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Real reductive groups

The Cartan involution for GL(n,R) is the automorphism

0(g) ="g

Definition. A Lie group G (having finitely many components) is
called reductive, if there is a homomorphism n: G — GL(n,R), s.t.
1) Kern is finite;
2) Imn is O-stable.

We say G is semisimple if it is reductive and the center of the
connected identity component Gg is finite.

The unique lift of 8 to G which is trivial on Kern is defined to be
the Cartan involution for G.

go =Lie(G) and g for the complexification.

Let go = € + 59 and g = £ + s be the Cartan decompositions.



Unitary duals

A central problems in representation theory is the classification of
the irreducible unitary representations of G.

The orbit method suggests a correspondence between irreducible
unitary representations of G and orbits for G in g}

{G — orbits in gy} e~ {Irreducible unitary repns of G}

» One expects a finite set of irreducible unitary representations
of G corresponding to the nilpotent co-adjoint G-orbits.

» They have a name—'unipotent representations'—but not yet
a good definition.

» Properly defined unipotent representations form the building
blocks of all irreducible unitary representations.

Reference. Vogan's 1986 Hermann Weyl Lectures notes published
by Annals of Mathematical Studies.



Unipotent representations for G(IF,)

Let I, be the finite field with g elements, let G be a connected
reductive algebraic group defined over Fg, and let G(Fy) be its
[Fg-rational points.

In 1976, Deligne and Lusztig defined the notion of a unipotent
representation of G(IFg) (geometric and case-free).

In 1984, Lusztig completed the classification of irreducible
finite-dimensional representations of G(Fq), In particular,

1. The classification of all irreducible finite-dimensional
representations of G(IF,) can be reduced to the classification
of the unipotent representations, and

2. The unipotent representations are classified by certain
geometric data related to the nilpotent co-adjoint orbits for
the complex group associated to G.



Unipotent representations for G

There is a rich analogy between the finite-dimensional
representations of finite groups of Lie type and the unitary
representations of real reductive Lie groups.

This analogy suggests that the unitary dual of a real reductive Lie
group should contain a finite set of building blocks parameterized
by nilpotent co-adjoint orbits.

» Classifying the irreducible unitary representations of real
reductive groups is one of the most important unsolved
problems in representation theory.

» Its solution would have major implications for the Langlands
program.

» The problem of correctly defining and classifying unipotent
representations is one of central importance in the subject.



Coadjoint orbits for reductive groups

Use the trace form to identify g§ with go.
The map f — X(f) is given by f(Y) = (X(f), Y).
Proposition. Suppose G is are real reductive group, and X is in

go-
1) The Jordan components X}, Xe, X, are in go.

2) If X is hyperbolic, then it is conjugate to an element in sq.

3) If X is elliptic, then it is conjugate to an element in &;.

Definition. (Jordan Decomposition)
Let X(f) = X(f)n + X(f)e + X(f), be the Jordan decomposition.

Then the corresponding
f =1+ fo+ 1,

is defined to be the Jordan decomposition of f.



Orbit method for reductive groups (Vogan)

Suppose that f € g;.
G(f) = centralizer of X(f) in G, go(f) ={Y € go | [X(f), Y] =0}.
0f, = —f,, 0fe = f., and

G(fn), G(fe) and G(fs) = G(fy) N G(f.) are preserved by 6.
Since X and X, commute with X}, and so belong to g(f}),
we can identify f. and f, (by restriction) with elements of g(f,)*.

Thus,
G(fh) D [G(fn)](fe) D {[G(Fn)](fe) }(Fn):

these are the same groups as

G(fn) D G(fs) D G(f).

e e —

G(f) — G(f) — G(fy) — G.



Model unipotent ideals

Proposition. (Losev, Mason-Brown and Matvieievsky)
Let G = Sp(2n,C). Then

(i)

(i)

There is one unipotent Harish-Chandra bimodule attached to
Omod- It is parabolically induced from the trivial
representation of the Segal parabolic.

There are two unipotent Harish-Chandra bimodules attached
to Op,p4- One (the spherical) is the midpoint of the
complementary series. The other (the anti-spherical) is
unitarily induced from a nontrivial character of the Segal

parabolic.



Model unipotent ideals

G 20(Omod) 20(Omod)
Aop_q %(n—l,n—l,n—3,n——3,...,1—n,1—n) %p

Ao, %p no cover

Bon, (n,n—1,n-1,...,1,1,0) (n,n—1,n—1,....1,1,0)
Bt (n,n,n—1,n—1,...,1,1,0) no cover

Con | 3(2n-1,2n-1,2n-3,2n-3,...,1,1) | (n,n—1,n—1,...,1,1,0)

Cont1 (n,n,n—1,n—1,...,1,1,0) 5(2n+1,2n-1,2n-1,...,1,1)
1

Dn %p 5P




Model unipotent representations

Definition. A unipotent representation of G attached to O, 4 is
an irreducible representation M of G such that

(i) M is unitary.
(i) The annihilator of M is one of the unipotent ideals Jo(émod)'

If G is a nonlinear covering, we require that M is genuine.

We now focus on the groups Sp(2n,R) and Mp(2n, R).

Note there are two unipotent ideals for these groups.



Model

unipotent representations

Theorem. (Huang and Mason-Brown) The following are true:

(i)

If n even, there are exactly 4n model unipotent N
representations of 5p(2n,R) with annihilator Jo(O,,,4). All
irreducible representations of Sp(2n,R) with this annihilator
are unitary and are obtained as theta-lifts of finite-dimensional
unitary chbaracters of O(p, q) with p+ q = n.

If n is odd, there are no model~unipotent representations of
5p(2n,R) with annihilator Jo(O,,,,4). There are exactly 4n
model unipotent representations of Mp(2n, R) with this
annihilator. All irreducible representations of Mp(2n,R) with
this annihilator are unitary and are obtained as theta-lifts of
unitary characters of O(p, q) with p+ q = n.



Construction of model unipotent representations

The model unipotent representations of Sp(2n,R) and Mp(2n, R)
arise in four different ways:

» By cohomological induction as Aq(A)-modules

» As constituent in as degenerate principal series representations
by real parabolic induction

» As theta-lifts of finite-dimensional unitary representations of

O(p, q)
» By transfer unitary highest weight modules



