Ad Hoc Network Challenges with
Big Data Solutions, IET Networks, Vol. 5, No. 4, pp.
81-84, July, 2016.

[6]	 A . Laks hman and P. M a l ik , Cas s and ra : A
Decentralized Structured Storage System, ACM
SIGOPS Operating Systems Review, Vol. 44, No. 2,
pp. 35-40, April, 2010.

[7]	 R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman
and S. Shah, Serving Large-Scale Batch Computed
Data with Project Voldemort , 10th USENIX

Journal of Internet Technology Volume 17 (2016) No.61184

Conference on File and Storage Technologies, San
Jose, CA, 2012, p. 18.

[8]	 D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine and D. Lewin, Consistent Hashing and
Random Trees: Distributed Caching Protocols for
Relieving Hot Spots on the World Wide Web, 29th
ACM Symposium on Theory of Computing, El Paso,
TX, 1997, pp. 654-663.

[9]	 Z. Lin and X. Jiang, Inter-node Relationships in
Short-Range Mobile Social Networks, International
Journal of Ad Hoc and Ubiquitous Computing, Vol.
22, No. 2, pp. 96-105, January, 2016.

[10]	 J. M. Pujol, V. Erramilli, G. Siganos, X. Yang,
N. Laoutaris, P. Chhabra and P. Rodriguez, The
Little Engine(s) That Could: Scaling Online Social
Networks, IEEE/ACM Transactions on Networking,
Vol. 20, No. 4, pp. 1162-1175, August, 2012.

[11]	 Facebook Business, 2016, http://www.facebook.com/
business/overview

[12]	 C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D.
Wischik and M. Handley, Improving Datacenter
Performance and Robustness With Multipath TCP,
ACM SIGCOMM 2011 Conference, Berlin, Germany,
2011, pp. 266-277.

[13]	 X. Meng, V. Pappas and L. Zhang, Improving the
Scalability of Data Center Networks with Traffic-
Aware Virtual Machine Placement, 29th Conference
on Information Communications, San Jose, CA, 2010,
pp. 1154-1162.

[14]	 M. P. Wittie, V. Pejovic, L. Deek, K. C. Almeroth and
B. Y. Zhao, Exploiting Locality of Interest in Online
Social Networks, 6th International Conference on
Emerging Networking Experiments and Technologies,
Philadelphia, PA, 2010, pp. 1-12.

[15]	 H. Chen, H. Jin, N. Jin and T. Gu, Minimizing Inter-
server Communications by Exploiting Self-Similarity
in Online Social Networks, 20th International
Conference on Network Protocols, Austin, TX, 2012,
pp. 1-10.

[16]	 D. A. Tran, K. Nguyen and C. Pham, S-CLONE:
Socially-Aware Data Replication for Social Networks,
Computer Networks, Vol. 56, No. 7, pp. 2001-2013,
May, 2012.

[17]	 D. A. Tran and T. Zhang, S-PUT: An EA-Based
Framework for Socially Aware Data Partitioning,
Computer Networks, Vol. 75, pp. 504-518, December,
2014.

[18]	 Cisco Systems, Cisco Data Center Infrastructure
2.5 Design Guide, 2007, http://www.cisco.com/
application/pdf/en/us/guest/netsol/ns107/c649/
ccmigration_09186a008073377d.pdf

[19]	 Facebook’s Memcached Multi Get Hole: More
Machines ! = More Capaci ty , 2009, ht tp: / /
highscalability.com/blog/2009/10/26/facebooks-
memcached-multiget-hole-more-machines-more-
capacit.html

[20]	 M. Yuan, D. Stein, B. Carrasco, J. M. F. Trindade and
Y. Lu, Partitioning Social Networks for Fast Retrieval
of Time-Dependent Queries, 28th IEEE International
Conference on Data Engineering Workshops ,
Arlington, VA, 2012, pp. 205-212.

[21]	 G. Liu, H. Shen and H. Chandler, Selective
Data Replication for Online Social Networks
with Distributed Datacenters, 21th International
Conference on Network Protocols, Goettingen,
Germany, 2013, pp. 1-10.

[22]	 L. Jiao, J. Lit, W. Du and X. Fu, Multi-objective Data
Placement for Multi-cloud Socially Aware Services,
33th IEEE International Conference on Computer
Communications, Toronto, Canada, 2014, pp. 28-36.

[23]	 A. Quamar, K. A. Kumar and A. Deshpande,
SWORD: Scalable Workload-Aware Data Placement
for Transactional Workloads, 16th International
Conference on Extending Database Technology,
Genoa, Italy, 2013, pp. 430-441.

[24]	 M. Al-Fares, A. Loukissas and A. Vahdat, A Scalable,
Commodity Datacenter Network Architecture, ACM
SIGCOMM Conference on Data Communication,
Seattle, WA, 2008, pp. 63-74.

[25]	 A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel and S.
Sengupta, VL2: A Scalable and Flexible Data Center
Network, The ACM SIGCOMM Conference on Data
Communication, Barcelona, Spain, 2009, pp. 51-62.

[26]	 W. J. Dally and B. Towles, Principles and Practices
of Interconnection Networks, Morgan Kaufmann,
2004.

[27]	 C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D.
Wischik and M. Handley, Improving Datacenter
Performance and Robustness with Multipath
TCP, ACM SIGCOMM Conference on Data
Communication, Toronto, Canada, 2011, pp. 266-277.

[28]	 S. Sahni and T. Gonzalez, P-Complete Approximation
Problems, Journal of the ACM, Vol. 23, No. 3, pp.
555-565, July, 1976.

[29]	 G. Hardy, J. E. Littlewood and G. Pólya, Inequalities
(2nd ed.), Cambridge University Press, 1952.

[30]	 G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar,
Multilevel Hypergraph Partitioning: Applications in
VLSI Domain, IEEE Transactions on VLSI Systems,
Vol. 7, No. 1, pp. 69-79, March, 1999.

[31]	 G. Karypis and V. Kumar, Multilevel K-Way
Hypergraph Partitioning, 36th Annual ACM/IEEE

1185Improving the Scalability of Online Social Networks with Hypergraph-Based Data Placement

Design Automation Conference, New Orleans, LA,
1999, pp. 343-348.

[32]	 C. Wilson, A. Sala, K. P. N. Puttaswamy and B. Y.
Zhao, Beyond Social Graphs: User Interactions in
Online Social Networks and Their Implications, ACM
Transactions on the Web, Vol. 6, No. 4, November,
2012, doi: 10.1145/2382616.2382620.

[33]	 G. Karypis and V. Kumar, A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs,
SIAM Journal on Scientific Computing, Vol. 20, No. 1,
pp. 359-392, August, 1998.

[34]	 H. L. Kim, J. G. Breslin, H. C. Chao and L. Shu,
Evolution of Social Networks Based on Tagging
Practices, IEEE Transactions on Services Computing,
Vol. 6, No. 2, pp. 252-261, April-June, 2013.

Biographies

Jingya Zhou received the BS and PhD
degrees in Computer Science from
Anhui Normal University and Southeast
University, China, in 2005 and 2013,
respectively. He is currently a lecturer
with the School of Computer Science and
Technology, Soochow University, China.

His research interests include cloud computing, parallel and
distributed systems, online social networks and data center
networking.

Jianxi Fan received the BS, MS, and PhD
degrees in Computer Science from the
Shandong Normal University, Shandong
University, and the City University of
Hong Kong, China, in 1988, 1991 and
2006, respectively. He is currently a
professor with the School of Computer

Science and Technology, Soochow University, China. His
research interests include parallel and distributed systems,
interconnection architectures, design and analysis of
algorithms, and graph theory.

