
88 Int. J. Sensor Networks, Vol. 35, No. 2, 2021

Task scheduling for mobile edge computing enabled
crowd sensing applications

Jingya Zhou*
School of Computer Science and Technology,
Soochow University,
Suzhou, Jiangsu, 215006, China

and

State Key Laboratory of Mathematical Engineering
and Advanced Computing,
Wuxi, Jiangsu, 214125, China
Email: jy_zhou@suda.edu.cn
*Corresponding author

Jianxi Fan and Jin Wang
School of Computer Science and Technology,
Soochow University,
Suzhou, Jiangsu, 215006, China
Email: jxfan@suda.edu.cn
Email: wjin1985@suda.edu.cn

Abstract: Crowd sensing effectively solves the dilemma of massive data collection faced by most
data-driven applications. Recently, mobile edge computing (MEC) is proposed to extend the frontier
of cloud to the network edge so that it is quite suitable to integrate MEC with current crowd sensing
systems. In this paper, we focus on the basic problem of task scheduling in such systems. The
problem discussed here has some unique challenges, e.g., edge devices are not dedicated to perform
sensing tasks, task scheduling on edge devices and edge servers are highly coupled, and it is hard
to achieve long-term objectives. To this end, we first present a workflow framework that captures
the unique execution logic of sensing tasks. Then we propose a staged scheme to decouple the
original scheduling problem. Moreover, we leverage Lyapunov optimisation technique to achieve
long-term objective. The experiment results verify the effectiveness and efficiency of our proposed
algorithm.

Keywords: task scheduling; crowd sensing; MEC; mobile edge computing; task offloading; task
shifting; Lyapunov optimisation.

Reference to this paper should be made as follows: Zhou, J., Fan, J. and Wang, J. (2021) ‘Task
scheduling for mobile edge computing enabled crowd sensing applications’, Int. J. Sensor Networks,
Vol. 35, No. 2, pp.88–98.

Biographical notes: Jingya Zhou received his BS in Computer Science from Anhui Normal
University, Wuhu, in 2005, and his PhD in Computer Science from Southeast University, Nanjing, in
2013. He is currently an Associate Professor with the School of Computer Science and Technology,
Soochow University, Suzhou. His research interests include cloud and edge computing, parallel
and distributed systems, online social networks, network representation learning and data center
networking.

Jianxi Fan received his BS in Computer Science from Shandong Normal University, Jinan, in 1988, his
MS in Computer Science from Shandong University, Jinan, in 1991, and his PhD degree in Computer
Science from City University of Hong Kong, Hong Kong, in 2006. He is currently a Professor
with the School of Computer Science and Technology, Soochow University, Suzhou. His research
interests include interconnection architectures, the design and analysis of algorithms, and graph
theory.

Copyright © 2021 Inderscience Enterprises Ltd.

Jin Wang received his BS from Ocean University of China, in 2006, and the PhD in Computer
Science jointly awarded by City University of Hong Kong and University of Science and Technology
of China, in 2011. He is currently a Professor with the School of Computer Science and Technology,
Soochow University, Suzhou. His research interests include network coding and edge computing.

This paper is a revised and expanded version of a paper entitled ‘Task offloading for social sensing
applications in mobile edge computing’ presented at CBD 2019, Suzhou, China, 21–22 September,
2019.

1 Introduction

Nowadays, the advance of next generation cellular
communication techniques (e.g., 5G) has significantly
promoted the development of Internet of Things (IoT) (Gubbi
et al., 2013; Chen et al., 2016b). Dense network provides
pervasive network coverage, and enables more and more
devices connected to the Internet, such as smartphones, fitness
trackers, drones, and even cars. The prevalence of IoT also
promotes the rise of crowd sensing (Liu et al., 2018b; Capponi
et al., 2019). Following the idea of collecting real-time
information from the physical world by humans or mobile
devices on behalf of them (Dai et al., 2016), crowd sensing
extracts valuable information in a crowd computing fashion
and applies them to many application scenarios. Currently
crowd sensing has extremely flourished crowd computing and
IoT applications in various domains. For example, in traffic
management domain, the traffic control mainly relies on traffic
data collected from roadside surveillance equipments (most
of them reside on traffic intersections), but the data collected
via this traditional method are sparse and cannot seamlessly
cover all sections. Crowd sensing allows us to get real-time
traffic congestions by analysing the trajectories of individual
drivers and those drivers are able to record trajectories via
their smartphones or dash cams (Ilarri et al., 2014). In
environmental protection domain, traditional methods detect
air quality from fixed detection points, the detection range is
limited and cannot realise full coverage with fine granularity.
Crowd sensing uses mobile devices to collect more and richer
sensing data (Devarakonda et al., 2013). In the same way,
crowd sensing can also be applied to disaster relief domain
by detecting the real-time disaster situation based on the
data collected from unmanned aerial vehicles such as drones
(Wang et al., 2020).

There are two main components inside a crowd sensing
system: a set of crowd sensing devices and a group of
crowd sensing servers. Each component is designed with
a specific function, e.g., crowd sensing devices are usually
owned by people and can be used to collect data from
physical world, while crowd sensing servers are available for
further data analysis. Considering that the huge computing
power of a cloud datacenter can help crowd sensing providers
to deal with challenges derived from big sensing data and
high computational complexity, those analysis tasks are often
finished within a cloud datacenter. For example, Xiao et al.
(2014) presented a cloud-based framework that enables a
group of exciting sensing-oriented applications. However,
the cloud-based system architecture may not be ideal for
crowd sensing applications, since it occupies a huge amount

of backbone bandwidth resources for data transmission
between mobile devices and cloud datacenter. Moreover, it
cannot provide low-latency guarantee for many real-time
applications. As a promising computing paradigm, mobile
edge computing (MEC) (Satyanarayanan et al., 2015; Shi
et al., 2016; Liu et al., 2020) extends the cloud to the edge
of networks so that task computing can be performed at the
edge of clouds that are close to the data source. Following
this idea by deploying a crowd sensing application in MEC
environments, many computation tasks can be performed
locally on the edge including edge devices (be interchangeable
with mobile devices and user devices) and edge servers, so that
the valuable backbone bandwidth can be significantly saved
and the response latency will be shortened accordingly.

In a hybrid crowd sensing system, there are multiple types
of resources available for performing crowd sensing tasks,
e.g., cloud resources like cloud servers and edge resources like
edge devices and edge servers. The most important problem
is to find a suitable way to schedule tasks among those
resources. Though many work have explored task offloading
toward edge computing (Lin et al., 2019), few of them can
be applied directly to solve the task scheduling problem in
the crowd sensing scenario. Specifically, current work mainly
aims to explore scheduling mechanisms that can efficiently
assign tasks from end users to edge servers with a focus on
performing tasks on edge servers, while tasks of crowd sensing
applications are often issued by the application provider. These
tasks are firstly assigned to edge devices for data collection
and pre-processing, and then be sent to edge servers for further
processing. There are three major challenges as we are dealing
with task scheduling in a crowd sensing system:

1 Different from edge servers that are set for a specific
application purpose, edge devices are usually owned by
individuals, and these private devices are non-dedicated
for executing sensing tasks.

2 Before returning results back to the cloud, sensing tasks
need to be performed on both edge devices as well as
edge servers. This execution logic is unique in the
edge-enabled crowd sensing system, where task
scheduling on both types of resources is highly coupled.

3 Moreover, most crowd sensing applications have to
perform tasks cyclically. The long-term objective of task
scheduling makes the problem more challenging.

To address these challenges, we investigate the task scheduling
for MEC-enabled crowd sensing applications with an
emphasis on the cost-efficient edge resources utilisation that

 Task scheduling for mobile edge computing enabled crowd sensing applications 89

is less explored but more compelling from the perspective of
a crowd sensing service provider. We first present a MEC-
enabled crowd sensing service system framework, and divide
the task execution into multiple stages: task offloading stage
and task uploading stage. Then we conduct in-depth analysis
on the response latency and operation cost at different stages,
and design a staged scheduling algorithm to jointly optimise
the total latency and the cost. In particular, this paper makes
the following contributions:

• We build a new MEC system framework specialised for
crowd sensing applications that captures the unique
workflow of crowd sensing tasks in MEC environments.
Specifically, the framework allows us to investigate task
scheduling from application datacenter to edge devices
and then to edge servers and finally back to datacenter.
From the perspective of application provider, we define
a practical task scheduling problem with its objective to
minimise the operation cost under a latency constraint.

• It is impossible to generate scheduling profiles for both
task offloading and task uploading at the same time
since they are highly coupled. In this paper, we propose
a flexible solution to stage scheduling into task
offloading from application provider to edge devices
and task shifting across edge servers.

• In order to solve the problem under the assumption of
long period of time, we propose a multi-period
optimisation algorithm by leveraging the Lyapunov
technique. We verify the effectiveness and efficiency of
our proposed algorithm via extensive experiments.

The rest of this paper is organised as follows. In Section 2, we
review the recent work that are closely related to our work.
In Section 3, we elaborate the system framework and present
a formal definition of the problem. In Section 4, we analyse
the impacts of scheduling profiles upon latency and cost, and
present the details of the algorithm design. In Section 5, we
evaluate our algorithm with multiple experiments. Finally, we
conclude the paper in Section 6.

2 Related work

Crowd sensing provides an efficient way to implement
applications that requires collecting massive information
regarding physical world in a distributed manner. Owing to the
super computing power of cloud, most crowd sensing systems
put large amounts of sensing data and computing tasks into
the remote cloud datacenter (Merlino et al., 2016). But the
combination of crowd sensing with cloud computing suffers
from high latency and may not apply to today’s applications
that are mostly sensitive to response latency. Edge computing
schedules tasks to edge devices and servers, which can be used
as an excellent technical supplement for those crowd sensing
applications.

Recently, a considerable amount of efforts have been
devoted to the task scheduling in MEC environments (Wang
et al., 2018a). Dinh et al. (2017) explored the task assignment

optimisation with a focus on minimising the latency and
energy consumption. It mainly considers the computational
resources and optimises the task assignment by employing
dynamic CPU frequency adjustment algorithms. Sardellitti
et al. (2015) took both computational and network resources
into account and formalised the problem as a latency
constraint energy consumption optimisation. Chen et al.
(2016a) exploited the distributed computation offloading
among users, and converted it as a multi-user offloading game,
where users can choose whether to offload tasks and how much
calculation to be offloaded. A decision-making algorithm was
designed to help users reach Nash equilibrium. Mao et al.
(2016) proposed a novel task offloading method for a green
MEC system equipped with energy harvesting (EH) devices.
Tan et al. (2017) presented a general model for job dispatching
and scheduling among edge servers and proposed a provable
approximate algorithm.

Most of those studies assume that tasks are issued by
individual users and need to be offloaded to edge servers
for execution, which are quite different from crowd sensing
scenario where tasks are issued by an application service
provider. Wang et al. (2016) studied the mobile task scheduling
in a multi-cloudlet environment and attempted to optimise
the computation efficiency. Zhang et al. (2018) studied the
task offloading problem from a bottom-up perspective and
developed a non-cooperative task allocation framework based
on game theory. However, users have to make their own
decisions without being aware of others, which makes it hard to
guarantee the existence of optimal solution. Liu et al. (2018a)
designed a cooperative Stackelberg game to guide sensing
task allocation as well as pricing mechanism. Different from
those work, we investigate the problem from sensing service
provider’s perspective, and focus on the long-term objective
achievement. Wang et al. (2018b) proposed a crowdsourcing
model that is used to recommend user-preferred and trustful
tasks for end users. The recommendation decisions are made
based on the computation of both user similarity and task
similarity. In contrast, our work primarily focuses on the task
scheduling for latency-sensitive applications, which is more
complicated since it involves task offloading from servers
to devices, task uploading from devices to servers and task
shifting across servers.

3 System framework

In this paper, we assume that the crowd sensing services
are provided by a hybrid system built on multiple types of
resources. The system framework is illustrated in Figure 1,
at the top level, the sensing application servers are deployed
within a remote cloud datacenter and they provide all
individual users access to the crowd sensing application. At
the middle level, a group of edge servers are available for
additional computation power and temporary intermediate
data storage. These edge servers are deployed at the edge of
network with a base station (BS) beside providing the radio
access for individual users. In the 4G network, the average
communication distance to a BS is up to 0.12 square kilometers
(Ge et al., 2016; Zhai et al., 2017). Current cellular networks

90 J. Zhou et al.

Table 1 Symbols and their descriptions

Symbol Description
Rt Set of tasks ri at period t, |Rt| = m, t ∈ [0, T − 1]
St Set of edge servers at period t, |St| = k
Dt Set of edge devices at period t, |Dt| = n
πt Task offloading profile at period t
πt

i Task ri’s offloading vector
Lt

dev−i The execution time of ri spent on the device
Lt

up−i The uploading latency of ri from device to server
Lt

sh−i The shifting latency of ri across servers
Lt

ser−i The latency to complete ri on the server
Inti,x Intermediate data size of ri at device x
Ct

dev−i Cost paid for ri’s execution on the device
Ct

up−i Cost paid for ri’s intermediate data uploading
Ct

sh−i Cost paid for ri’s intermediate data shifting
Ct

ser−i Cost paid for ri’s execution on the server
ηt Task uploading profile
ηt
i Task ri’s uploading vector

σt Task shifting profile
σt

i Task ri’s shifting vector
Rt

a Set of tasks uploaded from devices to server a
R′t

a Set of tasks arrived on server a
λt
a Arrival rate from devices to server a

λ′t
a Arrival rate on server a

Q(t) Queue backlog function
Ψ(Q(t)) Lyapunov function
o(Q(t)) Lyapunov drift function

are dense enough to ensure that individuals who are interested
in the crowd sensing application can be covered by multiple
BSs. Those users are encouraged to use their own devices to
collect sensing data from physical world at the bottom layer
and perform some computation tasks for data preprocessing.
These edge devices finish tasks and upload intermediate data
to any edge server via the an available BS. In return users
will be rewarded by the crowd sensing service provider for
their contributions. The key symbols used in this paper are
summarised in Table 1.

3.1 Crowd sensing task model

As required by many real-time crowd sensing applications,
sensing tasks should be periodically initialised and performed
to provide uninterrupted services. Those tasks are usually
grouped into batches over time and each batch has the same
deadline. Here the system is assumed to run for a long period
of time say T periods (T → ∞), and the length of each period
depends on the specific sensing application which may vary
from seconds to hours. At the beginning of each period t,
a batch Rt of tasks would be initialised by the application
system, and these tasks has to be completed within this
period. Otherwise the results returned by them will be invalid.
Meanwhile, a set Dt of edge devices owned by individuals
compete for those tasks by sending requests to the application
center. The request contains each device’s configure profiles
and current workloads.

Figure 1 The overview of a MEC-enabled system for crowd
sensing applications (see online version for colours)

Edge Servers

Application Datacenter

Edge devices

Crowd sensing

information

The sensing task’s primary function is to rely on edge devices
to collect raw data from the physical world and to conduct
lightweight computation so that the raw data can be converted
into qualified intermediate data. Another function of a task is
to rely on edge servers to complete middleweight computation
against the intermediate data uploaded from edge devices.
We define a quadruple (ri−time, ri−dev, ri−ser, ri−prio)
to describe a sensing task ri, where ri−time represents
the required sensing time, ri−dev and ri−ser represent the

 Task scheduling for mobile edge computing enabled crowd sensing applications 91

computation demands per data unit on device and server
respectively, and ri−prio represents task ri’s priority which
reflects the importance of a task and is set to 1 by default
for regular tasks. Besides regular tasks, we also consider the
existence of a tiny fraction of kernel tasks and grant higher
priority to them, i.e., ri−prio > 1. Let ann-dimensional vector
πt
i be the offloading decision on task ri at period t, where

variable n is the number of edge devices and entry πt
i,x = 1

indicates task ri being offloaded to device x, otherwise πt
i,x =

0.
In our framework, the task execution workflow consists of

three stages as shown in Figure 2, i.e., task offloading, task
uploading and results return. The first stage is in charge of
offloading tasks from datacenter to edge devices. At the second
stage, edge devices continue to upload tasks accompanied
by intermediate data to a set St of edge servers for further
processing. If an edge device is covered by communication
regions of multiple edge servers, it may choose one of them
randomly for task uploading. Let k-dimensional vector ηt

i be
the uploading decision at period t, where variable k is the
number of edge servers and entry ηti,a = 1 indicates that task
ri and its corresponding intermediate data are uploaded to
edge server a, otherwise ηti,a = 0. It is worth noting that tasks
are allowed to be shifted to other servers for execution due
to the following considerations: first, edge servers are often
interconnected via the high-speed network, which facilitates
task shifting; second, the workloads of edge servers are
probably imbalance due to the uneven location distribution
of edge devices, which requires rescheduling optimisation;
last but not the least, the task uploading profile is hard to be
optimised due to the limited choices of servers for each device,
while task shifting optimisation can instead be explored by
the service provider. Therefore, we add a substage of task
shifting to optimise the task rescheduling across edge servers.
Similarly let σt

i be the scheduling vector of task ri on servers
and entry σt

i,a denote whether ri is finally scheduled on server
a. At the last stage, the output of tasks performed on edge
servers are returned back to application servers located in the
cloud datacenter. Through the first two stages’ processing, the
final output to be transferred are usually very small compared
to raw data, and then the amount of data transferred over
internet backbone are reduced significantly and no longer need
to be optimised. Therefore, we focus on the optimisation of
latency Lt

i and cost Ct
i involved in the first two stages, i.e.,

Lt
i = Lt

dev−i + Lt
up−i + Lt

sh−i + Lt
ser−i,

Ct
i =

(
Ct

dev−i + Ct
up−i + Ct

sh−i + Ct
ser−i

)
· P t

i ,
(1)

where Lt
dev−i, L

t
up−i, L

t
sh−i and Lt

ser−i are latencies spent
on device, uploading, shifting and server respectively, and
Ct

dev−i, C
t
up−i, C

t
sh−i and Ct

ser−i are costs paid for device,
uploading, shifting and server respectively. P t

i is used to
denote whether task ri is completed successfully. Clearly, we
have P t

i = 0 if Lt
i > L∗; otherwise, P t

i = 1.
In order to illustrate the execution workflow of sensing

task model, we take road traffic management as an example. In
this application scenario, drivers in moving cars are able to use
dash cam to monitor road conditions. Vehicle built-in smart

device can preprocess the recorded videos by extracting visual
and motion features from the raw data. The extracted features
will be sent to nearby edge servers to do object detection.
Finally, the output detections are returned back to cloud servers
to perform traffic statistics and forecasting.

Figure 2 An illustration of task execution workflow in the
MEC-enabled crowd sensing service system (see online
version for colours)

3.2 Problem formulation

Based on the above models, our work focuses on the sensing
task scheduling problem from the perspective of a crowd
sensing service provider. The objective is to minimise the
operation cost as well as guarantee response latency over a
long period of time. The problem takes sensing tasks and two
types of edge resources (i.e., edge devices and edge servers)
as input, where tasks will be issued periodically. Hence, time
is divided into multiple periods in terms of task updating
cycle. To achieve the objective, task scheduling has to jointly
optimise both task offloading and task shifting in each period.
We formally define the task scheduling problem as follows:
Task scheduling: In a MEC-enabled crowd sensing system,
there are a group St of edge servers and a group Dt of edge
devices available at each period, a setRt of tasks will be issued
and need to be firstly offloaded to edge devices, after uploading
to edge servers, they also should be shifted across servers.
Let πt = (πt

1, ...,π
t
n) and σt = (σt

1, ...,σ
t
k) denote the task

offloading profile and task shifting profile respectively. The
objective of the crowd sensing service provider is to find the
optimal profiles πt and σt that minimise the total cost Ct of
all tasks as well as guarantee the latency Lt

i of each task ri
less than L∗, i.e.,

argmin
πt,σt

lim
T→∞

1
T

T∑
t=1

Ct

whereCt =
∑

ri∈Rt

Ct
i ,

s.t. lim
T→∞

1
T

T∑
t=1

Lt
i ≤ L∗, ri ∈ Rt.

(2)

92 J. Zhou et al.

4 Staged scheduling

According to the task execution workflow, the scheduling
profiles will be used at different stages, e.g., task offloading
profile works at the task offloading stage, while task shifting
profile determines task rescheduling across edge servers at the
task shifting substage. The impacts of two scheduling profiles
on latency and cost are highly coupled. The optimisation of
shifting profile largely relies on the results of task offloading.
To this end, we propose a staged scheduling scheme to
optimise both scheduling profiles in a divide-and-conquer
fashion.

4.1 Task offloading

When task ri is offloaded to device x, it takes ri−time to
collect raw data, and the data size is denoted by Rawi,x =
fx(ri−time), which is a function of ri−time and may vary by
device. Let xcomp denote device x’s computation capacity and
xload denote its workload at the beginning of current period
(0 ≤ xload < 1), then the execution time of ri spent on device
x is given by

Lt
i,x = ri−time +

ri−devRawi,x

xcomp(1− xload)
. (3)

The execution time of ri spent on all devices form an
n-dimensional vector (Lt

i,1, ..., L
t
i,n). For a given πt

i , the
expected execution time of ri spent on the device should be
represented by

Lt
dev−i = (Lt

i,1, ..., L
t
i,n) · πt⊤

i . (4)

Every individual with an edge device involved in the crowd
sensing task execution will be rewarded for their contributions.
Note that the system may suffers from data security, such as
data tampering or returning faked data maliciously. There are
many efforts (Fang et al., 2018; Cao et al., 2019) have been
devoted to enhance data security in IoT and edge computing
environments. However, since that is beyond the scope of this
paper, here we assume that a security mechanism has been
integrated for data verification. The cost Ci,x paid for ri’s
execution on device x, is defined as a function of task ri and
device x, i.e.,

Ct
i,x = αdevri−time + log

(
rβdev

i−dev · x
γdev(1−xload)
comp

)
, (5)

where αdev , βdev and γdev are device cost parameters. Ci,x

has positive relationships with ri−time, ri−dev and xcomp and
a negative relationship with xload. As a result, the expected
cost paid for ri’s execution on the device is represented by

Ct
dev−i = (Ct

i,1, ..., C
t
i,n) · πt⊤

i . (6)

Considering that the uploading profile ηt and shifting profile
σt have not been determined yet at this stage, we may not
be able to minimise the total cost and latency defined in
equation (1) via optimising the offloading profile. Instead we
turn the objective into the minimisation of cost and latency
spent on devices, i.e.,

argmin
πt

∑
ri∈Rt

Ct
dev−i

s.t. 1m
∑

ri∈Rt

Lt
dev−i ≤ L∗

dev,
(7)

where L∗
dev is a flexible latency constraint and always such

that L∗
dev < L∗.

The offloading profile πt is a matrix that collects all task
offloading vectorsπt

i . For a specific task ri, considering that its
offloading decisionπt

i,x regarding each devicex is a 0-1 binary
variable, the problem is a nonlinear 0-1 programming which
can be solved by leveraging a branch-and-bound algorithm
(Hansen, 1979).

4.2 Task shifting

Assume that task ri is offloaded to device x, i.e., πt
i,x =

1. When x completes the data preprocessing, we obtain the
intermediate data of task ri and its data size is represented
by Inti,x = fi(Rawi,x), which is an increasing function of
the raw data size. Each device’s communication scope may be
covered by a multiple edge servers, then the device randomly
select one of them for task uploading. As a result, the uploading
profileηt is generated in this way. The time spent on uploading
task ri’s intermediate data from x to a is calculated by

Lt
i,x,a =

Inti,x
wx,a

, (8)

wherewx,a is the upload bandwidth between x and a. If server
a is outside of the communication scope of device ri, then
wx,a = 0 and the uploading delay is set to be a maximal value
Lmax ≫ L∗. The expected uploading latency of ri is given
by

Lt
up−i = (Lt

i,x,1, ..., L
t
i,x,k) · ηt⊤

i . (9)

The cost paid for data uploading positively depends on the size
of intermediate data and upload bandwidth, and its definition
is given by

Ct
i,x,a = αupwx,a log Inti,x, (10)

where αup is the uploading cost parameter. If device x is not
covered by server a, tasks on x cannot be uploaded to a, then
we have Ct

i,x,a = 0. Similarly the uploading cost of task ri is
represented by

Ct
up−i = (Ct

i,x,1, ..., C
t
i,x,k) · ηt⊤

i . (11)

After tasks and their intermediate data are uploaded to the
edge servers, they can be rescheduled across servers for
further optimisation via task shifting. Assume that task ri was
originally offloaded to server a, when it is shifted to server b,
the transfer delay will be

Lt
sh−i,b =

{
Inti,x
wa,b

, b ̸= a,

0, b = a.
(12)

For a given σt
i , the expected shifting latency for task ri is

calculated by

Lt
sh−i = (Lt

sh−i,1, ..., L
t
sh−i,k) · σt⊤

i . (13)

The corresponding cost for task shifting from a to b is
defined as an increasing function of intermediate data size and
bandwidth, i.e.,

Ct
i,x,a,b = αshwab log Inti,x, (14)

 Task scheduling for mobile edge computing enabled crowd sensing applications 93

where αsh is the shifting cost parameter. If a = b, then there is
no shifting cost and we set wab = 0 so that Ct

i,x,a,b = 0. The
expected shifting cost for task ri is given by

Ct
sh−i = (Ct

i,x,a,1, ..., C
t
i,x,a,k) · σt⊤

i . (15)

For an arbitrary edge server a, it may receives tasks from
both edge devices and other edge servers in the same period.
In order to analyse the impact of scheduling profile upon
latency and cost, we model each edge server as a M/G/1
queue by leveraging queuing theory, where M refers to the
Poisson distribution of task arrival, and G represents that the
computation time follows an arbitrary distribution. Given the
uploading profile ηt, we can obtain the set of tasks on each
server, Rt

a, a ∈ [1, k], and deduce its corresponding arrival
rate, λt

a. In addition, as shown in Figure 3, by comparing ηt

with shifting profile σt, we can also deduce the hybrid set of
tasks and the corresponding arrival rate, i.e.,

R′t
a = Rt

a/R
out
a ∪Rin

a , λ′t
a = λt

a − λout
a + λin

a , (16)

where Rout
a and Rin

a are the sets of tasks shifting out
and shifting in, respectively, and λout

a and λin
a are the

corresponding leaving rate and arrival rate, respectively.

Figure 3 An example of task shifting between two edge servers
(see online version for colours)

 !

"#$%#$&'

 !

"#$%#$&(

 ! " # $$$

 % & % $$$

 & % % $$$

'()*+ +!,-, *./0 ,1.21. ! +/ "

'()*+ +!,-, *./0 ,1.21. " +/ !

 ! " # $$$

 & % % $$$

 % & % $$$

 .&
 .3
 .4
 $
 $
 $

 .&
 .3
 .4
 $
 $
 $

!

!"

#

$%

#

!"

&

$%

&

#

 $$$

 $$$

#

&

&

'()*+)56
/7+)0)8!+)/5

Let acomp denote the computation capacity of edge server
a. The computation time of task ri on server a should be
Lt
comp−i,a =

ri−serInti,x
acomp

. We use θ to denote the variable of
computation time for any task and use E [θ] and E

[
θ2
]

to
represent its first and second moments, respectively. In terms
of Pollaczek-Khinchin mean formula (Chan et al., 1997), the
expected waiting time of task ri on server a is calculated by

Lt
wait−a =

λ′t
aE[θ2]

2(1− λ′t
aE[θ])

. (17)

Combining the computation time, we obtain the sojourn time
for server a to complete task ri, i.e., Lt

i,x,a = Lt
wait−a +

Lt
comp−i,a. Then the expected latency to complete task ri on

the server is represented by

Lt
ser−i = (Lt

i,x,1, ..., L
t
i,x,k) · σt⊤

i . (18)

The cost paid for task ri’s execution on server a is defined as an
increasing function of intermediate data size, task computation
demand and a’s computation capacity, i.e.,

Ct
ser−i,a = log

(
Intαser

i,x · rβser

i−ser · a
γser
comp

)
, (19)

where αser, βser and γser are server cost parameters. Then
the expected cost of task ri on a server is given by

Ct
ser−i = (Ct

ser−i,1, ..., C
t
ser−i,k) · σt⊤

i . (20)

4.3 Kernel tasks

Kernel tasks are critical for the successful delivery of
application services and they should be guaranteed to be
completed with high priority. To this end, a kernel task is
required to be assigned to a group of di devices, where di is
a random integer chosen from (1,

√
ri−prio]. When di > 1,

there are a group of task copies (r
(1)
i , ..., r

(di)
i), and each of

them can be regarded as an independent task. As long as one
of them is completed on time, the kernel task is deemed to be
successfully executed. Its latency is accordingly set to be the
minimum one, i.e., Lt

i = min(Lt
i(1)

, ..., Lt
i(di)

). At the same
time the cost is the sum of all successful executions of copies,

i.e., Ct
i =

di∑
j=1

Ct
i(j)

· P t
i(j)

, where P t
i(j)

is the task completion

indicator and P t
i(j)

= 0 if Lt
i(j)

> L∗; otherwise P t
i(j)

= 1.

4.4 Lyapunov optimisation

At the first stage, we optimise the latency spent on the device
by solving a nonlinear subproblem described in equation (7),
and obtain the task offloading profile. At the second stage,
according to the set of devices covered by each edge server, the
task uploading profile is also obtained by means of a random
selection of servers within the communication scope. Having
offloading profile and uploading profile as input, we can solve
the scheduling problem defined in equation (2) that is also a
nonlinear 0-1 programming.

However, as the number of periods grows, i.e., T → ∞, it
is of challenging to solve the proposed scheduling problem due
to the coupling between task scheduling profiles and the long-
term latency constraint in each period. To this end, we propose
to solve the problem by leverage Lyapunov optimisation
technique that is a principled method for analysing dynamic
systems.

To satisfy the latency constraint, we create a virtual queue
that is used to describe the latency deficit and provide the
guidance for the following task scheduling, and then define a
function Qi(t) for each task ri to denote the queue backlog at
period t. The queue’s dynamics evolves in a recursive manner,
i.e.,

Qi(t+ 1) =
[
Qi(t) + Lt

i − L∗]+, (21)

where [value]+ = max(value, 0) and Qi(0) = 0. We also
define a Lyapunov function as follows:

Ψ(Qi(t))
∆
=

1

2

∑
ri∈Rt

Q2
i (t). (22)

Here Ψ(Qi(t)) is used to reflect the queue’s stability, and
a lower value implies a more stable queue. For ∀t ≤ T , we
define a function of Qi(t) to capture the drift between two
adjacent periods,

o(Qi(t))
∆
= E [Ψ(Qi(t+ 1))−Ψ(Qi(t))|Qi(t)] . (23)

94 J. Zhou et al.

Through applying Lyapunov optimisation, the objective of
long-term task scheduling becomes equivalent to minimising
the supremum bound on the following inequality during each
period, i.e.,

o(Qi(t)) + ωE [Ct
i |Qi(t)]

≤ Λ +Qi(t)E [Lt
i − L∗|Qi(t)] + ωE [Ct

i |Qi(t)] ,
(24)

where Λ = 1
2

(∑
ri∈Rt (Lt

i − L∗)
)2

is a weight designed to
control the tradeoff of optimisation between cost and latency.
Therefore, the scheduling problem is redefined as follows:

Lyapunov optimisation: Given the same input of the original
problem, and the profilesπt andηt obtained from the previous
stages of each period t, the objective is to find σt such that it
minimises cost and latency, i.e.,

argmin
σt

∑
ri∈Rt

(
ωCt

i +Qi(t)L
t
i

)
, t ∈ [0, T − 1]. (25)

The above definition converts the long-term shifting problem
to multiple minimisation problems at each period, and they
can be solved separately by having the output of offloading and
uploading at each period. For each subproblem, the additional
term Qi(t)L

t
i is set to control the latency deficit. Whenever

Qi(t) increases, the deficit must be minimised with a higher
priority.

We propose an algorithm named crowd sensing task
scheduling (CSTS) to implement the staged scheduling and
the pseudocode is described by Algorithm 1. It runs on the
cloud and collects the device status sent from individuals
in the current period as the input of problem formalised by
equation (7). It solves the offloading profile πt based on the
branch-and-bound method, so as to ensure that the average
latency is less than a given L∗

dev . At the second stage, the
algorithm first solves the uploading profile ηt by randomly
selecting a communicable edge server for every device. After
that, it solves the nonlinear 0-1 programming defined in
equation (25) by means of the branch-and-bound method, and
updates the queue backlog for the next period.

5 Experimental evaluation

In this section, we carry out experiments to evaluate the
performance of our proposed algorithm. We first introduce the
experiment settings including system simulation and baselines
and then present the evaluation results.

5.1 Settings

To build the experimental environment, we simulate a MEC-
enabled crowd sensing system consisting of n = 20 edge
servers with computation capacity between 10 and 20, k =
200 edge devices with computation capacity between 1 and
5. During each period, 100 tasks are initialised with specified
requirements, i.e., sensing time ri−time ∈ [1, 1.5]× 104 ms,
computation demands per unit ri−dev ∈ [0.5, 1], ri−ser ∈
[1, 5], and priority rprio = 9 for kernel tasks. Each device has
a set of edge servers available for communication, the set is
built by randomly selecting servers from set St, and the set

size is set to be an integer between 1 and 3. The raw data
size is proportional to sensing time, and the factor is set to
2, while the intermediate data size is also proportional to the
corresponding raw data size and the factor is set to 0.4. Other
parameter settings are listed in Table 2.

Algorithm 1 CSTS algorithm

Require: Rt, Dt, St, L∗, L∗

ser;
Ensure: π

t, ηt, σt;
1: for ri ∈ Rt do

2: Qi(0)← 0;
3: end for

4: for t← 0 to T − 1 do

5: receive the current status of edge devices in Dt;
6: solve a nonlinear 0-1 programming formalized by

Eq. 7, and obtain π
t; /* task offloading */

7: η
t
← zeromatrix;

8: for x ∈ Dt do

9: randomly select an edge server a within the
communication region as the uploading target;

10: ηti,x,a ← 1, ∀πt
i,x = 1;

11: update η
t by appending πt

i,x; /* task
uploading */

12: end for

13: solve a nonlinear 0-1 programming formalized by
Eq. 25, and obtain σ

t; /* task shifting */
14: for ri ∈ Rt do

15: calculate Qi(t+ 1) based on Eq. 21;
16: end for

17: end for

18: return the set of (πt, ηt, σt);

Table 2 Simulation parameters and their default values

Parameter Value
n 20
k 200
m 100
T 100
L∗ 3.5× 104 ms
L∗

dev 2.2× 104 ms
ri−time [1, 1.5] ×104 ms
ri−dev [0.5, 1]
ri−ser [1, 5]
ri−prio for kernel tasks 9
Rawi,x 2 · ri−time MB
Inti,x 0.4 ·Rawi,x MB
xcomp [1, 5]
acomp [10, 20]
(αdev, βdev, γdev) (10−4, 0.5, 3)
αup 1
αsh 0.6
(αser, βser, γser) (1, 1, 2)

We compare our algorithm with the following baslines:

• Random offloading random shifting (RORS): It
randomly assigns tasks to edge devices for task

 Task scheduling for mobile edge computing enabled crowd sensing applications 95

offloading. For task shifting, it randomly decides
whether and where each task will be shifted.

• Random offloading greedy shifting (ROGS): It generates
the task offloading profile in a random manner similar
to RORS, but generates the task shifting profile in a
greedy manner. Specifically, for task shifting, it first
classifies edge servers into two groups by estimating the
waiting time, i.e., light-load servers and heavy-load
servers. Then for each task ri, if ri resides on a
heavy-load server, it will be shifted to the server that
currently has the lowest workload.

• Greedy offloading greedy shifting (GOGS): For task
offloading, it always assigns tasks with highest
computation demands to the devices with the best
status, e.g, the most powerful computation capacity and
the lowest workload. For task shifting, it also conducts
greedy shifting similar to ROGS.

Figure 4 Performance comparison under different latency
thresholds: (a) hit ratio under different latency thresholds
and (b) average cost under different latency thresholds
(see online version for colours)

(a)

(b)

5.2 Results

Evaluation under varied latency thresholds: In this group
of experiments, we focus on the objective achievement
under latency thresholds varied from 2×104 ms to 105 ms.
Specifically, we evaluate the average hit ratio and average cost
of all the compared algorithms during 100 periods, where hit
ratio is proposed to denote the fraction of completed tasks
against total tasks per period. As shown in Figure 4(a), CSTS’s

hit ratio is always no less than the others. As a baseline,
RORS randomly generates offloading and shifting proflies,
which results in the longest time to complete all tasks, e.g.,
105 ms. Greedy offloading reduces the time spent on devices
by scheduling high-demand tasks to strong-capacity devices,
and greedy shifting reduces the time spent on servers by
scheduling tasks from heavy-load servers to light-load ones.
Thus both ROGS and GOGS achieve a better performance
than RORS. In contrast, CSTS reduces latencies at all stages
except uploading by optimising task scheduling. Therefore, it
is able to ensure all tasks being completed successfully within
an even lower constraint, e.g., 3.5×104 ms.

Figure 4(b) shows that almost all algorithms except CSTS
have an sustained increasing trend on cost along with the
growth of threshold. We notice that CSTS’s cost is higher
than the others whenL∗ ≤ 4× 104 ms. This is because the hit
ratios of others are far below 100% when L∗ ≤ 4× 104 and
the costs are only paid for the small fraction of tasks that have
been completed successfully. We also notice that the cost of
CSTS decreases as L∗ increases from 3.5× 104 to 6× 104.
It is because high threshold constraint allows more room for
optimisation, at the same time the merits will disappear as L∗

increases. Therefore, the cost of CSTS does not continue to
decline.

Figure 5 Performance comparison with different number of tasks:
(a) average latency with different number of tasks and
(b) average cost with different number of tasks
(see online version for colours)

(a)

(b)

Evaluation under different number of tasks: In this group of
experiments, we evaluate the impact of tasks upon the latency
and cost. The latency threshold is set to 105 ms to ensure that
all tasks could be accomplished before the deadline no matter
which algorithm is adopted. Figure 5(a) shows the average
latencies and the corresponding bounds of all algorithms as

96 J. Zhou et al.

the number of tasks varies. Compared to baselines, CSTS
optimises the long-term task scheduling across devices and
servers so that it achieves the lowest latency and tightest
bounds under different numbers of tasks. Figure 5(b) shows the
average cost per period and the corresponding bounds, where
the average cost is found to be approximately linear with the
number of tasks, meanwhile the bounds become larger as the
number of tasks increases.

Figure 6 Self-performance comparison under different fraction of
kernel tasks: (a) hit ratio under different fractions of
kernel tasks and (b) average latency under different
fractions of kernel tasks

(a)

(b)

Evaluation under different kernel fractions: In this group of
experiments, we explore the impact of kernel tasks upon the
performance by varying the fraction of kernel tasks from 5%
to 50%. From the results shown in Figure 6(a), we notice
that when the latency threshold is set too low, e.g., L∗ <
3.5× 104 ms, the hit ratio of kernel tasks will decline as the
fraction increases. For each kernel task, there will be multiple
independent task copies issued and the total number of tasks
increases. Then the average latency of kernel tasks increases
accordingly as shown in Figure 6(b). The latency of a kernel
task takes the value of the minimum of its task copies, so
that kernel tasks have the lower average latency compared
with non-kernel tasks. When the fraction of kernel tasks is
high (e.g., exceeds 30%) but the latency threshold is low (e.g.,
less than 3.5× 104 ms in our system settings), there may be
a tiny number of kernel tasks and their latencies exceeds the
threshold. As a result, in order to avoid the impact of timeout
of kernel tasks upon the sensing service quality, it is advised
to lower the fraction of kernel tasks in each batch of tasks,
otherwise, we have to raise the latency constraint to a proper
threshold.

6 Conclusion

In this paper, we investigated the MEC-enabled crowd sensing
service system with a focus on task scheduling optimisation
from the service provider’s perspective. We built a workflow
framework for crowd sensing services and it captures the
task execution logic across varied stages. To address the
scheduling problem for many latency-sensitive crowd sensing
applications, we first defined a formalised scheduling problem
based on the proposed framework and then proposed a staged
scheduling scheme. The proposed scheme decouples the
original problem by converting it into two sub-problems at
different stages. Moreover, we applied Lyapunov optimisation
technique to address the long-term latency-constraint cost
minimisation. We also evaluated the proposed algorithm by
extensive experiments.

Acknowledgement

This work is supported by National Natural Science
Foundation of China (No. 61972272, No. U1905211, No.
61672370), the Open Project Program of the State Key
Laboratory of Mathematical Engineering and Advanced
Computing (No. 2019A04), Jiangsu Planned Projects for
Postdoctoral Research Funds (No. 1701173B), Open Project
Program of State Key Lab. for Novel Software Technology
(No. KFKT2019B16) and Jiangsu Overseas Visiting Scholar
Program for University Prominent Yong & Middle-aged
Teachers and Presidents.

References

Cao, C., Wang, J., Wang, J., Lu, K., Zhou, J., Jukan, A. and Zhao,
W. (2019) ‘Optimal task allocation and coding design for secure
coded edge computing’, 39th IEEE International Conference
on Distributed Computing Systems, ICDCS 2019, Dallas, TX,
USA, 7–10 July, pp.1083–1093.

Capponi, A., Fiandrino, C., Kantarci, B., Foschini, L., Kliazovich,
D. and Bouvry, P. (2019) ‘A survey on mobile crowdsensing
systems: Challenges, solutions, and opportunities’, IEEE
Commun. Surv. Tutorials, Vol. 21, No. 3, pp.2419–2465.

Chan, W., Lu, T-C. and Chen, R-J. (1997) ‘Pollaczek-khinchin
formula for the m/g/i queue in discrete time with vacations’,
IEE Proceedings – Computers and Digital Techniques, Vol. 144,
No. 4, pp.222–226.

Chen, X., Jiao, L., Li, W. and Fu, X. (2016a) ‘Efficient multi-
user computation offloading for mobile-edge cloud computing’,
IEEE/ACM Transactions on Networking, Vol. 24, No. 5,
pp.2795–2808.

Chen, Y., Chen, J. and Tseng, Y. (2016b) ‘Inference of conversation
partners by cooperative acoustic sensing in smartphone
networks’, IEEE Trans. Mob. Comput., Vol. 15, No. 6, pp.1387–
1400.

Dai, W., Wang, Y., Jin, Q. and Ma, J. (2016) ‘An integrated incentive
framework for mobile crowdsourced sensing’, Tsinghua Science
and Technology, Vol. 21, No. 2, pp.146–156.

 Task scheduling for mobile edge computing enabled crowd sensing applications 97

Devarakonda, S., Sevusu, P., Liu, H., Liu, R., Iftode, L. and Nath,
B. (2013) ‘Real-time air quality monitoring through mobile
sensing in metropolitan areas’, ACM SIGKDD International
Workshop on Urban Computing, UrbComp, Chicago, IL, USA,
pp.15:1–15:8.

Dinh, T.Q., Tang, J., La, Q.D. and Quek, T.Q.S. (2017), ‘Offloading
in mobile edge computing: task allocation and computational
frequency scaling’, IEEE Trans. Communications, Vol. 65,
No. 8, pp.3571–3584.

Fang, X., Yang, M. and Wu, W. (2018) ‘Security cost aware
data communication in low-power iot sensors with energy
harvesting’, Sensors, Vol. 18, No. 12, p.4400.

Ge, X., Tu, S., Mao, G., Wang, C. and Han, T. (2016) ‘5g ultra-dense
cellular networks’, IEEE Wireless Commun., Vol. 23, No. 1,
pp.72–79.

Gubbi, J., Buyya, R., Marusic, S. and Palaniswami, M. (2013),
‘Internet of things (IoT): a vision, architectural elements, and
future directions’, Future Generation Comp. Syst., Vol. 29,
No. 7, pp.1645–1660.

Hansen, P. (1979) ‘Methods of nonlinear 0-1 programming’, Annals
of Discrete Mathematics, Vol. 5, pp.53–70.

Ilarri, S., Wolfson, O. and Delot, T. (2014) ‘Collaborative sensing
for urban transportation’, IEEE Data Eng. Bull., Vol. 37, No. 4,
pp.3–14.

Lin, L., Liao, X., Jin, H. and Li, P. (2019) ‘Computation offloading
toward edge computing’, Proceedings of the IEEE, Vol. 107,
No. 8, pp.1584–1607.

Liu, C., Du, R., Wang, S. and Bie, R. (2018a) ‘Cooperative
stackelberg game based optimal allocation and pricing
mechanism in crowdsensing’, International Journal of Sensor
Networks, Vol. 28, No. 1, pp.57–68.

Liu, J., Shen, H., Narman, H.S., Chung, W. and Lin, Z. (2018b) ‘A
survey of mobile crowdsensing techniques: a critical component
for the internet of things’, ACM Transactions on Cyber-Physical
Systems, Vol. 2, No. 3, pp.18:1–18:26.

Liu, W., Chen, J., Wang, Y., Gao, P., Lei, Z. and Ma, X.
(2020) ‘Quantum-based feature selection for multiclassification
problem in complex systems with edge computing’, Complexity,
Vol. 2020, pp.8216874:1–8216874:12.

Mao, Y., Zhang, J. and Letaief, K.B. (2016) ‘Dynamic computation
offloading for mobile-edge computing with energy harvesting
devices’, IEEE Journal on Selected Areas in Communications,
Vol. 34, No. 12, pp.3590–3605.

Merlino, G., Arkoulis, S., Distefano, S., Papagianni, C.A., Puliafito,
A. and Papavassiliou, S. (2016) ‘Mobile crowdsensing as a
service: A platform for applications on top of sensing clouds’,
Future Gener. Comput. Syst., Vol. 56, pp.623–639.

Sardellitti, S., Scutari, G. and Barbarossa, S. (2015) ‘Joint
optimization of radio and computational resources for multicell
mobile-edge computing’, IEEE Trans. Signal and Information
Processing over Networks, Vol. 1, No. 2, pp.89–103.

Satyanarayanan, M., Simoens, P., Xiao, Y., Pillai, P., Chen, Z., Ha, K.,
Hu, W. and Amos, B. (2015) ‘Edge analytics in the internet of
things’, IEEE Pervasive Computing, Vol. 14, No. 2, pp.24–31.

Shi, W., Cao, J., Zhang, Q., Li, Y. and Xu, L. (2016) ‘Edge computing:
vision and challenges’, IEEE Internet of Things Journal, Vol. 3,
No. 5, pp.637–646.

Tan, H., Han, Z., Li, X. and Lau, F. C. M. (2017) ‘Online job
dispatching and scheduling in edge-clouds’, IEEE Conference
on Computer Communications, INFOCOM, Atlanta, GA, USA,
pp.1–9.

Wang, B., Sun, Y., Liu, D., Nguyen, H.M. and Duong, T.Q. (2020)
‘Social-aware uav-assisted mobile crowd sensing in stochastic
and dynamic environments for disaster relief networks’, IEEE
Trans. Vehicular Technology, Vol. 69, No. 1, pp.1070–1074.

Wang, J., Wang, L., Wang, Y., Zhang, D. and Kong, L. (2018a) ‘Task
allocation in mobile crowd sensing: State-of-the-art and future
opportunities’, IEEE Internet of Things Journal, Vol. 5, No. 5,
pp.3747–3757.

Wang, L., Jiao, L., Kliazovich, D. and Bouvry, P. (2016), Reconciling
task assignment and scheduling in mobile edge clouds’, 24th
IEEE International Conference on Network Protocols, ICNP,
Singapore, pp.1–6.

Wang, Y., Tong, X., Wang, K., Fan, B., He, Z. and Yin, G. (2018b)
‘A novel task recommendation model for mobile crowdsourcing
systems’, International Journal of Sensor Networks, Vol. 28,
No. 3, pp.139–148.

Xiao, Z., Xiao, Y. and Chen, H. (2014) ‘An accountable framework for
sensing-oriented mobile cloud computing’, Journal of Internet
Technology, Vol. 15, No. 5, pp.813–822.

Zhai, S., Tang, Z., Wang, D., Li, Z., Chen, X., Fang, D. and
Chen, F. (2017) ‘Coverage hole detection and recovery in
wireless sensor networks based on rssi-based localization’, 2017
IEEE International Conference on Computational Science and
Engineering, CSE 2017, and IEEE International Conference on
Embedded and Ubiquitous Computing, EUC 2017, Guangzhou,
China, 21–24 July, Vol. 2, pp.250–257.

Zhang, D., Ma, Y., Zhang, Y., Lin, S., Hu, X.S. and Wang, D. (2018)
‘A real-time and non-cooperative task allocation framework
for social sensing applications in edge computing systems’,
IEEE Real-Time and Embedded Technology and Applications
Symposium, RTAS, Porto, Portugal, pp.316–326.

98 J. Zhou et al.

