头像

Zhenzhong Shi Professor

School of Physical Science and Technology

Biography

  • Organization:School of Physical Science and Technology
  • Tel:
  • Gender:male
  • Email:zzshi@suda.edu.cn
  • Post:Professor
  • Office Location:
  • Graduate School:SUNY Buffalo, USA
  • Address:
  • Degree:Ph. D.
  • PostCode:
  • Academic Credentials:
  • Fax:

Education

Education:

2013 Ph.D. (Physics) SUNY Buffalo

2013 M.S. (Electrical Engineering) SUNY Buffalo

2006 B.S. (Physics) University of Science and Technology of China (USTC)



Professional Experiences

Work Experience:

2013-2017 National High Magnetic Field Laboratory - Postdoc

2017-2021 Duke University - Postdoc

2021-present Soochow University - Professor

Overview

Resume:

Dr. Zhenzhong Shi received his bachelor's degree from the University of Science and Technology of China in 2006 and his Ph.D. in Physics from the State University of New York at Buffalo in 2013. From July 2013 to February 2021, he conducted postdoctoral research at the National High Magnetic Field Laboratory and Duke University in the United States. In March 2021, he joined the School of Physical Science and Technology and Institute for Advanced Study at Soochow University.


His research focuses on experimental condensed matter physics under extreme conditions, including low-temperature and high-magnetic-field studies of unconventional superconductors and quantum magnets.

Research

Research Field:

At the Quantum Materials Lab at Soochow University, we investigate emergent quantum phenomena in strongly correlated systems through the development and application of a range of experimental techniques, including electrical, thermal, and magnetic measurements, under extreme conditions. Our research is further supported by in-house capabilities for synthesizing and growing high-quality single crystals of quantum materials. The main research directions include:

1. Investigation of novel electronic phases in intercalated transition metal dichalcogenides (TMDs)

2. Study of the elastic properties of charge density wave (CDW) superlattices

3. Electrical and thermal transport properties of heavy-fermion systems

4. Transport behavior in high-temperature cuprate superconductors

5. Magnetic and thermal properties of quantum magnetic materials


Research methods are outlined below:

(1) Sample preparation (single crystal growth; device fabrication)



(2) Extreme conditions (low temperature; high magnetic field; high pressure)



(3)Experimental techniques (electrical transport, thermal transport, thermoelectric measurements, heat capacity, tunnel diode osicllator, noise spectroscopy, etc.)





Teaching

Open Course:

1. Solid state physics (2023 - present)

2. Quantum statistical mechanics (2021 - present)

3. Semiconductor physics and devices (2022)

4. General college physics lab (2021)

Projects

Research Project:

1. Investigation of novel electronic phases in intercalated transition metal dichalcogenides (TMDs)

2. Study of the elastic properties of charge density wave (CDW) superlattices

3. Electrical and thermal properties of heavy-fermion systems

4. Transport behavior in high-temperature cuprate superconductors

5. Magnetic and thermal properties of quantum magnetic materials


Publications

Thesis:

2025

1.    Y. Wang, Z. Wu, G. Li, Z. Shi*, “Simultaneous measurements of magnetic susceptibility and electrical transport at extreme conditions”, Rev. Sci. Instrum. 96, 053909 (2025).

2.    J. Wang, M. Gao, Z. Wu, Y. Wang, W. Han, D. Li, Z. Shi*, “Transport and thermoelectric signatures of Ising superconductivity and charge density wave in the misfit layered compound (SnS)1.15TaS2”, J. Phys.: Condens. Matter. 37, 255601 (2025).

3.    B. Liu, H. Li, Z. Wu, W. Han, M. Gao, Y. Wang, T. Qiu, J. WangZ. Shi*, “Crystal growth, characterization, and transport properties of 4Hb-TaS2 single crystals”, J. Alloy. Compd. (2025).

4.    A. Alexandradinata, et. al., “The Future of the Correlated Electron Problem”, SciPost Phys. Comm. Rep. 8 (2025).


2024

1.    X. Wei, L. Zhu, Z. WuZ. Shi*, “Depinning of charge density waves of different dimensionalities in 1T-TiSe2 and NbSe3”, J. Phys.: Condens. Matter. 36, 485501 (2024). [JPCM Highlight of 2024].

2.    Z. Shi*, L. Zhu, P. M Marley, K. Farley, S. Banerjee, G Sambandamurthy*, “The dynamics of pinned charge density wave in NbSe3 nanoribbons revealed by noise spectroscopy”, New J. Phys.26, 123002 (2024).

3.    L. Ding, T. Xu, J. Zhang, J. Ji, Z. Song, Y. Zhang, Y. Xu, T. Liu, Y. Liu, Z. Zhang, W. Gong, Y. Wang, Z. Shi, R. Ma, J. Geng, H. T. Ngo, F. Geng*, Z. Liu, “Covalently bridging graphene edges for improving mechanical and electrical properties of fibers”, Nat. Commun. 15, 4880 (2024).


2023 

1.    R. Bag, Sachith E. Dissanayake, H. Yan, Z. Shi, D. Graf, E. S. Choi, C. Marjerrison, F. Lang, T. Lancaster, Y. Qiu, W. Chen, S. J. Blundell, A. H. Nevidomskyy, and S. Haravifard*, “Beyond single tetrahedron physics of the breathing pyrochlore compound Ba3Yb2Zn5O11”, Phys. Rev. B 107, L140408 (2023).


2022 

1.    Z. Shi, S. Dissanayake, P. Corboz, W. Steinhardt, D. Graf, D. M. Silevitch, H. A. Dabkowska, T. F. Rosenbaum, F. Mila, and S. Haravifard*, “Phase diagram of the Shastry-Sutherland Compound SrCu2 (BO3) 2 under extreme combined conditions of field and pressure”, Nat. Commun. 13, 2301 (2022).

2.    S. Dissanayake, Z. Shi, J. Rau, R. Bag, W. Steinhardt, N. Butch, M. Frontzek, A. Podlesnyak, D. Graf, C. Marjerrison, J. Liu, M. Gingras, and S. Haravifard*, Towards understanding the magnetic properties of the breathing pyrochlore compound Ba3Yb2Zn5O11 through single-crystal studies”, npj Quantum Materials. 7, 77 (2022).


2021 

1.    Z. Shi, P. G. Baity, J. Terzic, Bal K. Pokharel, T. Sasagawa, and Dragana Popović*, “Magnetic field reveals zero Hall response in the normal state of stripe-ordered cuprates”, Nat. Commun. 12, 3724 (2021).

2.    W. Steinhardt, Z. Shi, A. Samarakoon, S. Dissanayake, D. Graf, Y. Liu, W. Zhu, C. Marjerrison, C. D. Batista, and S. Haravifard*, “Constraining the parameter space of a quantum spin liquid candidate in applied field with iterative optimization”, Phys. Rev. Research 3, 033050 (2021).

3.    W. Steinhardt, P. A. Maksimov, S. Dissanayake, Z. Shi, N. Butch, D. Graf, A. Podlesnyak, Y. Liu, Y. Zhao, G. Xu, J. Lynn, C. Marjerrison, A. L. Chernyshev, and S. Haravifard* “Phase Diagram of YbZnGaO4 in Applied Magnetic Field”, npj Quantum Materials 6, 78 (2021).

4.    R. Bag, M. Ennis, C. Liu, S. E. Dissanayake, Z. Shi, J. Liu, L. Balents, and S. Haravifard*, “Realization of quantum dipoles in triangular lattice crystal Ba3Yb(BO3)3”, Phys. Rev. B 104, L220403 (2021).


Pre-2021

1.    Z. Shi#, S. Kuhn#, F. Flicker, J. Lee, J.P.C. Ruff, W. Steinhardt, S. Dissanayake, G. Fabbris, T. Helm, D. Graf, J. Strempfer, D. Haskel, J. van Wezel, and S. Haravifard*, “Incommensurate two-dimensional checkerboard charge density wave in the low dimensional superconductor Ta4Pd3Te16”, Phys. Rev. Research 2, 042042(R) (2020). [#Equal contribution].

2.    Z. Shi, P. G. Baity, J. Terzic, T. Sasagawa, and Dragana Popović*, “Pair density wave at high magnetic fields in cuprates with charge and spin orders”, Nat. Commun. 11, 3323 (2020).

3.    Z. Shi, P. G. Baity, T. Sasagawa, and Dragana Popović*, “Vortex phase diagram and the normal state of cuprates with charge and spin orders”, Sci. Adv. 6, eaay8946 (2020).

4.    Z. Shi, W. Steinhardt, D. Graf, P. Corboz, D. F. Weickert, N. Harrison, M. Jaime, C. Marjerrison, H. Dabkowska, F. Mila, and S. Haravifard*, “Emergent Bound States and Impurity Pairs in chemically Doped Shastry-Sutherland System”, Nat. Commun. 10, 2439 (2019).

5.    Xiaoyan Shi*, Z. Shi, and Dragana Popović, “Low-temperature resistance noise spectroscopy as a probe of the superconducting transition in underdoped La2-xSrxCuO4”, Proc. SPIE 10105, 1010503 (2017).

6.    Z. Shi, Xiaoyan Shi, and Dragana Popović*, “Evidence for correlated dynamics near the Berezinskii-Kosterlitz-Thouless-like transition in a highly underdoped La2-xSrxCuO4”, Phys. Rev. B 94, 134503 (2016).

7.    P. G. Baity, Xiaoyan Shi, Z. Shi, L. Benfatto, and Dragana Popović*, “Effective 2D thickness for the Berezinskii-Kosterlitz-Thouless-like transition in a highly underdoped La2-xSrxCuO4”, Phys. Rev. B 93, 024519 (2016).

8.    Z. Shi, Paul Baity, and Dragana Popović*, “Current-voltage characteristics and vortex dynamics in highly underdoped La2-xSrxCuO4”, J. Supercond. Nov. Magn. 29, 651 (2016).

9.    Katie E. Farley#, Z. Shi#, G. Sambandamurthy*, and Sarbajit Banerjee*, “Charge density waves in individual nanoribbons of orthorhombic-TaS3”, Phys. Chem. Chem. Phys. 17, 18374 (2015). [#Equal contribution]

10.  Sujay Singh, Gregory Horrocks, Peter M. Marley, Z. Shi, Sarbajit Banerjee, and G. Sambandamurthy*, “Proliferation of metallic domains caused by inhomogeneous heating near the electrically driven transition in VO2 nanobeams”, Phys. Rev. B 92, 155121 (2015).


Books&Patents

Books Writings: Patents Patent:

Honors

Honor Reward:

Supervision

Enrollment:


Positions are available at multiple levels, including junior faculty, postdoctoral researchers, and graduate students (Ph.D. and M.S.). Candidates with experience in crystal growth and cryogenic measurements are particularly encouraged to apply. Compensation for junior faculty will be determined on a case-by-case basis, while postdoctoral positions offer a competitive annual salary ranging from 200,000 to 330,000 RMB, along with full faculty benefits. Please contact Dr. Shi (zzshi@suda.edu.cn) for details.


Degree:Ph. D.

Graduate School:SUNY Buffalo, USA

Email:zzshi@suda.edu.cn

Office Location:

Tel:

10 Access

Related teachers