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Abstract

Online social networks (OSNs) have become one of 
today’s most popular internet services, and are growing at 
a phenomenal rate. With the huge amount of users, OSNs 
have to face the scalability problem of how to place users’ 
data to thousands of distributed servers within a data center. 
Key-value stores use consistent hashing to fix the problem, 
and have been turned into a defacto standard. Nevertheless, 
random placement manner of hashing cannot preserve 
social locality, which leads to high intra-data center traffic 
as well as unpredictable response time. To preserve social 
locality or interaction locality, many existing works 
model the data placement problem as a graph partitioning 
problem. Although the partitioning problem is well-studied 
in these works, the social graph or interaction graph is 
formed based on ordinary pairwise graph that cannot fully 
reflect multi-participant interactions occurred in OSNs. 
Moreover, in a specific network topology of data center, 
servers communicate with one another upon different paths 
with varied distances, which is not considered in previous 
works. In this paper, we focus on the data placement with 
the aim of reducing intra-data center traffic as well as 
preserving load balance. We formulate the problem as a 
hypergraph partitioning problem together with a partition-
to-server assignment problem. Specifically, we propose a 
hypergraph-based data placement (HDP) scheme that using 
round-robin hypergraph partitioning to maximally preserve 
both interaction locality and distance locality. Through 
extensive experiments with a large scale Facebook trace, 
we evaluate that HDP significantly reduces intra-data center 
traffic without deteriorating load balancing across servers.

Keywords:	 Online social networks, Data placement, 
Hypergraph partitioning, Tree-based data 
center networks.

1	 Introduction

Online social networks (OSNs) are extremely popular 
nowadays, (e.g., Facebook, Twitter, LinkedIn). For OSN 
users, their social relations and social activities in real-
life are mapped to the cyber space, which makes the 
communication more efficiently among them, especially 

for users geographically separated [1]. Facebook has 1.44 
billion monthly active users as of March 2015, and the total 
size of user data is more than 300 petabytes [2]. As one of 
data intensive applications [3], dealing with such big data 
[4-5], it poses great challenges to implement a scalable 
backend system that supports users’ data storage and 
access. 

Currently, key-value stores (e.g., Cassandra [6], 
Voldemort [7]) are adopted by many popular OSNs and 
become a defacto standard for big data storage. In a key-
value store system, users’ data are assigned among servers 
randomly based on consistent hashing [8]. Consistent 
hashing essentially could help system to achieve good 
load balance. However, different from traditional web 
applications, OSNs deal with highly interactive operations 
[9]. For example, when a user logins her Facebook account, 
she may interact with her friends, such as browsing status, 
leaving comments, etc., which requires retrieving her 
friends’ data from different servers. Social locality is used 
to depict the scenario that both user’s own data and all 
her friends’ data are stored on the least number of servers. 
Obviously, perfect social locality implies that each user’s 
request can be served on a single server. A Facebook user 
has 300 friends on average. Unfortunately, consistent 
hashing assigns these friends’ data to multiple servers 
randomly, and fails to preserve social locality. As a result, 
dealing with a single request must access multiple servers, 
with unpredictable response time determined by the server 
with the highest latency. More importantly, requests must 
be forwarded to all the servers hosting friends’ data, which 
raises high intra-data center traffic. 

To address these problems, existing studies use 
replication approach based on the underlying social graph. 
SPAR [10] co-locates the data of users’ every friend in 
the same server by replication, so that social locality can 
be preserved well. However, in order to preserve social 
locality on a cluster of 512 servers, SPAR needs to create 
at least 20 replicas for every user. It will raise the storage 
cost and intra-data center traffic incurred by maintaining 
data consistency. For example, there are about 3.2 billion 
daily comments created in Facebook [11]. Assumed that 
the average comment size is 1 kilobytes, the synchronizing 
traffic may grow up to 60 terabytes every day. The storage 
capacity can be scaled up by simply adding more disks to 
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we evaluate both effectiveness and efficiency of the 
proposed scheme based on trace-driven experiments.

The remainder of this paper is organized as follows. 
Section 2 summarizes the related work. Section 3 shows 
the background and motivation. Section 4 formally defines 
the problem. Section 5 provides the details of our proposed 
scheme for OSN data placement. In Section 6, the scheme 
is evaluated through extensive experiments, and Section 7 
concludes the paper.

2	 Related Work

Currently, many popular OSNs adopt hasing-based 
key-value stores to deal with data storage in large scale 
environments (e.g., Facebook relies on Cassandra [6], 
LinkedIn relies on Voldemort [7], etc.). Due to random 
nature of hashing, many friends’ data are stored randomly 
on different servers, which leads to multi-get hole problem 
[19]. Pujol et al. [10] proposed to partition social graph 
as well as replicate friends’ data across servers, and 
implemented a middleware SPAR. In order to preserve 
social locality perfectly, SPAR ensures the co-location 
of every pair of friends by replication, which inevitably 
results in the increase in storage cost as well as consistency 
maintaining traffic. To avoid excessive replication, Tran et 
al. [16] explored the data replication under a fixed storage 
space and update cost required for replication, and proposed 
a socially-aware replication scheme. The scheme attempts 
to reduce visit cost by placing replicas of each user i to 
the servers that host most friends of user i. Yuan et al. [20] 
proposed to preserve social locality for different OSN users 
at different time periods through partitioning social graph 
along the time dimension.

Liu et al. [21] focused on data replication for different 
OSN users, and suggested creating various numbers of 
replicas according to the heterogeneous requesting rates. 
They jointly considered both read rate and update rate. 
Jiao et al. [22] summarized the relationships of entities 
in OSNs, and presented a multi-objective data placement 
scheme. However, the main goal of [21-22] is to reduce 
inter-data center communication traffic as well as response 
latency without considering the specific network topologies 
of data center, while our work primarily focuses on the 
minimization of intra-data center traffic. Chen et al. [15] 
suggested using interaction graph [14] instead of social 
graph, and identified self-similarity underlying the graph 
on popular OSNs. Based on the observation, they proposed 
a simple data placement strategy by optimizing interaction 
locality. Tran et al. [17] investigated the socially aware 
data partitioning by modeling it as a multi-objective 
optimization problem, and proposed to utilize evolutionary 
algorithms to minimize server load and keep a good load 

the existing servers, but networks are commonly shared by 
multiple servers and often become the bottleneck of scaling 
in production data centers [12-13]. Therefore, reducing 
intra-data center traffic can save more network resources 
and improve the scalability of OSNs. 

As a matter of fact, OSN users do not interact with 
all of their friends every time. For example, for the vast 
majority of Facebook users, 20% of their friends account 
for up to 70% of all interactions [14]. Based on the 
observation, the interaction graph can accurately reflect the 
actual interactions occurred in OSNs. We use interaction 
locality to depict the scenario that both user’s own data 
and the data of her often contact friends are stored on the 
least number of servers. In this paper, we focus on the 
traffic-aware OSN data placement within a data center. It 
is challenging to solve this problem that both preserves 
interaction locality and reduces intra-data center traffic. 

Existing works [15-17] mainly leverage the properties 
of social/interaction graphs, and yield data placement 
schemes based on graph partitioning. The OSN interactions 
among users in these social/interaction graphs are depicted 
by social links which only represent relationships of pairs 
of users (e.g., a user and one of her friends). The pairwise 
relationship cannot directly reflect the interactions among 
more than two users, while each OSN user commonly 
interacts with hundreds of her friends. Besides, the intra-
data center traffic depends not only on the number of 
servers involved in every request but on the distance 
between every pair of involved servers. In a specific data 
center network, for instance, the tree-based topologies 
[18] that are very commonly used data center network 
structures, the greater distance between servers, the higher 
traffic will be generated. We use distance locality to depict 
the scenario that the required data are stored on the servers 
with the shortest distance across them. Existing works only 
address social locality or interaction locality, and overlook 
the influences of distance locality upon traffic. 

The main contributions of this work are summarized as 
follows:

yy We propose to use hypergraph for the construction of 
interaction graph, so as to capture the feature of multi-
participant interactions occurred in OSNs, and explicitly 
take into account network topologies of data center 
together with distance locality.
yy To preserve both interaction locality and distance 
locality, we formulate the problem as a hypergraph 
partitioning problem together with a partition-to-server 
assignment problem. Moreover, we demonstrate that the 
n-way balanced min-cut partitioning is equivalent to the 
original problem. 
yy Following the principle of traffic localization, we propose 
an efficient scheme for data placement. At the same time, 
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balance.
Most of these existing works study OSN data 

placement based on social graph or even interaction graph. 
These graphs are generally described by an ordinary graph, 
which cannot depict multi-participant interactions occurred 
in OSNs. Quamar et al. [23] addressed the problem of 
data placement for transactional workloads on relational 
databases, and used a hypergraph to model the workload 
where multiple data items are involved in each transaction. 
[23] is the work most related to ours in graph modeling, 
but its solution relaxes the group association to pairwise 
at an early phase, and furthermore, it does not consider 
the influence of data center network topology. We focus 
on data placement upon the specific topologies and further 
minimize intra-data center traffic by optimizing distance 
locality.

3	 Background and Motivation

In this section, we start with modeling OSNs based on 
hypergraph. Then we briefly introduce three data center 
network topologies, including tree, fat tree and VL2. We 
also discuss our motivation and present the objectives of 
our work.

3.1	 Hypergraph-Based OSNs Modeling
According to the interactions among users we model 

the OSN as an interaction graph. Different from the 
interaction graph discussed in previous works [14-15], 
where each edge represents the interaction between a pair of 
users, we use hypergraph to represent the interaction graph, 
G = (V, E), where each one in the vertex set V is used to 
represents every user’s data stored in the system, and each 
hyperedge e ∈ E represents a user’s visit request. The set of 
vertices Ve ⊆ V spanned by hyperedge e represents the data 
of user’s friends required to be accessed by the request.

Figure 1 shows the interaction graph based on ordinary 
graph and hypergraph. In the first graph, 3 edges are used 
to reflect the pairwise interactions between every two users. 
In contrast, there are 4 hyperedges in the second graph, 
denoted by e1 (user 1, user 2), e2 (user 1, user 2, user 4), e3 
(user 3, user 4) and e4 (user 2, user 3, user 4), and each one 
represents a user’s interaction with others. One interaction 
corresponds to one request. The paradigm of accessing 
multiple user data in one request is a very common 
operation in OSNs. For example, Facebook status browsing 
needs to access the data of a user’s recent active friends. 
We use active friends in this paper to represent the friends 
in an interaction graph. Each OSN user has multiple active 
friends, and the set of both user i’s active friends and user i 
herself, denoted by AFi ∪ {i}, corresponds to a hyperedge 
ei. Each hyperedge is associated with an edge weight wei 

which will be defined later in Section 4. We also use AFi 

∪ {i} to denote the set of data belonged to users in AFi ∪ 
{i}. Compared with the ordinary graph, hypergraph can use 
hyperedges to depict the complex interactions involving 
more than two users, and does not lose the relationship 
among multiple users as well. To preserve interaction 
locality perfectly, the user data involved in any hyperedges 
should be co-located on the same server. But it is 
impossible to do this if we do not use replication approach. 
Because interaction graph is generally a connected graph, 
and a single server cannot host all users’ data.

(a)	Ordinary 
interaction graph

(b)	Hypergraph-based 
interaction graph

Figure 1 Interaction Graph Modeling in OSNs

3.2	 Data Center Network Topologies 
Currently, tree topology and its variants such as fat tree 

[24] and VL2 [25], are widely used in designing data center 
networks, and become the defacto standard of data center 
network architectures [18]. Tree-based topologies consist 
of three-layer switches, i.e., core, aggregation and edge, 
with the server as leaves. As illustrated in Figure 2(a), in a 
typical three-layer tree, the higher-layer switches need to 
support communication traffic among more servers. Thus 
switches with higher performance are placed on the higher 
layer. The number of servers is limited by the numbers 
of ports on the switches. Assume that the fan-out of edge 
switches, aggregation ones and core ones are pe, pa and pc, 
respectively, and then the network can host pcpape servers at 
most.

Fat tree is an extended version of tree topology, and 
it is designed based on a complete binary tree as shown in 
Figure 2(b), where all switches are identical, i.e., they have 
the same number of ports p. In a fat tree, there are p pods 
with p/2 edge switches and p/2 aggregation switches in 
each pod. Each pod is connected with p2/4 core switches, 
and the maximum number of servers is p3/4.

VL2 is a new topology with a distinguished feature 
that the core layer and the aggregation layer form a 
Clos structure [26] as shown in Figure 2(c), where the 
aggregation switches are connected with the core ones by 
forming a complete bipartite graph. More specifically, the 
cross-rack communication will go through a random core 
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switch as an intermediate destination, and then back to 
the actual destination. We use pi-port intermediate and pa-
port aggregation switches to construct a VL2 topology, 
and there are pa/2 intermediate, pi aggregation and papi/4 
edge switches. If the fan-out of edge switches is pr, then the 
maximum number of servers a VL2 topology can host is 
prpapi/4. 

(a) A three-layer tree topology

(b) A three-layer fat tree topology

(c) A three-layer VL2 topology

Figure 2 Tree-Based Network Topologies of Data Center

3.3	 Motivation and Objectives
The objective of this paper is to design a scheme for 

the efficient data placement upon the specific data center 
networks based on hypergraph model, so as to improve 
the scalability of large-scale OSNs. Two metrics are used 
to measure the performance: (1) intra-data center traffic, 
which mainly depends on interaction locality and distance 
locality; (2) load balancing, which reflects the fairness of 
load distribution across servers. 
3.3.1	 Interaction locality

In an OSN, user i’s request initially accesses the server 
x that hosts user i’s own data. If the data of some of user 
i’s active friends were stored on other servers, server x 
needs to fetch the required data from those servers, which 
certainly increases intra-data center traffic. In our model, 

the server that a user’s request initially accessed to forwards 
requests to other servers, so it plays the roles of issuing 
requests as well as responding requests. Let Sx denote the 
set of users’ data stored on server x. So AFi ∪ {i} ∩ Sy can 
be used to represent the set of data of user i’s active friends 
stored on server y. This expression can be simplified as 
AFi ∩ Sy when user i’s data stored on server x. We define a 
binary function C(i, y) to decide whether server y hosts the 
data of user i’s active friends,

	 C(i, y) = 0,   if AFi∩Sy = φ , 
1,   otherwise.

� (1)

For each pair of servers x and y, the request rate from 
server x to server y is represented by

	 Rxy = Σ
i ∈ Sx

 C(i, y)ri,� (2)

where ri represents user i’s request rate. Let N denote the 
set of servers, and consequently we calculate the request 
rate issued by server x by

	 Rx = Σ
y ∈ N

 Rxy� (3)

A lower Rx implies less active friends’ data stored on 
other servers, i.e., achieving a better interaction locality. 
Hence, we optimize interaction locality through minimizing 
the sum of Rx, x ∈ N.
3.3.2	 Distance locality

The goal of interaction locality is to minimize the inter-
server communication. The inter-server communication 
should go through a path that connects a pair of servers. 
In tree-based topologies, the long distance between two 
servers implies that the inter-server communication must 
pass through more switches on the upper layers. Here we 
use distance to refer to the path length between a pair of 
servers, and is measured by the number of links on the path. 
Obviously the intra-data center traffic will be increased with 
longer distance. Therefore, we consider not only interaction 
locality but also distance locality to further improve intra-
data center traffic.

In a tree topology, servers connected to the same edge 
switch may be able to communicate at full bandwidth (e.g., 
server 1 and 2 in Figure 2(a)), but for servers connected 
potentially across multiple layers of switches, the bandwidth 
between them is limited by the bandwidth available at 
the root of tree. The bandwidth of links at higher level is 
more valuable than that of links at lower level. Many data 
centers introduced oversubscription to define the ratio of 
the worst case aggregate bandwidth among the servers to 
the total bisection bandwidth of a tree topology [24]. For a 
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is localized in the lower layers, i.e., achieving a better 
distance locality. Combining interaction locality and 
distance locality together, we summarize the inter-server 
traffic between any pair of servers as

	 Txy = Rxydxy.� (7)

Therefore, the total intra-data center traffic equals

	 Ttotal = Σ
x ∈ N

Σ
y ∈ N

Txy.� (8)

3.3.3	 Load Balancing
For the purpose of illustration, in this paper, we use 

Gini coefficient to measure the degree of load balancing 
across servers. Generally Gini coefficient is defined as a 
ratio between the sum of value differences and the sum of 
values, and we give its definition below: 

	 LBGini = 
 |Lx - Ly|

2n Σ
x ∈ N

 Lx

Σ
x ∈ N

Σ
y ∈ N � (9)

where Lx represents server x’s load that can be measured by 
using different manners. For simplicity, it is measured by 
the number of users whose data are stored on server x, i.e., 
Lx = |Sx|. However, a large |Sx| does not necessarily incur the 
high load due to the uneven distribution of request rates. In 
order to accurately measure the server load, we take request 
rates into account, and define the load as the requests 
arrived at the server per time unit, whose definition is given 
below:

	 Lx = Σ
i ∈ Sx

Σ
j ∈ AFi∪{i}

rj.� (10)

Note that Gini coefficient is independent of system 
size, and a lower Gini value implies a better load balancing.

4	 OSNs Data Placement Problem

In this section we present formally the definition of data 
placement problem in OSNs and analyze its complexity.

4.1	 Problem Formulation
In modern storage systems of OSNs, users’ data are 

stored on the servers in a distributed manner. Consider a 
distributed storage system consisting of a set N of n servers 
to store the data of a set V of users. Then data placement 
problem is equivalent to design a data-to-server mapping 
function

	 f: V → N,� (11)

tree topology, the oversubscription typically takes the value 
from 2.5:1 to 8:1 [18], which indicates that only 40% to 
12.5% of available server bandwidth is available for long 
distance inter-communications. Considering the differences 
among multi-level links in a tree topology, we define the 
distance as follows:

dxy
tree = 

0,   if x = y,

2,   if x ≠ y ∧ | x
pe

| = | y
pe

|,
2β + 2,   if x ≠ y ∧ | x

pe
| ≠ | y

pe
| ∧ | x

pepa
| = | y

pepa
|,

2α + 2β + 2,   otherwise.

�(4)

If both server x and y are connected to the same edge 
switch, the distance between servers is 2. If both servers 
are connected to the same aggregation switch instead of 
edge one, and then the distance should be 4. In the worst 
case, server x and y connects through a core switch, and 
the distance get the highest value. In Equation (4), α 
corresponds to the scenario that the path should go through 
core layer and β corresponds to the scenario that the path 
should go through aggregation layer, and both of them 
are used to leverage links of different layer. Note that the 
bandwidth of links at higher layer is more valuable than 
lower layer, so we set α > β > 1. 

	 dxy
fat tree = 

0,   if x = y,

2,   if x ≠ y ∧ |2x
p | = |2y

p |,
4,   if x ≠ y ∧ |2x

p | ≠ |2y
p | ∧ | 4x

p2 | = | 4y
p2 |,

6,   otherwise.

� (5)

For fat tree and VL2 topologies, since both the switches 
and the bandwidth at different layers are identical, there 
is no oversubscription [27]. Hence we never distinguish 
the links at different layers by using varied weights. In a 
fat tree topology, the distance can be defined similarly by 
Equation (5).

In a VL2 topology, since that the communication 
originated from the edge switches always passes through 
the intermediate switches, the distance between two servers 
only depends on whether both servers are connected to one 
edge switches, and the distance is given by 

	 dxy
VL2 = 

0,   if x = y,

2,   if x ≠ y ∧ | x
pr

| = | y
pr

|,
6,   otherwise.

� (6)

A lower distance implies that the inter-server traffic 
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which specifies the storage location of each user i’s data. 
Then the set of users’ data stored on server x can be 
described by

	 Sx = {i ∈ V | f(i) = x}.� (12)

Our primary objective is to improve the traffic 
performance via proper data placement that is represented 
by the set of users’ data stored on every server {Sx ⊆ V | x ∈ 
N}. To guarantee the worst-case recovery time upon server 
failure, load balancing across servers is considered as well. 
Finally, we formulate data placement problem as follows:

Given V, the set of users, N, the set of servers, {ri | i ∈ 
V}, the set of each user’s request rate, and the data center 
networks -- tree-based topologies, find the optimal 
placement solution {Sx ⊆ V | x ∈ N} such that it minimizes 
the total intra-data center traffic Ttotal, meanwhile keeps load 
balancing under a threshold LB*

Gini.

4.2	 Problem Complexity Analysis
It is difficult to solve the data placement problem 

directly and there is no existing solutions can obtain the 
optimal placement. We divide the original problem into two 
sub-problems based on the divide and conquer principle: 
hypergraph partitioning and partition-to-server assignment. 
We model the first problem as an n-way balanced min-
cut partitioning of the hypergraph, with the objective of 
dividing interaction graph into n balanced partitions with 
minimum cut weight. For the second problem, based on 
the partition results, the problem is further formulated as 
a quadratic assignment problem that solves partition-to-
server assignment, with the aim of minimizing intra-data 
center traffic generated by inter-server communications. 
Both of the problems have been proven to be NP-hard, 
and specifically the quadratic assignment problem is more 
difficult, since even finding a constant approximation 
solution is NP-hard as well [28]. 

5	 Hypergraph-Based Data Placement 
Scheme

Supposed that n partitions and n servers are already 
known, we can obtain two matrices: request rate matrix 
with the request rate Rij between a pair of partitions as its 
element, and distance matrix with the distance dxy between 
a pair of servers as its element. Both of them have n2 

elements, and we renumber the elements and sort them to 
the increasing order respectively, i.e., R(1) ≤ R(2) ≤ ... ≤ 
R(n2), d(1) ≤ d(2) ≤ ... ≤ d(n2). According to the theorem 
of inequality [29] we can obtain the bounds of traffic as 
follows:

[ Σ
i = 1

n2

 R(i)d(n2 - i + 1), Σ
i = 1

n2

R(i)d(i)].
Therefore, the principle of solving the problem is 

to maximally place the pair of partitions with higher 
request rate to the pair of servers with shorter distance, 
i.e., traffic localization. We propose a hypergraph-based 
data placement (HDP) scheme. HDP solves the problem 
in a round-robin manner as shown in Figure 3. We firstly 
partition servers into server-clusters, and the partitioning 
follows the principle that the pairs of servers with low 
distance belong to the same cluster. Specifically, servers in 
tree-based topologies are easy to be clustered based on the 
layers. In the first round, we partition servers that connect to 
the same aggregation switch or pod into one cluster for tree 
or fat tree networks. Note that servers in VL2 networks are 
partitioned based on edge switches instead of aggregation 
switches due to the inter-communication features of VL2. 
The numbers of clusters for three topologies are pc, p and 
papi/4, respectively. We partition the interaction graph into 
the same numbers of user-partitions respectively so as to 
realize the one-to-one assignment from user-partition to 
server-cluster. Considering that the distance between any 
pair of server-clusters is identical, different assignment 
methods yield the same traffic. Hence, we choose random 
assignment for simplicity. In the following rounds, we 
successively refine the results of previous round by 
repeating the same procedure discussed above. Finally, the 
server-clusters are further partitioned into n servers, and 
user-partitions are partitioned into n partitions as well. For 
tree and fat tree topologies, the final assignment can be 
obtained after three rounds execution, while VL2 requires 
only two rounds.

The pseudo-code for HDP is described in Algorithm 1. 
Note that in Algorithm 1, data placement decisions mainly 
depend on the hypergraph partitioning. We consequently 
focus on the n-way balanced min-cut partitioning of 
hypergraph G = (V, E). As discussed in Section 3, vertex set 
V represents the set of users and their data, and hyperedge 
set E contains every user’s request. For each hyperedge, 
there exists a weight wei assigned to it, and we set wei = 

Figure 3 The Basic Processing Logic of HDP
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ri. A hyperedge is cut if its vertices fall to more than one 
component. The cut weight of a hyperedge is defined as 
follows:

	 cutei = (ti - 1)ri,� (13)

where ti (ti > 1) illustrates hyperedge ei being partitioned 
into ti components. For the ordinary graph, cutei = ri, which 
is a special case of hyergraph. For a hypergraph G, the 
cut weight of the partitioningis counted as the sum of cut 
weights of all its hyperedges:

	 CutG = Σ
ei ∈ E

 cutei.� (14)

Algorithm 1 Data Placement
Input: 
G (V, E): Interaction graph
N: the set of servers within a data center
LB*

Gini: the threshold of load balancing
Output:
{(gk, si)}: the set of partition-to-server assignment pairs
Ttotal: the total intra-data center traffic
1: {sci} ← Partition N into pc / p / 

papi

4  server-clusters;
/*corresponds to tree / fat tree / VL2, respectively */
2: d ← (2a + 2b + 2) / 6 / 6; /*distance calculation */
3: ({g1i}, CutG) ← Hypergraph partition (G, pc / p / 

papi

4 ,
    LB*

Gini);
4: π: {g1i}→{sci}; /*random assignment */
5:  Ttotal ← dCutG;
6: for i = 1 to pc / p / 

papi

4  do
7:     {ssci} ← Partition server-cluster sci into pa / 

p
2  / pr

        sub server-clusters;
8:     d ← (2b + 2) / 4 / 2;
9:     ({g2j}, Cutg1i) ←Hypergraph partition (g1i, pa / 

p
2  / 

         pr, LB*
Gini);

10: π: {g2j}→{ssci};
11:    Ttotal ← Ttotal + dCutg1i;
12:    if data center network is not VL2 then
13:    for j = 1 to pe / 

p
2  do 

14:            {si} ← Partition sub server-cluster sscj into pe / 
                  

p
2  servers;

15:             d ← 2 / 2;
16:             ({gk}, Cutg2j) ← Hypergraph partition (g2j,

                   pe / 
p
2 , LB*

Gini);
17:             π: {gk}→{si};
18:               Ttotal ← Ttotal + dCutg2j;
19:         end for
20:     end if
21: end for
22: if data center network is VL2 then

23:     return {(g2j, π(g2j))}, Ttotal;
24:     else return{(gk, π(gk))}, Ttotal;
25:end if

The primary objective of n-way balanced partitioning 
is to minimize its cut weight, i.e., min CutG. For the data 
placement, our objective is to minimize the intra-data center 
traffic, i.e., min Ttotal. Theorem 1 proves the equivalence 
between the two problems.
Theorem 1: We formulate the data placement based on 
hypergraph partitioning. Partition the interaction graph G 
= (V, E) into n sets of vertices through applying Algorithm 
1, from which, we can obtain its cut weight CutG, and intra-
data center traffic Ttotal, such that Ttotal = qCutG, where q is a 
constant.
Proof: For an arbitrary hypergraph G′ = (V′, E′), we 
partition it into n′ sets of vertices through applying 
Algorithm 1. Considering that a hyperedge ei is divided into 
ti partitions and its vertices are divided into ti - 1 partitions 
except i, we have

ti - 1 = Σ
y ∈ N'

C(i, y)ri.

According to the definition of traffic defined in 
Equation (7), the inter-communication traffic between any 
pair of servers or server-clusters is

Txy = Rxydxy = Σ
i ∈ Sx

C(i, y)ridxy.

During each round of algorithm, the distance between 
any pair of servers or server-clusters is identical, and then it 
can be counted as a constant d. Consequently, the intra-data 
center traffic is represented by

Tintra = Σ
x ∈ N'

 Σ
y ∈ N'

Txy

       = Σ
x ∈ N'

 Σ
y ∈ N'

 Σ
i ∈ Sx

δC(i, y)ri

       = Σ
x ∈ N'

 Σ
i ∈ Sx

 Σ
y ∈ N'

δC(i, y)ri

       = Σ
x ∈ N'

 Σ
i ∈ Sx

δ(ti - 1)ri.

After partitioning, the vertex set can also be counted 
as the union set of vertices at every partition, namely, 
V' = ∪x ∈ N ' Sx. As we discussed above, each vertex i (user 
i) corresponds to a hyperedge ei. Then the cut weight is 
calculated by

CutG’ = Σ
ei ∈ E'

 cutei = Σ
ei ∈ E'

 (ti - 1)ri  

         = Σ
i ∈ V'

 (ti - 1)ri = Σ
x ∈ N

 Σ
i ∈ Sx

(ti - 1)ri.
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As a result, for the hypergraph partitioning in each 
round, we always have Tintra = dCutG′. Combining the results 
of every round together, we obtain

Ttatol = Σ Tintra 

       = Σ δCutG' 

       = θCutG.

where q is a constant.
To solve the n-way min-cut hypergraph partitioning, 

various heuristics have been developed over years, due 
to the wide applications of partitioning (e.g., VLSI [30] 
and data mining, etc.). We propose an efficient algorithm 
based on multi-level recursive approach [31] as shown 
in Algorithm 2. The basic idea of the algorithm is to 
decompose the partitioning operations into three steps 
based on multi-level paradigm. In step 1, coarsen the 
original hypergraph successively, and perform partitioning 
on the coarsest hypergraph in step 2. Finally in step 3, 
refine n-way partitioning as it is projected back into the 
original hypergraph. The load balance is always required to 
be preserved throughout three steps. 

Algorithm 2 Hypergraph partition
Input: 
G (V, E): Interaction graph
n: the number of partitions
LB*

Gini: the threshold of load balancing
Output:
{gk}: the set of partitions
CutG: the cut weight
1:  G0 ← G;
2:  i ← 0;
3:  do /* coarsening step */
4:  Coarsen Gi into a smaller hypergraphGi+1;
/* Coarsening refers to mergeselected vertices together */
5:  i ← i + 1;
6:  until Gi cannot be coarsened further
7:  {gk} ← Partition Gi such that CutG

i is minimized and
      L*

Gini is satisfied;
      /* obtain the initial partitioning result */
8:  for j = i - 1 to 0 do    /* refining step */
9:  do
10:    Move vertices in Gjamong partitions {gk} such
              that CutG

j is reduced and LB*
Gini is satisfied;

11:   Update {gk};
12: until CutG

j cannot be reduced further
13: end for
14: return {gk}, CutG;

6	 Evaluation

6.1	 Experiment Settings
6.1.1	 Dataset and Network Configurations

By crawling Facebook in a distributed breadth-first 
searching manner, Wilson et al. [32] collected a dataset of 
more than 10,000 K users. We chose the largest regional 
network from the original dataset as our dataset input for 
evaluation. The dataset contains 1,241 K users in London, 
UK and their interaction event logs within three months, 
including their profiles, friend lists and wall posts. Based on 
the dataset we generate a hypergraph and a corresponding 
ordinary graph, and both of them are used to represent 
the interaction graph. To generate a hypergraph, since 
|V| = |E|, we create a hyperedge for each user. User i’s 
hyperedge ei contains a group of users that have more than 
one interaction record with user i. Edge weight is set to the 
visit records of user i. To generate an ordinary graph, we 
establish a link between each pair of users such that they 
have more than one interaction record and the link weight 
is set to the number of interaction records.

To simulate the underlying data center networks, we 
generate three tree-based topologies with varied number 
of servers and switches. Table 1 lists the details of network 
configurations.

Table 1 Data Center Network Configurations

Network topologies Tree Fat tree VL2
Number of ports pc (p or pi) 18 16 18

pa or p 6 16 18
pe (p or pr) 10 16 12

Number of switches Core 6 16 9
Aggregation 18 128 18
Edge 108 128 81

Number of servers 1,080 1,024 972

6.1.2	 Schemes
Besides our scheme HDP, we implemented several data 

placement schemes as follows for comparison:
(1)	 Hashing: It places user’s data in terms of hashing 

results.
(2)	 METIS [33]: It is a widely used approximation 

algorithm for ordinary graph partitioning. We use it 
instead of hypergraph partition to implement Algorithm 
1.

(3)	 S-PUT: It implements a social aware partitioning 
scheme based on evolutionary algorithms.

6.1.3	 Metrics
The metrics we focused on in this evaluation are 

specifically described as follows:
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(1)	 Intra-data center traffic: The total inter-server traffic 
Ttotal generated within a data center, and its value is 
defined in Equation (8).

(2)	 Load balancing: It is measured by Gini coefficient. 
Based on server load definitions, we use LBGini1 
and LBGini2 to represent two types of load balancing 
respectively.

(3)	 Traffic distribution: The percentage of traffic passing 
through the upper layers -- TDc, core layer and TDa, 
aggregation layer. 

(4)	 Interaction locality distribution: The percentage of 
number of servers that need to be visited for each user.

6.2	 Results
In the experiment, we made comparisons among several 

schemes. The traffic value reported here is normalized with 
regard to the obtained value of Hashing under the same 
settings. α and β are set to 4 and 2, respectively.

First, we simulated hashing placement in three types of 
data center networks, respectively. Figure 4 reports the load 
balancing of Hashing upon varied underlying data center 
networks. We find that LBGini1 is much better than LBGini2, 
because the random manner of Hashing could ensure 
that each server holds approximately the same number of 
users’ data, but the distribution of request rate is uneven, 
which results in the relative high LBGini2. Both types of load 
balancing are independent of network topology except 
network size. If LBGini is below 0.2, it indicates good load 
balancing.
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Figure 4 The Load Balancing of Hashing

Then we use both LBGini1 and LBGini2 of hashing as 
the references to set up the threshold of load balancing. 
The traffic performances under varied thresholds are 
illustrated in Figure 5 and 6. In Figure 5, the thresholds 
are set to 1, 2, 3 and 5 times LBGini1 of hashing, i.e., 0.024, 
0.048, 0.072 and 0.12. Note that a lower LBGini1 implies a 
more even distribution of users’ data, and it will become 
a tighter constraint that weakens the optimization of cut 

weight in both initial partitioning and refining steps. Hence, 
the increase of threshold is helpful to improve the traffic 
performance, which is evaluated by results described in 
Figure 5. But it does not always hold with the continuous 
increase in threshold, since a larger constraint value has a 
less effect on graph partitioning. The traffic improvement 
decreases along with the increase of threshold. More 
interestingly, when the threshold is small enough, e.g., less 
than 0.024, the traffic of HDP is not only higher than that 
of Hashing but higher than that of METIS. Otherwise, HDP 
always outperform the others by 25% ~ 73%. Therefore, we 
can draw a conclusion that ordinary graph partitioning can 
get a better cut weight than hypergraph partitioning only if 
the balancing constraint is very tight, and we call this “Load 
balancing effect.”

In Figure 6, the thresholds are set to 0.5, 1, 2 and 3 
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times LBGini2 of hashing, i.e., 0.091, 0.182, 0.364 and 0.546. 
Similar conclusions are observed in the case of using LBGini2 
for the measurement of load balancing. In either case, i.e., 
LBGini1 and LBGini2, the improvement does not tend to getting 
better as the threshold increases continuously. In the second 
case, Hashing is not the best in terms of traffic under the 
same level of load balancing. Even the threshold is set to 
half level of Hashing, HDP still achieves a lower traffic 
than other schemes except S-PUT. Load balancing is the 
primary objective of S-PUT other than its constraint, so 
the varied thresholds do not have influence on it. S-PUT 
uses METIS to obtain the initial set of partitions, and treats 
them as the first generation of evolutionary algorithm for 
further optimization. Considering “Load balancing effect,” 
it is not difficult to understand that S-PUT outperforms 
both HDP and METIS under a tight balancing constraint. 
However, S-PUT’s superiority fades as the increase of 

threshold. In fact, S-PUT does not consider partition-to-
server assignment, and we use random approach instead in 
our implementation, which explains its poor performance. 

We notice that in different network topologies, traffic 
in VL2 is relatively high. It is because that the inter-
communication feature of VL2 is not conducive to the 
traffic optimization. Nevertheless, such an argument 
does not necessarily mean both tree and fat tree are more 
scalable than VL2, since it depends on many other factors. 
Our results only indicate that OSNs can benefit in terms 
of scalability when using HDP within tree or fat tree 
underlying topology, while the benefit of VL2 is small.

To further investigate the traffic performance, we plot 
Figure 7 to compare the traffic distribution across varied 
layers in three tree-based networks, which also reflects the 
distance locality distribution. In this group of experiments, 
we used LBGini2 as threshold metric and set it to 0.364. The 
results show that HDP can achieve the lower percentages 
of traffic (i.e., TDc, TDa) passing through either core layer 
or aggregation layer except the case of aggregation layer in 
fat tree. The lower values of both TDc and TDa indicates a 
better distance locality. Moreover, as illustrated in Figure 
5 and 6, fat tree achieves a larger improvement than tree, 
and VL2 comes with the smallest. Figure 7 shows that 
comparatively, fat tree has a lower TDc and a higher TDa, 
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which implies that it localizes a large percentage of traffic 
within aggregation layer.

In our experiments, we further explored the interaction 
locality distribution of varied schemes. Here we use the 
number of servers need to be visited for each user to reflect 
the interaction locality. Since data center topology has 
no effect on the interaction locality, we did not take into 
account of partition-to-server, and the number of servers 
was set to 1,000, and threshold LBGini2 was set to 0.364. 
Figure 8 reports the accumulated interaction locality 
distribution of varied schemes. The results indicate that 
HDP places each user’s active friends to the servers as few 
as possible. Because when load balancing constraint is 
not very tight, hypergraph partition could achieve a better 
partition result compared with corresponding ordinary 
graph partition. S-PUT performs better than METIS 
because it optimizes the partition result of METIS based 
on evolutionary algorithm, which seems contradict to the 
results reflected in Figure 6. It is because we did not solve 
partition-to-server problem in this experiment. S-PUT uses 
random approach to solve the problem while the solution 
approach of METIS is the same as HDP, which implies our 
approach could achieve a better distance locality.

Figure 8	The Accumulated Interaction Locality Distribution of 
Varied Schemes

7	 Conclusion and Future Work

In this paper, we address OSN data placement problem 
by jointly considering interaction locality and distance 
locality, in order to improve the scalability of backend 
storage system in OSNs. We formulate data placement 
by using both hypergraph partitioning and partition-to-
server assignment, and prove the equivalence between the 
original problem and partitioning problem. Accordingly 
a hypergraph-based data placement (HDP) scheme is 
proposed to minimize intra-data center traffic. Finally, we 

evaluate the proposed scheme via extensive experiments 
on a real world trace. The experimental results show that 
HDP can significantly reduce intra-data center traffic and 
keep a good load balance simultaneously. Its performance 
is superior to not only Hashing, but also state-of-the-art 
schemes including METIS and S-PUT.

Interaction locality can be improved through replicating 
user i’s data to the servers that i’s active friends located on, 
which may also decrease intra-data center traffic. We intend 
to integrate replication into data placement in the future 
work. Besides, inspired by tagging practices on OSNs [34], 
we also consider to enhance the performance by means 
of analyzing the hidden community structures of social 
networks.
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