Optimizing Inter-server Communications
by Exploiting Overlapping Communities
in Online Social Networks

Jingya Zhou»2®™) | Jianxi Fan'2, Baolei Cheng!?, and Juncheng Jial:?

! School of Computer Science and Technology,
Soochow University, Suzhou 215006, China
{jy-zhou, jxfan, chengbaolei, jiajuncheng}@suda.edu.cn
2 Collaborative Innovation Center of Novel Software Technology
and Industrialization, Nanjing 210046, China

Abstract. As the rapid growth of online social networks (OSNs), inter-
server communications are becoming an obstacle to scaling the storage
systems of OSNs. To address the problem, network partitioning and
data replication are two commonly used approaches. In this paper, we
exploit the combination of both approaches simultaneously and propose
a data placement scheme based on overlapping communities detection.
The principle behind the proposed scheme is to co-locate frequently inter-
active users together as long as it brings positive traffic reduction and
satisfies load constraint. We conduct trace-driven experiments and the
results show that our scheme significantly reduces the inter-server com-
munications as well as preserving good load balancing.

Keywords: Inter-server communications - Online social networks -
Data placement - Network partitioning - Data replication

1 Introduction

Due to the convenient communications with no time and geographical restric-
tions, an increasing number of people have begun to join online social networks
(OSNs). For example, Facebook’s MAUs during the 2nd quarter 2015 have
reached up to 1.5 billion, which implies more than twenty percent of people
around the world use Facebook for communication. The popularity of OSNs has
driven a dramatic surge in the amount of user data. Different from traditional
web applications, OSNs need to deal with highly interactive operations. Usually
the data of both users and their friends are distributed across multiple servers,
and inter-server communications are inevitable. Frequent inter-server communi-
cations consume a high amount of network bandwidth and hurts the scalability

J. Zhou—This work is supported by National Natural Science Foundation of China
(No. 61502328, No. 61572337), Natural Science Foundation of the Higher Educa-
tion Institutions of Jiangsu Province (No. 15KJB520032, No. 14KJB520034), Joint
Innovation Funding of Jiangsu Province (No. BY2014059-02).

© Springer International Publishing AG 2016

J. Carretero et al. (Eds.): ICA3PP 2016, LNCS 10048, pp. 231-244, 2016.
DOI: 10.1007/978-3-319-49583-5_18

232 J. Zhou et al.

of OSNs. As a result, how to store user data efficiently in a distributed scalable
manner has become a challenging issue.

Nowadays, key-value store as a defacto standard for big data storage, has
been widely used to construct storage systems for OSNs (e.g., HDFS [1] and
Cassandra [2]). Most of key-value store systems assign user data across servers
randomly by using hashing which could help the system to achieve good load
balancing. However, the random nature of hashing fails to preserve social local-
ity well and produce high inter-server communication traffic. Existing studies
suggest to apply network partitioning [3,4] and data replication [5-7] to address
the problem. However, both optimizing approaches are conducted in a separated
manner, which hurts the optimization results.

Our design philosophy departs from the existing work in such a way that we
explore to optimize partitioning and replication simultaneously. To realize the
integrated optimization, we model data placement problem as an overlapping
communities detection problem. Users inside the overlap area belong to multiple
partitions, and naturally corresponds to multiple replicas on different servers.
Finally the inter-server communications are further reduced by determining the
optimal locations of master replicas.

w,=40 w,=40 w3=25 Ws=60

r7=4 r3,=10 rs3=45
r7,=2 r3=30 r35=30->
“ 2 2

bN bN
2T v"4\’/)°’ \

’\/
V 4 R
© // W, v Vi AR
SSPCI Xl P
<“ris=30 “r11=45
rg1=50->" —r14=20
wg=35 w1=20 w,=30

Fig. 1. An example of social graph.

2 Preliminaries

2.1 System Model

Social Graph. Many previous work modeled an online social network as a social
graph, where each edge corresponds to a social link between a pair of users (e.g.,
the friendship between Facebook users). Figure 1 shows an example of social
graph G = (V, E), where V corresponds to user set and E corresponds to the set
of social links between every pair of users. To represent the interaction behaviors,
each social link e;; has a direction and is associated with a nonzero weight which
represents the read rate r;; from users 7 to j. Users are mutual friends if there
are bi-directional social links between them. Besides read operation, a user may
often update her data, and each vertex in Fig.1 is associated with a value of
write rate w;. Note that users often make updates on her friends’ data as well,
for example, a Facebook user comments on her friends’ status and photos. For
simplicity, we do not explicitly consider the write updates made by a user on her
friends’ data, while this kind of interactions can be divided into two operations:

Optimizing Inter-server Communications 233

a read operation to a friend’s data and the friend updating her own data. Since
the social link has directions, each user has two sets of friends denoted by

F ={jeVle; € E}, 1)
Fi_ = {] S V\eji S E}

Therefore, the social graph defined here can account for both types of interac-
tions including read and write operations, and its nature is equivalent to the
interaction graph proposed in [8].

Single master multi-slave paradigm is widely used in OSN’s backend storage
systems, which requires that each user ¢ has only one replica of her data as the
master replica stored on one server and the server is called her master server,
denoted by m;. The other replicas work as slave ones stored on a set of slave
servers, denoted by s;. We define a binary function ¢(i,2) to decide whether
server x is ¢’s slave server,

. _ , ifxisi'sslave server,
o(i,z) = { 0, otherwise. (2)

Then the set of slave servers can be defined by s; = {z € S|¢(i,xz) = 1}, where
S denotes the set of servers.

Inter-server Communications. The inter-server communications consist of
both read traffic and write traffic, and become the main metric we try to opti-
mize. For a pair of neighboring users 7 and j, the inter-server read traffic is
incurred if and only if i’s master server does not host j’s replica including mas-
ter replica and slave replica, and then 7’s master server m; acts as a relay node
and fetches the required data from one of j’s replicas. We define a binary function
g(i,7) to decide whether an operation of cross-server read is issued, i.e.,

.1, m; ¢ s;Umy,
90i,j) = {0, otherwise. (3)

The inter-server write traffic is incurred by synchronizing all slave replicas,
denoted by > (wj |s;]), where w; represents user i’s write rate and |s;| represents
iev

the number of i’s slave servers. As a result, the total inter-server traffic can be

calculated by
=33 rygliog) + 3 (s si). (4)

i€V jeF} i€V
Load Balancing. The workload a server x need to handle mainly depends on
the set D, of users whose data stored on it,

Thus, we use the set size |D,| as the indicator of server 2’s load, i.e., I, = |D,]|.
Load balancing across servers is another metric we try to preserve. For the

234 J. Zhou et al.

purpose of illustration, we use Gini coefficient to measure the degree of load
balancing across servers, due to its independence of system size. Generally Gini
coefficient is defined as a ratio between the sum of value differences and the sum
of values, and we give its definition as below:

> 2 e =1y

zeSyes

2n Y 1,

€S

L= (6)

where n is the size of server set, i.e., n = |S|. Gini coefficient naturally captures
the fairness of load distribution, with a value of 0 expressing perfect balance and
a value of 1 worst imbalance.

2.2 Data Placement Problem

Having the system model and metrics, we are interested in the problem that
given an existing social graph G including the set of all users’ read rates r;
and write rates w;, a set of available servers S, finding out the optimal place-

ment solution |J D, that produces the minimum inter-server traffic denoted by
eSS
Eq. (4) subject to a pre-defined load balancing constraint L*. Thus, we formulate

the problem as follows:
min T
st (1) |my| + |si] > 1,
(ii) m; N S; — @,
(iii) L < L*.

Constraint (i) ensures that each user has at least one replica (i.e., master
replica) stored in the system. Constraint (ii) ensures that each user does not
have more than one replica stored in the same server. Constraint (iii) ensures
that load balancing must be guaranteed.

3 Design of Our Scheme

3.1 Motivation

Before starting to present our scheme, we first give a simple example of com-
parison among varied schemes as a motivation to illustrate the basic idea of our
scheme. Given a social graph with 7 users as shown in Fig. 1, and those users
should be assigned to two servers. Figure 2(a) illustrates the partitioning results
by using Hashing scheme. Since Hashing scheme does not perform replication,
there is no write traffic generated by synchronization. It preserves a very good
load balancing (0.036). However, the read traffic between servers is very high
due to its random operations without any optimization.

The inter-server communication traffic can be optimized by applying METIS
[3] to our problem, and the results are illustrated in Fig. 2(b). It tries to improve

Optimizing Inter-server Communications 235

i

—

13

T sJ
F4 3

L

(¢ & & |

(a) Hashing (Read traffic: 235, Write traffic: 0 (b) METIS (Read traffic: 165, Write traffic: 0 () SPAR (Read traffic: 0, Write traffic: 115
Total traffic: 235, Load balancing: 0.036) Total traffic: 165, Load balancing: 0.036) Total traffic: 115, Load balancing: 0.023)

(d) Hahsing&SR (Read traffic: 45, Write traffic: 85 (¢) METIS&SR (Read traffic: 60, Write traffic: 45 (f) Joint optimization (Read traffic: 30, Write traffic: 45
Total traffic: 130, Load balancing: 0) Total traffic: 105, Load balancing: 0.028) Total traffic: 75, Load balancing: 0.028)

g
g

St
[os

OMus\cr replica {7 Stave replica

Fig. 2. Comparison of different schemes.

the traffic performance through finding out the minimal cut weight under the
premise of meeting load balancing. Since METIS is a type of partitioning opti-
mization, no additional write traffic be generated.

From analysis on the results of METIS, we conclude that the effect of single
partitioning optimization is limited. By using replication SPAR [5] can achieve
zero inter-server read traffic. However, SPAR preserves perfect social locality by
co-locating the data of users every friend in the same server by replication. It
does not optimize replication. More replicas inevitably lead to the higher inter-
server write traffic for synchronization. As shown in Fig. 2(c), SPAR produces a
lower traffic than METIS, but the write traffic is high and should be decreased.

Each user’s data are associated with both read rate and write rate. Consider-
ing the difference between them, selective replication (SR) [6] creates replicas if
and only if they can save the total inter-server traffic. We apply SR to optimize
Hashing scheme, denoted by Hashing&SR, and Fig.2(d) shows the results. The
total inter-server traffic brings down obviously compared with Hashing (from
235 to 130). Interesting, Hashing& SR achieves perfect load balancing. However,
the effect of single replication optimization is still limited. Then we combine
SR with METIS, denoted by METIS&SR. METIS&SR firstly applies METIS to
achieve a minimal cut weight without replicas, and then applies SR to conduct
replication optimization. Figure2(e) shows that METIS&SR can achieve the
lowest traffic compared with anyone of the previous schemes. It largely verifies
the effectiveness of joint optimization of both partitioning and replication. Nev-
ertheless, METIS&SR optimizes partitioning and replication independently. The
optimization effect of replication primarily depends on the partitioning result,
and this manner cannot optimize the results maximally.

236 J. Zhou et al.

In contrast, Fig. 2(f) shows a joint optimization of partitioning and replica-
tion in an integrated manner. It conducts two types of optimization simulta-
neously, and brings down the total traffic to 75. It outperforms all schemes we
discussed above. Besides, we also conclude that adding replication could help to
further improve load balancing.

3.2 Replica Placement Based on Overlapping Communities

Motivated by the conclusion discussed in Sect. 3.1, we propose a novel scheme
to solve data placement for OSNs. To maximally reduce the inter-server traffic,
in our scheme both optimization of partitioning and replication are conducted
simultaneously. The basic idea of our scheme is to model the joint optimiza-
tion problem as a problem of overlapping communities detection. Community
structure is a common feature of OSNs, where users often cluster into tightly
knit groups with high density of within-group links and low density of between-
group links. It has the potential to solve data placement by means of communities
detection. Different from the existing community detection problem that requires
each user belonging to only one community, we allow users being attributed to
multiple communities. Hence there exists overlaps among communities, and over-
lap can be naturally used here to represent data replication. For example, user
i is attributed to two communities after partitioning, and then two replicas are
created on two servers.

Overlapping Community. A community ¢ consists of a group of frequently
interacted users and the corresponding links between them, and is denoted by a
set of users for simplicity. Since a user can join more than one communities, two
or more communities may overlap each other, i.e., ¢, N ¢y # 0.

User Value. We use user value to depict a user’s activity in a social network.
The user value v; of user i is defined as the sum of its correlated link weights, i.e.,

v = Z (rij +7ji)- (7)

JEFTUF;

Membership Degree. To reflect how tight a user 7 is with community ¢, we
define membership degree as follows:
> (rij)

JEN(FTUF,)

M(i,c) (8)

VU

Generally, we have 0 < M(i,c) < 1, except that all friends of user 7 belong to
community ¢, i.e., M(i,c) = 1. For example, if community ¢ includes users 7, 2
and 6 in Fig. 1, user 1’s membership degree to ¢ is 125/255=0.49. In other case,
when community c¢ includes users 7, 2, 6, 3 and 4, the membership degree of user
1 becomes 1.

Optimizing Inter-server Communications 237

Traffic Reduction. We start by assuming that there exists several communities
in a social network, and we are interested in the traffic reduction when a user
joins a community. According to the fact whether the user has been included in
one or more communities, we discuss the following two scenarios.

First, user ¢ has never been allocated to any community. Let us assume that
all unallocated users including i belong to a virtual community vec. For a user ¢
and a community ¢, i’s c-relevant traffic is the sum of read traffic between ¢ and
her friends in ¢, i.e., > (rij + ;). After ¢ joins ¢, i’s c-relevant traffic

j€cN(FTUF)
becomes zero, and its ve-relevant traffic becomes the sum of read traffic between
1 and her friends in ve, i.e., > (riw + Tusi)- Thus, the traffic reduction
uEvcﬁ(F;rUF;)
can be calculated by

Treduction (27 C) = Z (rij + Tji) - Z (riu + T’U«i)‘ (9)

jEN(F;TUF]) u€veN(F;FUF;")

Second, user i has been included in at least one community. User i joins
community ¢ by means of creating a replica in ¢. On the one hand, replication
brings additional write traffic due to synchronization, i.e., w;. On the other
hand, it can save the read traffic from j to i, i.e., > r5;. Thus, the

JEN(FTUF])
traffic reduction is

Treduction (27 C) = Z Tji — Wi (10)
jEN(F;TUF])

Initial Communities Detection. Our scheme consists of two phases: ini-
tial communities detection and expansion of communities. In order to support
overlapping communities detection, each user i is associated with a set of com-
munities C; that i belongs to. During the first phase, our goal is to find out
n initial communities where n is the number of servers available, i.e., n = |V|,
and the pseudo code is described by Algorithm 1. Before detection, there is no
community exists, so C; = @) for every user i (lines 1-2). Then we select the
top-n users with the highest values, and let these users as the start points to
form n initial communities separately (lines 3-10). Furthermore, we set up a
threshold M* of membership degree, and use it to refine initial communities by
means of filtering out users whose membership degree is below M* (lines 11-18).
The threshold value M* determines how tight the formed community is. Since
the communities produced by Algorithm 1 act as the cores of potential larger
communities and would be expanded, their tightness should be preserved, and
M* should be high.

Expansion of Communities. After obtaining the initial communities, we still
have to expand them to cover the entire network. Algorithm 2 describes how

238 J. Zhou et al.

Algorithm 1. detInitialCommunities(G,n)

: for each user 7, i € V do

C; —

Calculate user value v; based on Eq (7);
: end for

: for each user i, i € top-n users do

1

2

3

4

5: Find out the top-n users based on their values;
6

7 Add #’s friends into community cq,a € [1,n];
8

: C; — C; Ucg;
9: Update community C; for i’s every friend j,j € F;r UF;
10: end for
11: for each community cq,a € [1,n] do
12: for each user j, j € ¢, do
13: if M(j,ca) < M then
14: Remove user j from cg;
15: Cj; — Cj —cq;
16: end if
17: end for
18: end for

19: return {cq|Va € [1,n]};

to expand these initial communities, and it consists of two segments. In seg-
ment one, we find out the set F'(c,) of friends for each community c,, similarly
select friends with higher membership degree than M*, and add them into the
corresponding communities (lines 2-11). In segment two, besides membership
degree, we continue to expand the communities based on the traffic reduction.
To preserve load balancing, we add a checkpoint before expanding (lines 15-16).
It requires to update the current average size [. of expanded communities at
every iteration (/. corresponds to the average server load)(line 23), and the ini-
tial value of [, is calculated by |‘QP , where p is the maximal replication degree
(line 1). If the current size of ¢, does not exceed I.(1 + L*), we continue to
decide whether adding a user 7 into community ¢, brings a reduction in traffic.
If traffic reduction Tyeduction (i, ¢q) > 0, user i should be included in community
¢, no matter whether j has been included in other communities (lines 18-19).
To avoid unnecessary computations, we set up a lower threshold M** and fil-
ter out users whose membership degree is lower than M** (line 17). Finally,
Algorithm 2 stops as soon as all communities can never be expanded, and it
divides a social graph into n communities with overlaps. Each community cor-
responds to a cluster of frequently interacted users, and is co-located in one
server.

4 Performance Evaluation

4.1 Experimental Settings

We crawled Facebook during November and December 2015 by the way of
Metropolis-Hasting random walk [9] and created a social graph with 947,276

Optimizing Inter-server Communications 239

Algorithm 2. expCommunities({c,|Va € [1,n]})

. Vie.
].. lc — 0

2: for each community cq,a € [1,n] do

3: do
4: Find out all friends F(cq) of ca;
5: for each user ¢ € F(c,)
6: if M(i,¢cq) > M*
7 Add user i into community cg;
8: Ci; — Ci;Ucy;
9: endif
10: endfor
11: while ¢, is expanded
12: do
13: Find out all friends F(cq) of ca;
14: for each user i € F(cq)
15: if |ca| > 1.(1+ L")
16: break;
17: else if M(i,cq) > M™™ A Treduction (4, ¢a) >0
18: Add user 7 into community cq;
19: C; — C; U Ca;
20: endif
21: endfor
22: while ¢, is expanded
23: Update [. with the expanded community cg;
24: end for

25: return {c.|Va € [1,n]};

users and 626,767 directed edges. The edge weight was assigned with the value
of read rate from one user to another. To simulate a more practical environ-
ment, we generate profile browsing events based on the findings reported in [10].
Each user’s profile browsing rate, i.e., read rate, is generated according to a Zipf
distribution,

—
where r; is user i’s read rate, and corresponds to how often user i is viewed, i.e.,
ri= > i, and A; refers to the rank number of user ¢ sorted by read rate. The
JEF;

total interaction rates include status update rates (visible interactions) collected,
and profile browsing rates (silent interactions) generated.

In this evaluation, we primarily focus on two types of metrics: inter-server
traffic and load balancing. We implement several state-of-the-art schemes includ-
ing Hashing, METIS, SPAR, Hashing&SR and METIS&SR, and compare them
with our proposed scheme.

Table 1 lists the default parameter settings, where R/W refers to the ratio
between read rate and write rate, and its value is set according to the statis-
tics reported in [11]. L* = 0.1 indicates a good load balancing. Based on the
fitting result reported in [10], @ and (§ are set as 0.72 and 697 respectively.

240 J. Zhou et al.

Table 1. Default parameter settings

Parameter |n |L* |R/W |a |8 |M* M*™|p
Value 128 10.1 11 0.721697/0.5 0.2 |5

The thresholds of membership degree are set as 0.5 and 0.2 respectively. The
maximal replication degree p is set as 5, which means the average number of
replicas for all users is 5 at most.

4.2 Comparison Under Different Numbers of Servers

Figure 3 illustrates how the number of servers impacts the inter-server traffic.
As the number of servers increases from 64 to 512, more and more social links
have to be cut off, and the inter-server traffic increases accordingly. SPAR tries
to use replication to preserve social locality and reduces inter-server read traffic,
but its aggressive replication manner incurs higher inter-server write traffic with
the increase of number of servers. Selective replication can help Hashing and
MEITS to significantly save inter-server read traffic without incurring more inter-
server write traffic. But Hashing&SR and METIS&SR conduct partitioning and
replication separately. Our scheme conducts a joint optimization and always
performs best under different numbers of servers.

4.3 Comparison Under Different Replication Degrees

The replication degree reflects how many replicas could be created in the sys-
tem, the optimization effect of many schemes except Hashing and METIS are
restricted by the number of replicas that is often used to measure the stor-
age cost. In this group of experiments, we explore the influence of replication
degree upon inter-server traffic, and the results are depicted in Fig.4. When
p = 1, all schemes degenerate into partitioning algorithms with no replication,
so METIS&SR (Hashing&SR) achieves the same traffic performance as that of
METIS (Hashing), where METIS performs even better than our scheme. How-
ever, the traffic begin to decline along with the increase of p, and our scheme
outperforms the others when p > 3. It is because a lower p may impose a tighter
constraint that weakens the optimization effects of replication. But it does not
always hold with the continuous increase in p, since higher value has a less effect
on optimization. SPAR is not reported in the figure, since the replication degree
is one of the metrics rather than constraint need to be optimized by SPAR.

4.4 Tradeoff Between Traffic and Load Balancing

Figure 5 illustrates how load balancing constraints may influence inter-server
traffic. Note that a lower value of load balancing implies a more even distribution
of users, and it will become a tighter constraint for schemes. Hence, the increase

Optimizing Inter-server Communications

=9—0ur scheme —fli—Hashing
106 === METIS =>e=SPAR
X —¥=Hashing&SR —0—METIS&SR
3.5
3 A
(%]
£ 25
o
g 2 /
s 1.5 A
o /
3 1
£
0.5
0
64 128 256 512
n

Fig. 3. Inter-server traffic under different n.

=——Our scheme —#—Hashing
. ——METIS =>=Hashing&SR
x10° e METIS&SR
3
2.5 ., o o -]
Q \
= 2
©
b= \
g 15 o N 0
A .
9
£
0.5 N— -
0
1 3 5 7 10
p

Fig. 4. Inter-server traffic under different p.

241

of threshold is helpful to improve the traffic performance, which is evaluated by
results described in Fig. 5. The improvement does not tend to getting better as
the threshold increases continuously. Since a larger constraint value has a less
effect on partitioning. The traffic improvement decreases along with the increase
of threshold. The results depicted in Fig. 5 illustrate that most of schemes except
Hashing can obtain a stable traffic performance as the threshold of load balancing
increases. There is no optimization design for Hashing, it always generates the

242 J. Zhou et al.

—o—Our scheme —#—Hashing
106 == METIS =>&=SPAR

=#=Hashing&SR =0— METIS&SR
3

Inter-server traffic

¢ 3
L 4
L 3

|

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
L*

Fig. 5. Inter-server traffic vs. load balancing.

highest traffic meanwhile it could achieve a relative good load balancing, and is
almost unaffected by load balancing constraint. Compared with other schemes,
our scheme always generates the lowest traffic. It is because two phases design
of our scheme can achieve a relative even load distribution.

5 Related Work

In order to preserve social locality perfectly, SPAR [5] ensures the co-location
of every pair of friends by replication, which inevitably results in the increase
in consistency maintaining traffic across servers. To avoid excessive replication,
Tran et al. [12] explored the data replication under a fixed storage space and
update cost required for replication, and proposed a socially-aware replication
scheme. The scheme attempts to reduce visit cost by placing replicas of each
user i to the servers that host most friends of user i. Yu et al. [13] employed
the hypergraph partitioning approach to optimize the associated data placement
under the scenario without replicas, and then proposed an iterative method ADP
to solve the problem of routing and replica placement. Although it is interesting
to model multi-participant interactions for OSNs based on hypergraph, the sep-
arated execution manner of partitioning and replication loses the opportunity to
optimize result maximally.

Liu et al. [6] focused on data replication for different OSN users, and sug-
gested creating various numbers of replicas according to the heterogeneous
requesting rates. They jointly considered both read rate and update rate. How-
ever, the main goal of [6] is to reduce inter-data center communication traffic
as well as response latency, while our work primarily focuses on the minimiza-
tion of inter-server traffic inside one data center. Tran et al. [14] investigated the

Optimizing Inter-server Communications 243

socially aware data partitioning by modeling it as a multi-objective optimization
problem, and proposed to utilize evolutionary algorithms to minimize server load
and keep a good load balancing. Like SPAR, they did not differentiate read rate
from write rate, which is apt to incur more write traffic than the reduced read
traffic.

6 Conclusions

The optimization of inter-server communication has become one of the most
important issues for so many OSN providers. In this paper, we investigate the
inter-server traffic optimization problem under load balancing constraint, and
propose to solve the problem based on overlapping communities detection. Com-
pared with other work, the most dramatic feature of our scheme is that it con-
ducts optimization of both partitioning and replication in an integrated manner.
Through extensive experiments with trace collected from Facebook, we verify
that our scheme significantly reduces inter-server traffic as well as guarantee
load balancing, and its performance is superior to state-of-the-art schemes.

References

1. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file
system. In: MSST, pp. 1-10 (2010)

2. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
Oper. Syst. Rev. 44(2), 35-40 (2010)

3. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20, 359-392 (1998)

4. Chen, H., Jin, H., Jin, N.; Gu, T.: Minimizing inter-server communications by
exploiting self-similarity in online social networks. In: ICNP, pp. 1-10 (2012)

5. Pujol, J.M., Erramilli, V., Siganos, G., Yang, X., Laoutaris, N., Chhabra, P.,
Rodriguez, P.: The little engine(s) that could: scaling online social networks.
IEEE/ACM Trans. Netw. 20(4), 1162-1175 (2012)

6. Liu, G., Shen, H., Chandler, H.: Selective data replication for online social networks
with distributed datacenters. In: ICNP, pp. 1-10 (2013)

7. Zhou, J., Fan, J., Wang, J., Cheng, B., Jia, J.: Towards traffic minimization for
data placement in online social networks. Concurrency and Computation: Practice
and Experience, May 2016

8. Wilson, C., Sala, A., Puttaswamy, K.P.N., Zhao, B.Y.: Beyond social graphs: user
interactions in online social networks and their implications. ACM Trans. Web 6,
17:1-17:31 (2012)

9. Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: Walking in facebook: a case
study of unbiased sampling of OSNs. In: INFOCOM, pp. 2498-2506 (2010)

10. Jiang, J., Wilson, C., Wang, X., Sha, W., Huang, P., Dai, Y., Zhao, B.Y.: Under-
standing latent interactions in online social networks. ACM Trans. Web 7, 18
(2013)

11. Benevenuto, F., Rodrigues, T., Cha, M., Almeida, V.A.F.: Characterizing user
behavior in online social networks. In: IMC, pp. 49-62 (2009)

244 J. Zhou et al.

12. Tran, D.A., Nguyen, K., Pham, C.: S-clone: socially-aware data replication for
social networks. Comput. Netw. 56, 2001-2013 (2012)

13. Yu, B., Pan, J.: Location-aware associated data placement for geo-distributed data-
intensive applications. In: INFOCOM, pp. 603-611 (2015)

14. Tran, D.A., Zhang, T.: S-PUT: an EA-based framework for socially aware data
partitioning. Comput. Netw. 75, 504-518 (2014)

	Optimizing Inter-server Communications by Exploiting Overlapping Communities in Online Social Networks
	1 Introduction
	2 Preliminaries
	2.1 System Model
	2.2 Data Placement Problem

	3 Design of Our Scheme
	3.1 Motivation
	3.2 Replica Placement Based on Overlapping Communities

	4 Performance Evaluation
	4.1 Experimental Settings
	4.2 Comparison Under Different Numbers of Servers
	4.3 Comparison Under Different Replication Degrees
	4.4 Tradeoff Between Traffic and Load Balancing

	5 Related Work
	6 Conclusions
	References

