
SOCA (2009) 3:217–226
DOI 10.1007/s11761-009-0047-6

SPECIAL ISSUE PAPER

An adaptive algorithm for QoS-aware service composition in grid
environments

Jun-Zhou Luo · Jing-Ya Zhou · Zhi-Ang Wu

Received: 15 July 2008 / Revised: 23 June 2009 / Accepted: 1 July 2009 / Published online: 21 July 2009
© Springer-Verlag London Limited 2009

Abstract Service composition enables users to realize their
complex needs as a single request and it has been recognized
as a flexible way for resource sharing and application integra-
tion since the appearance of Service-Oriented Architecture
(SOA). For each of the needed individual services there may
be many candidate services available presented by differ-
ent vendors and with different functional and non-functional
properties such as Quality of Service (QoS). Approaches are
needed to select candidate services with various QoS lev-
els according to user’s performance requirements meanwhile
adapt to dynamic churn in grid environments. This paper
mainly focuses on adaptive management of QoS-aware ser-
vice composition in grid environments and proposes an adap-
tive algorithm for QoS-aware service composition (AQSC).
In AQSC we model this problem as the Multi-Constrained
Optimal Path selection problem (MCOP) and use heuristic
approach for service selection, then backup services set is
introduced as an adaptive mechanism so as to ensure the ful-
fillment of composite service when some candidate services
fail or withdraw. Both theoretical analysis and simulation
results indicate that AQSC has high composition success rate,
finish rate and low cost.

Keywords Service composition · QoS · DAG · Multi-
constrained optimal path selection

A preliminary version of this work has appeared as [1].

J.-Z. Luo · J.-Y. Zhou (B) · Z.-A. Wu
School of Computer Science and Engineering, Southeast University,
Nanjing, People’s Republic of China
e-mail: jyz@seu.edu.cn

J.-Z. Luo
e-mail: jluo@seu.edu.cn

Z.-A. Wu
e-mail: zawu@seu.edu.cn

1 Introduction

Grid has emerged as an important new field, distinguished
from distributed computing it aims to provide available, reli-
able, standard and economical computing power. Along with
the wide acceptance of SOA, Open Grid Service Architec-
ture (OGSA) is proposed in [2] building on the concepts and
technologies from grid and web services communities. As a
service oriented architecture OGSA provides a combina-
tion framework, in which physical resources are virtualized
to users in the form of grid services. These grid services
are invoked by standard interfaces, furthermore, complicated
requirements or applications addressed by users can be
accomplished by combining appropriate individual services
together acting as a composite service. But due to the nature
of autonomy and heterogeneity of grid, grid services exhibit
great diversities in functional properties as well as non-func-
tional properties, especially for QoS. QoS supports only con-
cerning individual services are not enough to deliver
seamless QoS required by service-oriented grid. Global QoS
of a composite service is determined by the QoS of its under-
lying component services [3] and has to be considered inte-
grally. In addition, many services have the same functional
properties but different QoS levels, costs and so forth. There-
fore, an algorithm that can rapidly and efficiently select can-
didate services to form a composite service for applications
is needed.

How to decide which candidates should be chosen so as
to satisfy the global QoS constraints over the composite ser-
vices is not an easy job, especially for the consideration
of multiple QoS dimensions. It is assumed that candidates
of a composite service and their relationship can be repre-
sented by a directed acyclic graph (DAG), in which QoS and
cost can be seen as weight. Hence the problem above can
be modeled as the MCOP, which is to select a suitable path

123

218 SOCA (2009) 3:217–226

satisfying multi-constraints meanwhile minimizing the
global cost. Algorithms for solving the MCOP are intro-
duced to web services selection problem in many previous
works. Web service is a widely applicable mode for distrib-
uted applications on internet. However, web services are usu-
ally deployed on the high performance servers, while grid
services distribute themselves among heterogeneous, non-
dedicated nodes. Different from web services, there exists
many temporary services in grid environments, hence, life-
time management is proposed to address this issue. The
performance of grid services may also be influenced by
unpredictable changes. Existing services may change QoS
level, fail or even withdraw at any moment, while new ser-
vices may join. To deal with this problem, service data ele-
ments (SDE) are introduced as an extensible state expression
mechanism to reflect the state variation of grid services (e.g.
QoS). According to the differences between web services
and grid services, an algorithm for service composition in
grid environments is required by: (i) the time complexity of
algorithm should be as low as possible in order to support run
time decision making; (ii) the adaptive mechanism should be
introduced to guarantee the accomplishment of task in case
of service change or failure. In this paper, we model the prob-
lem as the MCOP and propose an effective algorithm AQSC
for service composition, as the adaptive part we equip each
service along the selected path replied by the former parts
with a backup services set in response to services churn in
grid environments.

The rest of this paper is organized as follows. In Sect. 2
we will present a brief overview of related work about QoS
and service composition. Section 3 introduces an approach
for QoS parameters standardization. The details about algo-
rithm will be narrated and discussed in Sect. 4. In Sect. 5
we present the experiment results and make a brief analysis
accordingly. Finally, the paper is concluded in Sect. 6 and
future work is also discussed here.

2 Related work

Foster et al. propose General-purpose Architecture for Res-
ervation and Adaptation (GARA) in [4,5], which supports
the management of end-to-end QoS in service-oriented grid
environments. This is the initial work on grid architecture to
support QoS. Rashid et al. propose a Grid-QoS management
framework (G-QoSM) in [6], in this framework services are
classified into three types based on the different QoS levels:
guaranteed, controlled load and best effort. Several adaption
strategies are used to support resource capacity sharing in [7].

QoS parameters are classified into five categories and a
hierarchical structure of grid QoS is proposed in [8]. The
heuristic algorithm based on the structure is confirmed to be
effectively by experiment results, but algorithm considers no

composite service as well as the cost it takes. Many resear-
chers have discussed QoS characteristics included in compo-
sitions of Web services in [9–11]. Their contributions have
been considered when determining the relevant QoS crite-
ria for our algorithm. Another work on QoS-aware manage-
ment of workflow processes is presented in [12]. It provides
a QoS model and describes how workflow processes may
be managed in order to fulfill non-functional requirements.
A stochastic workflow reduction algorithm has been pro-
posed in [13] to compute multi-dimensional QoS of work-
flows, but the service selection problem is absent from their
research.

Yu et al. study the end-to-end QoS issues of composite
service by using a QoS broker in [14]. The problem is mod-
eled in two ways: the combinatorial model defines the prob-
lem as a Multi-dimension Multi-choice Knapsack Problem
(MMKP) and the graph model defines the problem as the
MCOP and novel algorithms are designed to meet the global
QoS constraints while maximize the user defined utility func-
tion. These algorithms can solve the problem by finding near
optimal solutions in polynomial time, and it is proved to be
suitable for web services, but due to the dynamics nature
of grid service, whether it is adapt to grid service is still
need to be confirmed. Jin et al. discuss a simulated anneal-
ing approach for optimizing the performance cost ratio of
composite services in [15] with the background of grid com-
puting. However the simulated annealing approach is usually
not time-efficient.

Despite all this efforts, still an open and valid question is
how to manage service composition in order to satisfy both
functional and non-functional requirements properly as well
as adapt to dynamic changes. In this paper service compo-
sition is modeled as the MCOP Problem, for more than one
dimension of QoS, the MCOP Problem is known as NP-com-
plete [16]. To cope with this problem, many pseudo-polyno-
mial time algorithms such as Jaffe’s algorithm [17] are
proposed,but theircomplexitiesdependbothontheactualval-
ues of the edge and the scale of problem. An efficient
heuristicalgorithmintroduced in [18]bringsenlighteningsig-
nificance to our study. The object of the algorithm is to min-
imize the nonlinear cost function for finding a feasible path
while also incorporating the cost optimization of the selected
feasible path. We use Dijkstra’s algorithm [19] in opposite
directions in AQSC to select candidate services for compo-
sition, otherwise, adaptive mechanism is added to AQSC for
consideration of dynamic changes in grid environments. It is
proved that AQSC can achieve high performances.

3 QoS parameter standardization

QoS describes a service’s capability to meet consumer’s
demands. Due to the diversity of grid service, there are many
properties to describe QoS, such as concurrent processing

123

SOCA (2009) 3:217–226 219

capabilities, duration, throughput, reliability, availability,
accuracy, security, and so on. The performance of service
can be reflected by these parameters from different perspec-
tives, which can be roughly classified into additive and non-
additive [20]. For the additive parameters such as duration,
throughput it is the sum of the additive parameter value from
end-to-end. In contrast, value with respect to a non-additive
parameter, such as bandwidth is determined by the value of
that constraint at the bottleneck part. For constraints asso-
ciated with non-additive parameters, we can simply remove
services that do not satisfy these constraints. So in this paper
we will mainly discuss additive QoS parameters. The user’s
QoS requirements may be different with respect to parame-
ters included, for example, users may demand delay less than
5 ms, while throughput no less than 100, also different ser-
vice classes may have different quantification standards for
the same QoS parameter. Hence, we present an approach to
standardize QoS parameters. We assume that m is the number
of service classes and n is the dimension of QoS, qk(i) rep-
resents the i th dimensional QoS parameter of service class
Si , all QoS parameters are positive, so we get a n ∗ m matrix
as follow:
⎛
⎜⎝

q1(1) . . . q1(m)
...

. . .
...

qn(1) · · · qn(m)

⎞
⎟⎠

We roughly put parameters into positive criterion and neg-
ative criterion. Positive criterion denotes the higher value the
higher quality such as throughput, while negative criterion
denotes the lower value the higher quality such as duration.
In this paper two approaches are provided respectively to
both criteria.

Translation approach for parameters belongs to positive
criterion is shown in Eq. (1):

Qk(i) =
⎧⎨
⎩

qk(i)/
√∑m

i=1 q2
k (i), if

√∑m
i=1 q2

k (i) �= 0

0, if
√∑m

i=1 q2
k (i) = 0

(1)

Translation approach for parameters belongs to negative cri-
terion is shown in Eq. (2):

Qk(i) =
⎧⎨
⎩

√∑m
i=1 q2

k (i)/qk(i), if
√∑m

i=1 q2
k (i) �= 0

0, if
√∑m

i=1 q2
k (i) = 0

(2)

where Qk(i)represents the kth dimensional standardized QoS
parameter of node i. We can simply define QoS constraint
relationship r(q, u), it is a binary relationship, the first one
of the pair indicates service QoS parameter, the target ser-
vice value expected by users is represented by the other.
There is only one element in the set of constraint relationship:
R = {≥}.

Fig. 1 DAG composite service

4 QoS-aware service composition

4.1 Service composition model

The services we discussed can be divided into various ser-
vice classes based on functionality, a service class is a set of
services with common functionality but different non-func-
tional properties such as QoS levels and costs etc. The ser-
vices requested by users or applications can be classified into
two categories—individual service and composite service, as
for the first one it implies request can be accomplished by
a single service class while the other implies request should
be completed by a set of service classes. DAG composite
service shown in Fig. 1 is a general kind of composite ser-
vice described by DAG, in which node represents service
class and directed edge represents collaborative relationship
among service classes. DAG composite service has several
execution paths, pipeline composite service is one of them,
so it can be regarded as a special case of DAG composite
service, and in this paper we discuss DAG composite service
for general purpose. Each service class may have many can-
didate services, and each service has its own QoS level and
cost, but users do not care about it, usually they put forward
the end-to-end QoS requirements. The cost of service can
be interpreted to be what the users should pay for the usage
of service, which lies on many issues including not only the
execution time of the service but also the class of service
and the QoS level of service and the evaluation of service
provider. The problem needed to be solved by service com-
position is how to select a feasible and optimal path from a
mass of candidate ones in Fig. 2 to achieve the user’s QoS
requirements meanwhile minimize costs. The specific exe-
cution time of service is beyond the scope of our research.
Hence, for facility of problem modeling, we assumed that the
cost of service is required by the service providers according
to the aforesaid issues except execution time.

In Fig. 2 we add two nodes—source node and destination
node, from the source node S we draw edges to all nodes that
do not have predecessors, in the same way from all nodes that

123

220 SOCA (2009) 3:217–226

Fig. 2 Service candidate graph

do not have subsequences we draw edges to the destination
node D. Each candidate represented by a node has its own
QoS parameter values and cost. Usually we take edge values
into account when model the problem, for facility, here we
give an approach to move QoS parameter values and costs
from nodes to edges, and definition is shown as follows:

Definition 1 Consider a composite service that is
represented by DAG graph G = (V, E), where V is the
set of nodes and E is the set of edges. Qk(i)denotes the
kth dimensional standardized QoS parameter of nodei, while
c(i) denotes the cost of node i.e. (i, j) denotes the directed
edge (si, s j), each edge is associated with n additive QoS
parameters ek(i, j) and cost c(i, j), k = 1, 2, . . . , n.

ek(i, j) =
⎧⎨
⎩

(Qk(i) + Qk(j))/2, if (si �= S, s j �= D)

Qk(i) + Qk(j)/2, if (si = S, s j �= D)

Qk(i)/2 + Qk(j), if (si �= S, s j = D)

(3)

c(i, j) =
⎧⎨
⎩

(c(i) + c(j))/2, if (si �= S, s j �= D)

c(i) + c(j)/2, if (si = S, s j �= D)

c(i)/2 + c(j), if (si �= S, s j = D)

(4)

Both nodes S and D in Fig. 2 are added without QoS param-
eters and costs, so we can set n parameter values and costs of
both nodes are zeros. Hence, we model service composition
problem as the MCOP by assuming ek(i, j) as QoS param-
eters and c(i, j) as costs respectively instead of Qk(i) and
c(i), the definition is given below:

Definition 2 MCOP: Consider a composite service that is
represented by DAG graph G = (V, E), where V is the
set of nodes and E is the set of edges. Each edge is asso-
ciated with n additive QoS parameters ek(i, j) and c(i, j),
k = 1, 2, . . . , n. Given n constraints uk , k = 1, 2, . . . , n,

the problem is to find a path p from the source node S to the
destination node D subject to:

(i) ek(p) = ∑
e(i, j)∈p ek(i, j) ≥ uk for k = 1, 2, . . . , n,

and

(ii) c(p) = ∑
e(i, j)∈p c(i, j) is minimized over all feasible

paths satisfying (i).

For a path p the sum of values of nodes that belong to p
equals that of edges belong to p,and the values include QoS
parameter values and costs.

c(p) =
∑

e(i, j)∈p

c(i, j) =
∑
si∈p

c(i)

ek(p) =
∑

e(i, j)∈p

ek(i, j) =
∑
si∈p

Qk(i)

4.2 AQSC algorithm

As shown in Definition 2(i), to guarantee the success of
service composition every dimensional QoS value on the
selected path should such that ek(p)=∑

e(i, j)∈p ek(i, j)≥uk

for k = 1, 2, . . . , n, where uk is QoS constraints issued by
user. This condition is equal to uk

ek (p)
≤ 1 f ork = 1, 2, . . . , n.

Usually, it is easy to conclude that it is possible to find the fea-
sible path p when

∑n
k=1

uk
ek(p)

≤ n. Therefore, the feasible

path may be found by minimizing
∑n

k=1
uk

ek (p)
. We now pres-

ent the following cost function Cµ(p)for the service compo-
sition problem:

Cµ(p) =
n∑

k=1

(
uk

ek(p)

)µ

(5)

where µ ≥ 1. Then we conclude the following conclusions
on the performance of algorithm that return a path p by min-
imizing the cost function (5) for a given µ ≥ 1.

Theorem 1 Suppose that there is at least one feasible path
exists, and p is a path that minimizes the cost function Cµ(p)

for a given µ ≥ 1. Then

(i) uk ≤ ek(p) for at least one k
(ii) ek(p) ≥ µ

√
nuk for all other k’s

(iii) The likelihood of finding a feasible path increases as
µ increases.

Proof To prove our conclusion, we assume that path p′ is a
feasible one. If p is feasible, then the above conclusions are
obviously correct concluded from (5), otherwise, we get that

Cµ(p) ≤ Cµ(p′)
In addition, since uk ≤ ek(p′) for all k’s, we have

Cµ(p′) ≤ n

Thus,

Cµ(p) ≤ n

If uk > ek(p) for all k’s, then Cµ(p) > n, but this contradicts
to Cµ(p) ≤ n, so we get the conclusion of (i). Supposing
that there is at least one constraint u j we have

123

SOCA (2009) 3:217–226 221

Table 1 Description of
variables Variable Description

t[x] The cost of the shortest path from x to D under the cost function Cµ(p)

Tk [x] The individually accumulated edge values along the path

Pt [x] Predecessor of x on the optimal path that from x to D

C[x] The cost of a foreseen complete path via node x based on the cost function Cµ(p)

Hk [x] The individually accumulated edge values along the already traveled segment of the

path from S to x

PC [x] Predecessor of x on the path from S to x

c[x] The cost along the already traveled segment of the path from S to x

u The set of uk , k ∈ [1, n]
P f The probability of service failure or departure

Ps Service composition success rate

Pfinish Service finish rate

Px The probability of finding x backup services

Nsc The average of service classes included in a request

e j (p) < µ
√

nu j

Thus(
u j

e j (p)

)µ

> n

It follows that

Cµ(p) ≥
(

u j

e j (p)

)µ

> n

but this contradicts to Cµ(p) ≤ n, hence (ii) is proved. For
conclusion (iii), it follows immediately from the above con-
clusions by introducing a variable ω > 0, we have

ek(p) < µ+ω
√

nuk < µ
√

nuk

�	
To solve the problem modeled before, we propose a heuris-

tic algorithm—AQSC. As we know that Dijkstra’s algorithm
is used to find the shortest path in a graph. AQSC is based on
Dijkstra’s algorithm and is composed of three parts, one is
feasible part, the second is optimal part and the last is adap-
tive part. For the feasible part, AQSC tries to minimize the
objective function Cµ for µ ≥ 1. It first finds the optimal path
from each node x to D using function Reverse_Dijkstra [19]
with some modifications to relaxation process. Then it starts
from S and discovers each node based on the minimization of
Cµ(p), where p is a complete path passing through node x.
This path is determined heuristically at node x by connecting
the already traveled segment from S to x and the remaining
segment from x to D, and this can be done by calling function
Look_Ahead_Dijkstra [19] also with some modifications to
the relaxation process in [18]. The main AQSC algorithm is

Main AQSC Algorithm

Input: G=(V, E), S, D, u
Output: A suitable composite service
1 Reverse_Dijkstra (G, e, D)
2 If (t[S]>n) then
3 return failure
4 End If

5 m MAX_NUM

6 Look_Ahead_Dijkstra (G, e, c, S)

7 If (Hk[x] uk for k [1,n]) then
8 return suitable composite service Ssui

9 Ada_Set (Ssui)
10 End If
11 return failure

described as follows, and Table 1 shows the description of
variables used by the algorithm.

There are two directions in the algorithm, backward from
D to S and forward from S to D. The backward direction
is depicted by lines 1–4 in AQSC, which estimates the cost
of the remaining segment using µ = 1. Reverse_Dijkstra
returns a path p from S to D. Before moving to the forward
direction, AQSC checks whether t[S] > n or not, if true it
means no feasible path exists, which is based on Theorem 1.
If not true, path p may be a feasible path. If path p is feasible,
we use Look_Ahead_Dijkstra to find a path q with condition
c(q) ≤ c(p), if not we use it to find a path q with condition
Cµ(q) ≤ Cµ(p), in both cases, we set µ as MAX_NUM that
is a constant we set in the algorithm, which could be changed
to alter the possibility of finding a feasible path. This is based
on Theorem 2 described as follows:

Theorem 2 Suppose Reverse_Dijkstra returns path p, and
Look_Ahead_Dijkstra returns path q, then

123

222 SOCA (2009) 3:217–226

(i) if p is feasible, q is feasible too and c(q) ≤ c(p)

(ii) if p is not feasible, Cµ(q) ≤ Cµ(p).

Proof Assume that p consists of n nodes (s0, s1, s2, . . . , sn)

where s0 = S and sn = D. In the forward direction, the
algorithm finds the neighbors to S and explores the graph
from one of these nodes for which either the foreseen path
is feasible and c[·] is minimum or which C[·] is minimum
when there is no foreseen feasible path. As AQSC selects the
next node based on the preference rule given by the func-
tion Select_best. Since s1 is a neighbor of S, the algorithm
will consider s1 at the first time. If the foreseen path at s1
is feasible and c[s1] is minimum, the algorithm will con-
tinue to explore the graph from s1, then continue to nodes
s2, s3, . . . , sn, as long as they have the minimum c[·]. Oth-
erwise, the algorithm will explore another node, say v, from
which a foreseen path is also feasible but c[v] ≤ c[s1], in
this case, the algorithm will return a path whose cost is lower
than the cost of p. Thus, (i) is correct. If no foreseen path
is feasible, then the algorithm explores the graph based on
the minimum C[·]. The algorithm considers s1 at the first
time again. If C[s1] is minimum, then the algorithm will
explore the graph from s1 and continue to explore from the
others as long as they have the minimum C[·]. Otherwise, the
algorithm will explore another node whose value is less than
C[s1] and finds a better path than p in terms of feasibility.
Thus, (ii) is also correct. As a result, the returned path q will
be either better than p or at least as good as p in terms of
both feasibility and optimality. �	

The following is relaxation process of Reverse_Dijkstra.
We add the calculation of Tk[x] that represents the individ-
ually accumulated edge values along the path. Because we
need to record the accumulated edge value in order to find
the optimal path from x to D. As we know, the complete path
is from S to D, and the path is heuristically determined at
node x by concatenating the already traveled segment from
S to x and the estimated remaining segment from x to D.

Reverse_Dijstra_Relax

Input: Two nodes x, y V

Output: Predecessor of y on the path

1 If
1

[]
[] (,)

n
k k

k k k

u u
t x

T y e x y=

⎛ ⎞
> +⎜ ⎟

⎝ ⎠
∑) then

2
1

[]
[] (,)

n
k k

k k k

u u
t x

T y e x y=

⎛ ⎞
← +⎜ ⎟

⎝ ⎠
∑

3 Tk[x] Tk[y] + ek(x, y) for k [1,n]

4 Pt[y] x

5 End If

In the forward direction, AQSC invokes Look_Ahead_Di-
jkstra to identify if there is another path q which possibly

improves the performance over path p. We insert Hk[x] into
the function to record the individually accumulated edge val-
ues along the already traveled segment of the path from S
to x. Since we take complete paths into consideration, the
algorithm can foresee several paths before reaching the des-
tination.

Look_Ahead_Dijkstra_Relax

Input: Two nodes x, y V

Output: Predecessor of y on the path and accumulated cost
1 Set t as a temporary node

2 c[t] c[x] + c (x, y)

3
1

[]
[] (,) []

n
k k k

k k k k

u u u
C t

H x e x y T y

µ

=

⎛ ⎞
← + +⎜ ⎟

⎝ ⎠
∑

4 Hk[t] Hk[x] + ek(x, y) for k [1,n]

5 Tk[t] Tk[y] for k [1,n]

6 If (Select_best (t, y) = t) then

7 c[y] c[t]

8 C[y] C[t]

9 Hk[y] Hk[t] for k [1,n]

10 PC[y] x

11 End If

The above function firstly judge the value of µ, if µ = 1
it is no need to compute cost function Cµ, otherwise use
Cµ with µ = MAX_NUM to select feasible path. Then we
use function Select_best to choose the next node for perfor-
mance improvement. It selects one of input nodes such that
the selected one should minimize cost if foreseen complete
path passing through these nodes are feasible, otherwise, it
selects one that minimizes the cost function Cµ.

Usually, the service providers are self-governed and non-
dedicated in real distributed grid environments. Users require
assurance or guarantee on the level and class of service being
offered by providers, while providers want to maintain local
control and discretion over how the service/resource can
be used conversely. The demand of providers will result in
changes of service level at any moment. Then the mainte-
nance of data consistence is a matter. A common means for
solving this problem is to negotiate a service level agree-
ment (SLA), by which providers “contract” with users to
provide the required service level [21]. Moreover, we intro-
duce publish/subscribe scheme [22] to establish the dynamic
interaction between providers and users. In the scheme, users
(as subscribers) express information about service classes
involved in service composition in an event, and are sub-
sequently notified of any event, generated by providers (as
publishers) which match the information expressed. Accord-
ing to the scheme, when the QoS value changes, provid-
ers will inform users, then initiate renegotiation process. To
avoid renegotiate frequently, we can set up a threshold for

123

SOCA (2009) 3:217–226 223

change. In addition, for enhancement of service adaptive
capacity and alleviation of negative effect on service ful-
fillment resulted from churn, function Ada_Set is designed.
It reserves a backup services set with capacity of l for each
service class on the path of a composite service. When rene-
gotiation fails we can still use backup service instead of the
original one. Whenever a suitable path is found, Ada_Set is
called to find backup services subject to Qk(j) ≥ Qk(g) for
j ∈ [1, l]k ∈ [1, n] and makes sure that the sum of their costs
is as low as possible, then add these to Ai (CSk).

Ada_Set

Input: Suitable composite service Ssui

Output: Adaptive service set
SCi : the ith service class in Ssui

Sj : the jth backup service
Sg : the selected candidate in a service class
Ai(CSk) : backup set for service class SCi of composite service CSk

1 For each SCi in Ssui

2 For all services in SCi

3 Find l backup services at most subject to Qk(j) Qk(g) for j

[1,l] k [1,n] and cost is as low as possible

4 Add these backup services to Ai(CSk)
5 End For
6 End For

4.3 Adaptive analysis for AQSC algorithm

As we know dynamics is the nature of grid, services in grid
environments may fail or departure at any moment. The fail-
ure of any service on the path of a composite service implies
composite service could not finish successfully. Equation (6)
shows service finish rate Pfinish without backup services set:

Pfinish = Ps(1 − P f) (6)

Here Service composition success rate Ps is defined below:

Ps = number of requests satisfied

total number of requests
(7)

The intention of setting up backup services set is to compen-
sate for changing or failure of selected services so as to assure
Pfinish. Before computing Pfinish with backup services set, we
introduce the calculation of Px shown in Eq. (8). Variableqi

represents the probability that the i th dimensional QoS value
is no less than that of selected service.

Px =
(

n∏
i=1

qi

)x

(8)

When the service on the path of a composite service fails,
it will be replaced by the one from the backup service set.
The probability that both the original service and x backup
services fail or departure is Px+1

f . Based on Px , the success
rate of each service class on the path can be calculated by

1−∑l
x=0 Px Px+1

f . Considering the average of service classes
included in a request is Nsc, we can use Nsc/2 to represents
the number of service classes on the path. Then we get Pfinish

with backup services set:

Pfinish = Ps

(
1 −

l∑
x=0

Px Px+1
f

)NSC
2

(9)

The AQSC algorithm determines whether there is possibil-
ity of path existence by invoking function Reverse_Dijkstra.
If true it continues to invoke function Look_Ahead_Dijk-
stra to find a more suitable path. Ada_Set is introduced for
assurance of end-to-end QoS in grid environments. Since the
modified Dijkstra’s algorithm is executed twice at most. The
time and space complexity of Dijkstra’s algorithm imple-
mented with a binary heap respectively are O(m+nlogn) and
O(n) (m is the number of edges while n is the number of
nodes). Hence, the time and space complexity of AQSC are
O(2m+2nlogn) and O(max(n, l)), where l is the capacity of
backup service set.

5 Experiment

5.1 Configuration

We conduct the simulation experiment to estimate the per-
formance of AQSC algorithm proposed in this paper, and
three kinds of metrics are taken into consideration: service
composition success rate Ps, cost and service finish rate
Pfinish. We divide experiment into two parts. In the first part
we compare AQSC with Jaffe’s algorithm [17] according to
the former two metrics. Jaffe’s algorithm is used to solve the
MCP problem which is a slightly different version of the
MCOP problem, aims only at finding feasible path that sat-
isfies multi-constraints. For more than two dimensions the
MCP problem is known to be NP-complete. In [17] the author
considers 2-dimensional MCP problem, and uses Dijkstra’s
shortest path algorithm with two adjustable parameters α, β

to minimize objective function. The last part is used for per-
formance comparison among different variable parameters.
We mainly focus on parameters that have influence on Pfinish.

Simulation arrangement is described below.
In the simulation, we use a Request_generator to gen-

erate user’s requests, which is composed of service classes
included and corresponding QoS constraints. The average of
service classes included in a request is represented by Nsc,
which take value in the range of (10, 30). The request arrival
rate remains constant, Pr = 20. We assume that there are
100 service classes included, and the number of candidates

123

224 SOCA (2009) 3:217–226

in each service class is Ns, it should be subject to:

l∑
x=0

(Pr Ps)Px (x + 1) ≤ Ns (10)

For brevity, QoS dimension is defined as 2, so each node
has 2-dimensional QoS parameters and cost information,
we use Node_inf_generator to generate these values respec-
tively. Without loss of generality, every dimensional QoS
parameters are generated by different distributions, and the
mean of each dimensional QoS parameters are calculated. We
use these mean instead of edge mean to evaluate the average
value of a path, as Eq. (11) shows:

Ak = (Nsc/2) mk (11)

On the left of equation, Ak represents the kth dimensional
average value of a path, on the right, Nsc/2 denotes the aver-
age length of a path, and mk describes the mean of the kth
dimensional QoS parameters. We make the QoS constraints
uk of 50 percent of requests smaller than average value Ak

for k ∈ [1, n]. The great difference between grid service and
web service lies on the service lifetime which only the former
has. In grid environments, there are a large number of tem-
porary services, and these services join or withdraw at any
moment. For better simulation of the dynamic state, we use
service arrival rate Pa and service failure rate P f to describe
the changing process of grid services, and both P f and Pa

take the same values, so the total number of services will not
be changed.

5.2 Results and analysis

In the first part, as l influences the metrics of algorithm, we
execute AQSC with different l respectively for performance
comparison. From Fig. 3 we conclude that Ps improves as
MAX_NUM increases, especially among the range from 1
to 5, which is consistent with Theorem 1. When MAX_NUM
exceeds 10, there is little improvement in Ps . It is due to the
nature of the heuristic algorithm, one can expect few anom-
alies in the general trend. We also observe that the smaller
l the greater Ps is, because the number of backup services
reserved for previous composite services will lead to the
decrease of candidate services in each service class, con-
sequently, the probability of finding the suitable candidate
services becomes lower. Contrast between Jaffe’s algorithm
and AQSC algorithm is described in Fig. 4. It is obviously
that Ps of ours is larger than that of Jaffe’s when l is small.
AQSC execute in two directions, when path returned from
backward direction is not feasible, it will continue to move to
forward direction if there exists possibility. According to
Theorem 2(ii) cost function may be minimized, then increases
success possibility. As illustrated in Fig. 5, the total execu-
tion time increases rapidly as the increase of Nsc and Jaffe’s

0 5 10 15 20

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

P S

MAX_NUM

l=0
l=2

 l=5

Fig. 3 Composition success rate performance of AQSC with
MAX_NUM

0.0

0.2

0.4

0.6

0.8

1.0

Jaffe'sl=5l=0 l=2

P
S

Fig. 4 Composition success rate performance of AQSC and Jaffe’s

algorithm needs less time than AQSC to complete service
composition. However, the gap of time between the twin
algorithms is tolerable, especially for smaller Nsc. AQSC
algorithm requires at most two iterations of Dijkstra’s algo-
rithm in order to improve the success rate. It is worthy to
improve the success rate by sacrificing tolerable additional
time. Otherwise, contrary to Ps, the cost of composite ser-
vice selected by AQSC with smaller l is lower than Jaffe’s
depicted in Fig. 6, since AQSC algorithm requires at most
two iterations of Dijkstra’s algorithm while Jaffe’s requires
one. The cost of path returned by the second iteration is no
larger than that of the first.

From the aforesaid analysis, it seems that l should be as
small as possible, if true, it is no need to reserve backup ser-
vices for service composition. But dynamics of services have
great influence on service fulfillment in grid environments.
For avoiding negative effect, a backup service set is equipped.
When there is no backup services set (l = 0), service finish
rate is calculated by:

Pfinish = Ps(1 − P f)
NSC

2 (12)

123

SOCA (2009) 3:217–226 225

10 15 20 25 30
2

4

6

8

10

12

14

16

18

tim
e

Nsc

 Jaffe's

 AQSC

Fig. 5 The total execution time for service composition

0

5

10

15

20

25

30

35

40

45

50

55

60

Jaffe'sl=5l=0 l=2

co
st

Fig. 6 Cost returned by AQSC and Jaffe’s

As shown in Fig. 7, Pfinish increases to the peak then slows
down as l improves, and it is more obvious for higher P f . We
explain this phenomenon by substitute Eq. (10) to Eq. (9):

Pfinish ≤ Ns

Pr
∑l

x=0 Px (x+1)

(
1 −

l∑
x=0

Px Px+1
f

)NSC
2

(13)

It is concluded that Pfinish will reach the extreme value when
l increases to a certain value, though Ps will fall down. We
also observed that Pfinish decreases as P f improves which can
be deduced from Eqs. (9) and (12). As to high dynamic grid
environments, l should be improved to keep Pfinish stable,
for the change amplitude reduces as l improves. But increas-
ing lmay lead to decrease of Pfinish, so we should trade off
between stability and high finish rate and adjust l accordingly.

6 Conclusion and future work

This paper studies composite service composition problem
in grid environments. QoS classification is discussed briefly
and approach for standardization is also provided. We model

0 1 2 3 4 5

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

P fi
ni

sh

l

Pf=5%

 Pf=10%

 Pf=20%

Fig. 7 Finish rate performance of AQSC with l

the problem as the MCOP, and then AQSC algorithm is pro-
posed to select the least cost composite service while satis-
fying end-to-end QoS requirements. Adaptive mechanism is
considered in AQSC to adapt to the dynamic characteristic of
grid service. In addition, AQSC has the same time complex-
ity with Dijkstra’s, which is suitable for runtime decisions
making. Experiment results show that AQSC outperforms
the similar algorithms from perspectives of success rate, cost
and service finish rate, and also validate performance param-
eters that discussed in the theoretical analysis.

As future work, it is planned to investigate performances
of AQSC in a large-scale distributed grid environments. We
will also make some improvements on adaptive mechanism,
especially for QoS offering of services that are dynamic with
respect to performance parameters, so as to achieve higher
performances and to be more suitable for grid service com-
position.

Acknowledgments This work is supported by National Natural Sci-
ence Foundation of China under Grants No. 90604004 and 60773103,
Jiangsu Provincial Natural Science Foundation of China under Grants
No. BK2007708, Jiangsu Provincial Key Laboratory of Network and
Information Security under Grants No. BM2003201and Key Laboratory
of Computer Network and Information Integration Ministry of Educa-
tion.

References

1. Zhou JY, Luo JZ, Wu ZA (2008) QoS Adaption aware Algorithm
for Grid Service Selection. In: Proceedings of the 12th international
conference on computer supported cooperative work in design,
Xi’an, pp 523–528

2. Foster I, Kesselman C, Nick JM, Tuecke S (2002) The physiol-
ogy of the grid: an open grid services architecture for distributed
systems integration. http://www.globus.org/alliance/publications/
papers/ogsa.pdf

3. Menasce DA (2004) Composing web services: a QoS view. IEEE
Internet Comput 8(6):88–90

4. Foster I, Roy A, Sander V (2000) A quality of service architec-
ture that combines resource reservation and application adaptation.

123

http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://www.globus.org/alliance/publications/papers/ogsa.pdf

226 SOCA (2009) 3:217–226

In: Proceedings of international workshop on quality of service,
pp 181–188

5. Foster I, Kesselman C, Lee C, Lindell B, Nahrstedt K, Roy A
(1999) A distributed resource management architecture that sup-
ports advance reservations and co-allocation. In: Proceedings of the
7th international workshop on quality of service, vol 3, pp 27–36

6. Al-Ali R, Rana O, Walker D, Jha S, Sohail S (2002) G-QoSM: grid
service discovery using QoS properties. Comput Inform J Special
Issue on Grid Comput 21(4):363–382

7. Al-Ali R, ShaikhAli A, Rana O, Walker D (2003) QoS adaptation
in service-oriented grids. In: Proceedings of the 1st international
workshop on middleware for grid computing

8. Wu ZA, Luo JZ, Song AB (2006) QoS-based grid resource man-
agement. J Softw 17(11):2264–2276

9. Benatallah B, Dumas M, Fauvet MC, Fabhi F (2003) Towards pat-
terns of web services composition. Patterns and Skeletons for Par-
allel and Distributed Computing, Springer, London, pp 265–296

10. Menasce DA (2002) QoS issues in web services. IEEE Internet
Comput 6(6):72–75

11. Zeng L, Benatallah B, Ngu AHH, Dumas M, Kalgnanam J,
Chang H (2004) QoS-aware middleware for web services compo-
sition. IEEE Trans Softw Eng 30(5):311–327

12. Cardoso J, Sheth A, Miller J (2002) Workflow Quality of Service.
In: Proceedings of international conference on enterprise integra-
tion and modeling technology and international enterprise model-
ing conference (ICEIMT/IEMC). Kluwer Publisher, Valencia

13. Cardoso J, Sheth A, Miller J, Amold J, Kochut K (2004) Quality of
service for workflows and web services processes. J Web Semant
1(3):281–308

14. Yu T, Zhang Y, Lin KJ (2007) Effective algorithms for web ser-
vices selection with end-to-end QoS constraints. ACM Trans Web
(TWEB) 1(1):6-es

15. Jin H, Cheng HH, Lu ZP, Ning XM (2005) QoS optimizing model
and solving for composite service in CGSP job manager. Chin J
Comput 28(4):844–853

16. Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory,
algorithms, and applications. Prentice Hall, Inc., Englewood Cliffs

17. Jaffe JM (1984) Algorithms for finding paths with multiple con-
straints. Networks 14:95–116

18. Korkmaz T, Krunz M (2001) Multi-Constrained Optimal Path
Selection. In: Proceedings of 20th annual joint conference of
the IEEE computer and communications societies (INFOCOM),
pp 834–843

19. Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction
to algorithms, 2nd edn. The MIT Press

20. Wang Z (1999) On the complexity of quality of service routing.
Inform Process Lett 69(3):111–114

21. Czajkowski K, Foster I, Kesselman C, Sander V, Tuecke S (2002)
SNAP: a protocol for negotiating service level agreements and
coordinating resource management in distributed systems. LNCS,
vol 2537, pp 153–183

22. Eugster P Th, Felber PA, Guerraoui R, Kermarrec A-M (2003) The
many faces of publish/subscribe. ACM Comput Surv 53(2):114–
131

123

	An adaptive algorithm for QoS-aware service composition in grid environments
	Abstract
	1 Introduction
	2 Related work
	3 QoS parameter standardization
	4 QoS-aware service composition
	4.1 Service composition model
	4.2 AQSC algorithm
	4.3 Adaptive analysis for AQSC algorithm

	5 Experiment
	5.1 Configuration
	5.2 Results and analysis

	6 Conclusion and future work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

