头像

10 Access

Related teachers

Biography

  • Department:Institute of Functional Nano & Soft Materials
  • Tel:
  • Gender:male
  • Email:tcheng@suda.edu.cn
  • Post:
  • Office Location:912-413
  • Graduate School:Shanghai Jiao Tong University
  • Address:199 Ren ai Rd
  • Degree:Ph. D.
  • PostCode:215123
  • Academic Credentials:

Education

Education:


Professional Experiences

Overview

Overview:

Professional Service

Professional Service:

Research

Research:

Teaching

Teaching:

Projects

Projects:

Publications

Publications:

Selected

  1. Predicted operando Polymerization at Lithium Anode via Boron Insertion
    Liu Y; Yu PP; Sun QT; Wu Y; Xie M; Yang H; Cheng T*; Goddard WA;
    ACS Energy Lett. 2021, 6, 2320.
  2. Effects of High and Low Salt Concentration in Electrolytes at Lithium−Metal Anode Surfaces using DFT-ReaxFF Hybrid Molecular Dynamics Method
    Liu Y; Sun QT; Yu PP; Wu Y; Xu L; Yang H; Xie M; Cheng T*; Goddard III WA;
    J. Phys. Chem. Lett. 2021, 12, 2922–2929.
  3. Reaction Intermediates During Operando Electrocatalysis Identified from Full Solvent Quantum Mechanics Molecular Dynamics
    Cheng T; Fortunelli A; Goddard WA*;
    Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 7718-7722.
  4. Explanation of Dramatic pH-Dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High pH.
    Cheng T; Wang L; Boris MV; Goddard WA*;
    J. Am. Chem. Soc. 2018, 140, 7787-7790.
    (J. Am. Chem. Soc. Spotlights)
  5. Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance
    Cheng T; Xiao H; Goddard WA*;
    J. Am. Chem. Soc. 2017, 139, 11642-11645.

Back to top

2024

  1. In-situ polymerized high-voltage solid-state lithium metal batteries with dual-reinforced stable interfaces
    Lv Q; Li C; Liu Y; Jing YT; Wang B*; Sun JG; Wang HM; Wang L; Wu BC; Cheng T*; Wang DL; Liu HK; Dou SX*; Wang J*;
    ACS Nano 2024, ASAP.
  2. Acetonitrile-based Local High-Concentration Electrolytes for Advanced Lithium Metal Batteries
    Li MH; Liu Y; Yang XM*; Zhang Q; Cheng YF; Zhou QW; Cheng T*; Gu M*;
    Adv. Mater. 2024, ASAP.
  3. Locally Varying Surface Binding Affinity on Pd-Au Nanocrystals Enhances Electrochemical Ethanol Oxidation Activity
    Wang XX#; Yang H#; Liu MX; Liu ZJ; Liu K; Mu ZR; Zhang Y; Cheng T*; Gao CB*;
    ACS Nano 2024, ASAP.
  4. Regulating Oxygen Vacancy of 3R Phase Iridium Oxide by Loading Platinum Nanoparticles for Efficient Hydrogen Evolution
    Guo RQ#; Wang JJ#; Li JY#; Li HQ; Wang HH; Cao Y; Chen JX; Cheng T; Yang H*; Sheng MQ*;
    ACS Catal. 2024, ASAP.
  5. Ultra Stable Zinc Anode Solid Electrolyte Interphase via Inner Helmholtz Plane Engineering
    Luo JR; Xu L; Yang YN; Huang S; Zhou YJ; Shao YY; Wang TH; Zhao JQ; Zhao XX; Tian JM; Guo SH; Cheng T*; Shao YL*; Zhang J*;
    Nat. Commun. 2024, ASAP.
  6. Towards long-life 500 Wh kg−1 lithium metal pouch cells via compact ion-pair aggregate electrolyte
    Jie YL#; Wang SY#; Weng ST#; Liu Y#; Tang C; Li XP; Zhang ZF; Zhang YC; Chen YW; Huang FY; Xu YL; Li WX; Guo YZ; He ZX; Ren XD; Lu YH; Cao RG; Yan PF; Cheng T*; Wang XF*; Jiao SH*; Xu DS*;
    Nat. Energy 2024, ASAP.
  7. Optimization of Lithium Metal Anode Performance: Investi-gating the Interfacial Dynamics and Reductive Mechanism of Asymmetric Sulfonylimide Salts
    Feng S; Yin TX; Bian LT; Liu Y*; Cheng T*;
    Batteries 2024, ASAP.
  8. Modulating the Interfacial Microenvironment via Zwitterionic Additive for Long-Cycling Aqueous Zn-ion Batteries
    Xie YW; Feng S; Gao JC; Cheng T*; Zhang L*;
    Sci. China Mater. 2024, ASAP.
  9. Fast Interfacial Defluorination Kinetics Enables Stable Cycling of Low-Temperature Lithium Metal Batteries
    Li XP; Li MH; Liu Y; Jie YL; Li WX; Chen YW; Huang FY; Zhang YC; Cheng T*; Gu M*; Jiao SH*; Cao RG*;
    J. Am. Chem. Soc. 2024, ASAP.
  10. Urea Synthesis via Electrocatalytic Oxidative Coupling of CO with NH3 on Pt
    Xiong HC#; Yu PP#; Chen KD; Lu SK; Hu QK; Cheng T*; Xu BJ*; Lu Q*;
    Nat. Catal. 2024, ASAP.
  11. Electrochemically activated Rh-O-Ni interfacial sites at Rh-Ni,P electrocatalyst for efficient alkaline hydrogen evolution reaction
    Peng C; Li JY; Shi LX; Wang MY; Wang WH; Cheng T; Yang PZ*; Yang H*; Wu KL*;
    Rare Metals 2024, ASAP.
  12. Edge sites dominate the hydrogen evolution reaction on platinum nanocatalysts
    Huang ZH#; Cheng T#; Shah AH; Zhong GY; Wan CZ; Wang PQ; Ding MN; Huang J; Wan Z; Wang SB; Cai J; Peng BS; Liu HT; Huang Y*; Goddard WA*; Duan XF*;
    Nat. Catal. 2024, ASAP.
  13. Sulfur-tuned main-group Sb−N−C catalysts for selective 2-electron and 4-electron oxygen reduction
    Mei M; Yang H; Cheng T*; Fei HL*;
    Adv. Mater. 2024, ASAP.
  14. Conversion mechanism of sulfur in room-temperature sodium-sulfur battery with carbonate-based electrolyte
    Jin F; Wang B*; Wang RJ; Liu Y; Zhang N; Bao CY; Wang DL*; Cheng T*; Liu HK; Dou SX*;
    Energy Storage Mater. 2024, ASAP.
  15. Tailoring Localized Electrolyte via a Dual-Functional Protein Membrane Toward Stable Zn Anodes
    Guo WY; Xu L; Su YW; Tian ZN; Qiao CP; Zou YH; Chen ZA; Yang XZ; Cheng T*; Sun JY*;
    ACS Nano 2024, ASAP.
  16. Efficient Circularly Polarized Luminescence and Bright White Emission from Hybrid Indium-based Perovskites via Achiral Building Blocks
    Du LP; Zhou QW; He QQ; Liu Y; Lv HJ; Shen YQ; Sheng LL; Cheng T; Yang H*; Fang Y*; Ning WH*;
    Adv. Funct. Mater. 2024, ASAP.
  17. Interfacial Polymerization Mechanisms Assisted Flame Retardancy Process of a Low-Flammable Electrolytes on Lithium Anode
    Ma BY; Liu Y*; Sun QT; Yang H; Xie M; Cheng T*;
    J. Colloid Interface Sci. 2024, 660, 545-554.
  18. Nitrogen contained Rhodium Nanosheet Catalysts for Efficient Hydrazine Oxidation Reaction
    Shi J#; Sun QT#; Chen JX; Zhu WX; Cheng T; Ma MJ; Fan ZL*; Yang H*; Liao F*; Shao MW*; Kang ZH*;
    Appl. Catal. B 2024, 343, 123561.
  19. Layered Quasi-Nevskite Metastable-Phase Cobalt Oxide Accelerates Alkaline Oxygen Evolution Reaction Kinetics
    Fan ZL#; Sun QT#; Yang H; Zhu WX; Liao F; Shao Q; Zhang TY; Huang H; Cheng T; Liu Y*; Shao MW*; Shao MH*; Kang ZH*;
    ACS Nano 2024, ASAP.

Back to top

2023

  1. In situ Imaging of the Atomic Phase Transition Dynamics in Metal Halide Perovskites
    Ma MM; Zhang XL; Chen X; Xiong H; Xu L; Cheng T; Yuan JY; Wei F; Shen BY*;
    Nat. Commun. 2023, 14, 7142.
  2. A Holistic Additive Protocol Steers Dendrite-Free Zn(101) Orientational Electrodeposition
    Su YW#; Xu L#; Sun YJ#; Guo WY; Yang XZ; Zou YH; Ding M; Zhang QH; Qiao CP; Dou SX; Cheng T*; Sun JY*;
    Small 2023, ASAP.
  3. Understanding steric hindrance effect of solvent molecule in localized high-concentration electrolyte for lithium metal batteries
    Li XP#; Pan YX#; Liu Y#; Jie YL; Chen SQ; Wang SY; He ZX; Ren XD; Cheng T*; Cao RG*; Jiao SH*;
    Carbon Neutrality 2023, 2, 34.
  4. Unraveling the Solvent Effect on Solid-Electrolyte Interphase Formation for Sodium Metal Batteries
    Wang SY; Weng ST; Li XP; Liu Y; Huang XL; Jie YL; Pan YX; Zhou HM; Jiao SH; Li Q; Wang XF*; Cheng T*; Cao RG*; Xu DS*;
    Angew. Chem. Int. Ed. 2023, 62, e202313447.
  5. Atomically unraveling the structural evolution of surfaces and interfaces in metal halide perovskite quantum dots
    Ma MM#; Zhang XL#; Xu L#; Chen X; Wang L; Cheng T; Wei F; Yuan JY*; Shen BY*;
    Adv. Mater. 2023, 35, 2300653.
  6. Efficient CO Electroreduction to Methanol by CuRh Alloys with Isolated Rh Sites
    Zhang JB; Yu PP; Peng C; Lv XM; Liu ZZ; Cheng T*; Zheng GF*;
    ACS Catal. 2023, 13, 7170–7177.
  7. Impact of Lithium Nitrate Additives on the Solid Electrolyte Interphase in Lithium Metal Batteries
    Wang MW; Sun QT; Liu Y*; Yan ZA; Xu QY; Wu YC; Cheng T*;
    Chinese J. Struc. Chem. 2023, ASAP.
  8. Fine-Tuned Molecular Design toward a Stable Solid Electrolyte Interphase on a Lithium Metal Anode from in silico Simulation
    Ma BY; Liu Y*; Sun QT; Yu PP; Xu L; Yang H; Xie M; Cheng T*;
    Mater. Today Chem. 2023, 33, 101735.
  9. Elucidating Solid Electrolyte Interphase Formation in Sodium-Based Batteries: Key Reductive Reactions and Inorganic Composition
    Liu Y; Sun QT; Yue BT; Zhang YY; Cheng T*;
    J. Mater. Chem. A 2023, 11, 14640-14645.
  10. Regulating the Inner Helmholtz Plane with a High Donor Additive for Efficient Anode Reversibility in Aqueous Zn-Ion Batteries
    Luo JR; Xu L; Zhou YJ; Yan TR; Shao YY; Yang DZ; Zhang L; Xia Z; Wang TH; Zhang L; Cheng T*; Shao YL*;
    Angew. Chem., Int. Ed. 2023, 62, e202302302.
  11. Precisely Optimizing Polysulfides Adsorption and Conversion by Local Coordination Engineering for High-Performance Li-S Batteries
    Yuan C; Song XC; Zeng P; Liu GL; Zhou SH; Zhao G; Li HT; Yan TR; Mao J; Yang H; Cheng T; Wu JP*; Zhang L*;
    Nano Energy 2023, 110, 108353.
  12. Programmable Synthesis of High-Entropy Nanoalloys for Efficient Ethanol Oxidation Reaction
    Li MF#; Huang CM#; Yang H#; Wang Y; Song XC; Cheng T; Jiang JT; Lu YF; Liu MC; Yuan Q; Ye ZZ; Hu Z*; Huang HW*;
    ACS Nano 2023, 17, 13659–13671.
  13. Stable and oxidative charged Ru enhance the acidic oxygen evolution reaction activity in two-dimensional ruthenium-iridium oxide
    Zhu WX#; Song XC#; Liao F; Huang H; Feng K; Shao Q; Zhou YJ; Ma MJ; Wu J; Yang H; Yang HW; Wang M; Shi J; Zhong J; Cheng T*; Shao MW*; Liu Y*; Kang ZH*;
    Nat. Commun. 2023, 14, 5365.
  14. Far-from-equilibrium electrosynthesis ramifies high-entropy alloy for alkaline hydrogen evolution
    Wang YN#; Yang H#; Zhang Z; Meng XY; Cheng T; Qin GW; Li S*;
    J. Mater. Sci. Technol. 2023, 166, 234-240.
  15. The operation active sites of O2 reduction to H2O2 over ZnO
    Zhou YJ; Xu L; Wu J; Zhu WX; He TW; Yang H; Huang H; Cheng T*; Liu Y*; Kang ZH*;
    Energy Environ. Sci. 2023, 16, 3526-3533.
  16. Metastable Hexagonal Phase SnO2 Nanoribbons with Active Edge Sites for Efficient Hydrogen Peroxide Electrosynthesis in Neutral Media
    Zhang Y; Wang MW; Zhu WX; Fang MM; Ma MJ; Liao F*; Yang H*; Cheng T; Pao CW; Chang YC; Hu ZW; Shao Q*; Shao MW*; Kang ZH*;
    Angew. Chem., Int. Ed. 2023, 135, e202218924.
  17. Origin of dendrite-free lithium deposition in concentrated electrolytes
    Chen YW#; Li MH#; Liu Y#; Jie YL; Li WX; Huang FY; Li XP; He ZX; Ren XD; Chen YH; Meng XH; Cheng T*; Gu M*; Jiao SH*; Cao RG*;
    Nat. Commun. 2023, 14, 2655.
  18. Preferential Decomposition of the Major Anion in a Dual-Salt Electrolyte Facilitates the Formation of Organic-Inorganic Composite Solid Electrolyte Interphase
    Qi F; Yu PP; Zhou QW; Liu Y*; Sun QT; Ma BY; Ren XG*; Cheng T*;
    J. Chem. Phys. 2023, 158, 104704.
  19. Temperature-dependent interphase formation and Li+ transport in lithium metal batteries
    Weng ST; Zhang X; Yang GJ; Zhang SM; Ma BY; Liu QY; Liu Y; Peng CX; Chen HX; Yu HL; Fan XL; Cheng T; Chen LQ; Li YJ*; Wang ZX*; Wang XF*;
    Nat. Commun. 2023, 14, 4474.
  20. Lattice and Surface Engineering of Ruthenium Nanostructures for Enhanced Hydrogen Oxidation Catalysis
    Dong YT#; Sun QT#; Zhan CH; Zhang JT; Yang H; Cheng T; Xu Y*; Hu ZW; Pao CW; Geng HB; Huang XQ*;
    Adv. Funct. Mater. 2023, 33, 2210328.
  21. Nanoconfined molecular catalysts in integrated gas diffusion electrodes for high-current-density CO2 electroreduction
    Lv XZ; Liu Q; Yang H; Wang JH; Wu XJ; Li XT; Qi ZF; Yan JH; Wu AJ*; Cheng T*; Wu HB*;
    Adv. Funct. Mater. 2023, 33, 2301334.
  22. Pre-activation of CO2 at Cobalt Phthalocyanine-Mg(OH)2 Interface for Enhanced Turnover Rate
    FL Lyu#; BY Ma#; XL Xie; DQ Song; YB Lian; H Yang; W Hua; Sun H; J Zhong; Z Deng; Cheng T*; Y Peng*;
    Adv. Funct. Mater. 2023, 33, 2214609.
  23. The lattice strain dominated catalytic activity in single-metal nanosheets
    Wang M#; Sun QT#; Fan ZL#; Zhu WX; Liao F; Wu J; Zhou YJ; Yang H; Huang H; Ma MJ; Cheng T*; Shao Q*; Shao MW*; kang ZH*;
    J. Mater. Chem. A 2023, 11, 4037-4044.
  24. Molecular-Crowding Effect Mimicking Cold-Resistant Plants to Stabilize the Zinc Anode with Wider Service Temperature Range
    Ren HZ; Li S; Wang B*; Zhang YY; Wang T; Lv Q; Zhang XY; Wang L; Han X; Jin F; Bao CY; Yan PF; Zhang N; Wang DL*; Cheng T*; Liu HK; Dou SX;
    Adv. Mater. 2023, 35, 2208237.
  25. Coherent Hexagonal Platinum Skin on Nickel Nanocrystals for Enhanced Hydrogen Evolution Activity
    Liu K#; Yang H#; Jiang YL#; Liu ZJ; Zhang SM; Zhang ZX; Qiao Z; Lu YM; Cheng T*; Terasaki O; Zhang Q*; Gao CB*;
    Nat. Commun. 2023, 14, 2424.
  26. Atomistic Mechanisms for catalytic transformations of NO to NH3, N2O, and N2 by Pd
    Yu PP; Wu Y; Yang H; Xie M; Goddard WA*; Cheng T*;
    Chin. J. Chem. Phys 2023, 36, 94-102.

Back to top

2022

  1. Machine Learning Predicts the X-ray Photoelectron Spectroscopy of the Solid Electrolyte Interface of Lithium Metal Battery
    Sun QT; Xiang Y; Liu Y; Xu L; Leng TL; Ye YF; Fortunelli A*; Goddard WA*; Cheng T*;
    J. Phys. Chem. Lett. 2022, 13, 8047–8054.
  2. DFT-ReaxFF Hybrid Molecular Dynamics Investigation of the Decomposition Effects of Localized High-Concentration Electrolyte in Lithium Metal Batteries: LiFSI/DME/TFEO
    Lu YM; Sun QT; Liu Y*; Yu PP; Zhang YY; Lu JC; Huang HC; Yang H*; Cheng T*;
    Phys. Chem. Chem. Phys. 2022, 24, 18684-18690.
  3. Enhanced electroreduction of CO2 to C2+ products on heterostructured Cu/oxide electrodes
    Li XT#; Liu Q#; Wang JH#; Meng DC; Shu YJ; Lv XZ; Zhao B; Yang H; Cheng T; Gao QS; Li LS; Wu HB*;
    Chem 2022, 8, 2148-2162.
  4. Unveiling the Local Structure and Electronic Properties of PdBi Surface Alloy for Selective Hydrogenation of Propyne
    Wang XC#; Chu MY#; Wang MW#; Zhong QX; Chen JT; Wang ZQ; Cao MH; Yang H; Cheng T; Chen JX*; Sham TK*; Zhang Q*;
    ACS Nano 2022, 16, 16869-16879.
  5. Origin of the exceptional selectivity of NaA zeolite for the radioactive isotope of 90Sr2+
    Hao WF#; Yan NN#; Xie M#; Yan XJ; Guo XL; Bai P; Guo P; Cheng T*; Yan WF*;
    Inorg. Chem. Front. 2022, 9, 6258-6270.
  6. Promoting Mechanistic Understanding of Lithium Deposition and Solid-Electrolyte Interphase (SEI) Formation Using Advanced Characterization and Simulation Methods: Recent Progress, Limitations, and Future Perspectives
    Xu YL#; Dong K#; Jie YL#; Adelhelm P; Chen YW; Xu L; Yu PP; Kim JH; Kochovski Z; Yu ZL; Li WX; Lebeau J; Yang SH; Cao RG; Jiao SH*; Cheng T*; Manke I*; Lu Y*;
    Adv. Energy Mater. 2022, 12, 2200398.
  7. Multiscale simulation of a solid electrolyte interphase
    Yu PP; Xu L; Ma BY; Sun QT; Yang H; Liu Y*; Cheng T*;
    Energy Storage Science and Technology 2022, 11, 921-928.
    多尺度模拟研究固体电解质界面
  8. Stimulating the Pre-Catalyst Redox Reaction and the Proton–Electron Transfer Process of Cobalt Phthalocyanine for CO2 Electroreduction
    Li HY; Wei J; Zhu XY; Gan L; Cheng T; Li J*;
    J. Phys. Chem. C 2022, 126, 9665–9672.
  9. Boosting electrocatalytic CO2–to–ethanol production via asymmetric C–C coupling
    Wang PT#; Yang H#; Tang C; Wu Y; Zheng Y; Cheng T; Davey K; Huang XQ*; Qiao SZ*;
    Nat. Commun. 2022, 13, 3754.
  10. Determining the hydronium pKα at platinum surfaces and the effect on pH-dependent hydrogen evolution reaction kinetics
    Zhong GY#; Cheng T#; Shah AH; Wan CZ; Huang ZH; Wang SB; Leng TL; Huang Y*; Goddard WA*; Duan Xiangfeng*;
    Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e2208187119.
    (Zhong GY and Cheng T contributed equally)
  11. Formation of Linear Oligomers in Solid Electrolyte Interphase via Two-Electron Reduction of Ethylene Carbonate
    Liu Y; Wu Y; Sun QT; Ma BY; Yu PP; Xu L; Xie M; Yang H; Cheng T*;
    Adv. Theory Simul. 2022, 5, 2100612.
  12. Single-site Pt-doped RuO2 hollow nanospheres with interstitial C for high-performance acidic overall water splitting
    Wang J#; Yang H#; Li F#; Li LG; Wu JB; Liu SH; Cheng T; Xu Y*; Shao Q; Huang XQ*;
    Sci. Adv. 2022, 8, eabl9271.
  13. TiH2 Nanodots Exfoliated via Facile Sonication as Bifunctional Electrocatalysts for Li–S Batteries
    Yan TR; Wu Y; Gong F; Cheng C; Yang H; Mao J; Dai KH; Cheng L*; Cheng T*; Zhang L*;
    ACS Appl. Mater. Interfaces 2022, 14, 6937–6944.
  14. Harmonizing Graphene Laminate Spacing and Zinc-Ion Solvated Structure toward Efficient Compact Capacitive Charge Storage
    Luo JR#; Xu L#; Liu HM; Wang YS; Wang Q; Shao YY; Wang ML; Yang DZ; Li S; Zhang L; Xia Z; Cheng T*; Shao YL*;
    Adv. Funct. Mater 2022, 32, 2112151.
  15. Multiscale Simulation of Solid Electrolyte Interface Formation in Fluorinated Diluted Electrolytes with Lithium Anodes
    Yu PP#; Sun QT#; Liu Y; Ma BY; Yang H; Xie M; Cheng T*;
    ACS Appl. Mater. Interfaces 2022, 14, 7972–7979.
  16. From n-alkane to polyacetylene on Cu (110): Linkage modulation in Chain Growth
    Hao ZM; Zhang JJ; Xie M; Li XC; Wang LN; Liu Y; Niu KF; Wang JB; Song LY; Cheng T; Zhang HM; Chi LF*;
    Sci. China Chem. 2022, 65, 733–739.
  17. The exclusive surface and electronic effects of Ni on promoting the activity of Pt towards alkaline hydrogen oxidation
    Wang KC#; Yang H#; Zhang JT; Ren GM; Cheng T; Xu Y*; Huang XQ*;
    Nano Res. 2022, 15, 5865-5872.
  18. Ligand-Mediated Self-Terminating Growth of Single-Atom Pt on Au Nanocrystals for Improved Formic Acid Oxidation Activity
    Liu MX#; Liu ZJ#; Xie M; Zhang ZX; Zhang SM; Cheng T*; Gao CB*;
    Adv. Energy Mater. 2022, 12, 2103195.
  19. Rh/RhOx nanosheets as pH-universal bifunctional catalysts for hydrazine oxidation and hydrogen evolution reactions
    Yang JJ#; Xu L#; Zhua WX; Xie M; Liao F*; Cheng T*; Kang ZH; Shao MW*;
    J. Mater. Chem. A 2022, 10, 1891-1898.
  20. Reduction Mechanism of Solid Electrolyte Interphase Formation on Lithium Metal Anode: Fluorine-rich Electrolyte
    Wu Y; Sun QT; Liu Y; Yu PP; Ma BY; Yang H; Xie M; Cheng T*;
    J. Electrochem. Soc. 2022, 169, 010503.
  21. In situ formation of circular and branched oligomers in a localized high concentration electrolyte at the lithium-metal solid electrolyte interphase: a hybrid ab initio and reactive molecular dynamics study
    Liu Y; Sun QT; Yu PP; Ma BY; Yang H; Zhang JY; Xie M; Cheng T*;
    J. Mater. Chem. A 2022, 10, 632-639.
  22. Promoting nickel oxidation state transitions in single-layer NiFeB hydroxide nanosheets for efficient oxygen evolution
    Bai YK#; Wu Y#; Zhou XC; Ye YF; Nie KQ; Wang JO; Xie M; Zhang ZX; Liu ZJ; Cheng T*; Gao CB*;
    Nat. Commun. 2022, 13, 6094.
  23. Molecular Understanding of Interphase Formation via Operando Polymerization on Lithium Metal Anode
    Jie YL#; Xu YL#; Chen YW#; Xie M#; Liu Y; Huang FY; Kochovski Z; Lei ZW; Zheng L; Song PD; Hu CS; Qi ZM; Li XP; Wang SY; Shen YB; Chen LW; You YZ; Ren XD; Goddard WA; Cao RG; Lu Y*; Cheng T*; Xu K*; Jiao SH*;
    Cell Reports Physical Science 2022, 3, 101057.
  24. Au-activated N motifs in Non-coherent Cupric Porphyrin Metal Organic Frameworks for Promoting and Stabilizing Ethylene Production
    Xie XL#; Zhang X#; Xie M#; Xiong LK; Sun H; Lu YT; Mu QQ; Rummeli MH; Xu JB; Li S; Zhong J; Deng Z; Ma BY; Cheng T*; Goddard WA*; Peng Y*;
    Nat. Commun. 2022, 13, 63.
  25. Self-supported hierarchical crystalline carbon nitride arrays with triazine-heptazine heterojunctions for highly efficient photoredox catalysis
    Sun ZZ; Dong HZ; Yuan Q; Tan YY; Wang W; Jiang YB; Wan JY; Wen JW; Yang JJ*; He JQ; Cheng T; Huang LM*;
    Chem. Eng. Sci. 2022, 435, 134865.
  26. In-silico Screening the Nitrogen Reduction Reaction on Single-Atom Electrocatalysts Anchored on MoS2
    Xu L; Xie M; Yang H; Yu PP; Ma BY; Cheng T*; Goddard WA*;
    Top. Catal. 2022, 65, 234–241.
  27. Assembling covalent organic framework membranes with superior ion exchange capacity
    Wang XY#; Shi BB#; Yang H; Guan JY; Xu L; Fan CY; You XD; Wang YN; Zhang Z; Wu H; Cheng T; Zhang RN*; Jiang ZY*;
    Nat. Commun. 2022, 13, 1020.
  28. Boosting hydrogen production with ultralow working voltage by selenium vacancy-enhanced ultrafine platinum-nickel nanowires
    Jin Y#; Zhang Z#; Yang H*; Wang PT; Shen CQ; Cheng T; Huang XQ*; Shao Q*;
    SmartMat 2022, 3, 130-141.
  29. Exceptionally active and stable RuO2 with interstitial carbon for water oxidation in acid
    Wang J#; Cheng C#; Yuan Q#; Yang H; Meng FP; Zhang QH; Gu L; Cao JL; Li LG; Haw SC; Shao Q*; Zhang L; Cheng T; Jiao F; Huang XQ*;
    Chem 2022, 8, 1673-1687.

Back to top

2021

  1. Hofmann-Type Metal–Organic Framework Nanosheets for Oxygen Evolution
    Wang TT#; Wu Y#; Han Y; Xu PW; Pang YJ; Feng XZ; Yang H*; Ji WJ*; Cheng T;
    ACS Appl. Nano Mater. 2021, 4, 14161–14168.
  2. Facet-selective deposition of ultrathin Al2O3 on copper nanocrystals for highly stable CO2 electroreduction to ethylene
    Li H#; Yu PP#; Lei RB#; Yang FP; Wen P; Ma X; Zeng GS; Guo JH; Toma FM; Qiu YJ; Geyer SM; Wang XW; Cheng T*; Drisdell W*;
    Angew. Chem. Int. Ed. 2021, 60, 24838-24843.
  3. Anomalous Size Effect of Pt Ultrathin Nanowires on Oxygen Reduction Reaction
    Yao ZY#; Yuan YL#; Cheng T#; Gao L#; Sun TL; Lu YF; Zhou YG; Galindo PL; Yang ZL; Xu L; Yang H; Huang HW*;
    Nano Lett. 2021, 21, 9354–9360.
  4. Multi-Scale Simulation Revealing the Decomposition Mechanism of Electrolyte on Lithium Metal Electrode
    Zhang YY; Liu Y; Lu YM; Yu PP; Du WX; Ma BY; Xie M; Yang H; Cheng T*;
    J. Electrochem. 2021, 28, 2105181.
  5. Reaction mechanism on Ni-C2-NS single-atom catalysis for the efficient CO2 reduction reaction
    Yuan Q; Li YY*; Yu PP; Ma BY; Xu L; Sun QT; Yang H*; Xie M*; Cheng T*;
    J. Exp. Nanosci. 2021, 16, 256-265.
  6. Predicted operando Polymerization at Lithium Anode via Boron Insertion
    Liu Y; Yu PP; Sun QT; Wu Y; Xie M; Yang H; Cheng T*; Goddard WA;
    ACS Energy Lett. 2021, 6, 2320-2327.
  7. Core-shell nanoparticles with tensile strain enable highly efficient electrochemical ethanol oxidation
    Liu MX#; Xie M#; Jiang YL; Liu ZJ; Lu YM; Zhang SM; Zhang ZX; Wang XX; Liu K; Zhang Q; Cheng T*; Gao CB*;
    J. Mater. Chem. A 2021, 9, 15373-15380.
  8. Graphitization of low-density amorphous carbon for electrocatalysis electrodes from ReaxFF reactive dynamics
    Hossain MD; Zhang Q; Cheng T; Goddard WA*; Luo ZT*;
    Carbon 2021, 183, 940-947.
  9. Bimetallic PdAu Nanoframes for Electrochemical H2O2 Production in Acids
    Zhao X#; Yang H#; Xu J; Cheng T; Li YG*;
    ACS Mater. Lett. 2021, 3, 996-1002.
  10. The inorganic cation-tailored “trapdoor” effect of silicoaluminophosphate zeolite for highly selective CO2 separation
    Wang XH#; Yan NN#; Xie M#; Liu PX; Bai P; Su HP; Wang BY; Wang YZ; Li LB; Cheng T; Guo P*; Yan WF*; Yu JH*;
    Chem. Sci. 2021, 12, 8803-8810.
  11. Ultrathin Pt-Cu-Ni Ternary Alloy Nanowires with Multimetallic Interplay for Boosted Methanol Oxidation Activity
    Zhang ZX#; Xie M#; Liu ZJ; Lu YM; Zhang SM; Liu MX; Liu Kai; Cheng T*; Gao CB*;
    ACS Appl. Energy Mater. 2021, 4, 6824-6832.
  12. Insights into the pH-dependent Behavior of N-Doped Carbons for the Oxygen Reduction Reaction by First-Principles Calculations
    Chen MP; Ping Y*; Li Y*; Cheng T*;
    J. Phys. Chem. C 2021, 125, 26429–26436.
  13. Approaching 100% Selectivity at Low Potential on Ag for Electrochemical CO2 Reduction to CO Using a Surface Additive
    Buckley A#; Cheng T#; Oh MH; Su GM; Garrison J; Utan SW; Zhu CH; Toste FD*; Goddard III WA*; Toma FM*;
    ACS Catal. 2021, 11, 9034-9042.
  14. Sulfur-doped Graphene Anchoring of Ultrafine Au25 Nanoclusters for Electrocatalysis
    Li MF#; Zhang B#; Cheng T; Yu SM; Louisia S; Chen CB; Chen SP; Cestellos-Blanco S; Goddard WA; Yang PD*;
    Nano Res. 2021, 14, 3509–3513.
  15. Pathway of in situ Polymerization of 1,3-dioxolane in LiPF6 Electrolyte on Li Metal Anode
    Xie M; Wu Y; Liu Y; Yu PP; Jia R; Ye YF; Goddard WA*; Cheng T*;
    Mater. Today Energy 2021, 21, 100730.
  16. Predictions of Chemical Shifts for Reactive Intermediates in CO2 Reduction under operando Conditions
    Yang H#; Negreiros FR#; Sun QT; Xie M; Sementa L; Stener M; Ye YF; Fortunelli A*; Goddard III WA*; Cheng T*;
    ACS Appl. Mater. Interfaces 2021, 13, 31554-31560.
  17. Effects of High and Low Salt Concentrations in Electrolytes at Lithium–Metal Anode Surfaces Using DFT-ReaxFF Hybrid Molecular Dynamics Method
    Liu Y; Sun QT; Yu PP; Wu Y; Xu L; Yang H; Xie M; Cheng T*; Goddard III WA;
    J. Phys. Chem. Lett. 2021, 12, 2922–2929.
  18. The DFT-ReaxFF Hybrid Reactive Dynamics Method with Application to the Reductive Decomposition Reaction of the TFSI and DOL Electrolyte at a Lithium–Metal Anode Surface
    Liu Y; Yu PP; Wu Y; Yang H; Xie M; Huai LY; Goddard WA*; Cheng T*;
    J. Phys. Chem. Lett. 2021, 12, 1300-1306.
  19. Autobifunctional Mechanism of Jagged Pt Nanowires for Hydrogen Evolution Kinetics via End-to-End Simulation
    Gu GH; Lim J; Wan CZ; Cheng T; Pu HT; Kim S; Noh J; Choi C; Kim J; Goddard WA*; Duan XF*; Jung YS*;
    J. Am. Chem. Soc. 2021, 143, 5355–5363.
  20. Selective CO2 Electrochemical Reduction Enabled by a Tricomponent Copolymer Modifier on a Copper Surface
    Wang JC; Cheng T; Fenwick AQ; Baroud TN; Rosas-Hernández A; Ko JH; Gan Q; Goddard WA*; Grubbs RH*;
    J. Am. Chem. Soc. 2021, 143, 2857–2865.
  21. Trifluorinated Keto–Enol Tautomeric Switch in Probing Domain Rotation of a G Protein-Coupled Receptor
    Wang XD; Zhao WJ; Al-Abdul-Wahid S; Lu YM; Cheng T; Madsen JJ; Ye LB*;
    Bioconjugate Chem. 2021, 32, 99-105.
  22. Synergized Cu/Pb Core/Shell Electrocatalyst for High-Efficiency CO2 Reduction to C2+ Liquids
    Wang PT#; Yang H#; Xu Y#; Huang XQ*; Wang J; Zhong M; Cheng T; Shao Q*;
    ACS Nano 2021, 15, 1039–1047.
  23. Efficient Direct H2O2 Synthesis Enabled by PdPb Nanorings via Inhibiting the O−O Bond Cleavage in O2 and H2O2
    Cao KL#; Yang H#; Bai SX; Xu Y*; Yang CY; Wu Y; Xie M; Cheng T; Shao Q; Huang XQ*;
    ACS Catal. 2021, 11, 1106–1118.
  24. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis
    Wang M; Yang H; Shi JN; Chen YF; Zhou Y; Wang LG; Di SJ; Zhao X; Zhong J; Cheng T; Zhou W; Li YG*;
    Angew. Chem. Int. Ed. 2021, 60, 5771-5777.
  25. Fastening Brˉ ions at Copper-Molecule Interface Enables Highly Efficient Electroreduction of CO2 to Ethanol
    Wang JH#; Yang H#; Liu QQ; Liu Q; Li XT; Lv XZ; Cheng T*; Wu HB*;
    ACS Energy Lett. 2021, 6, 437–444.
  26. Bioinspired Activation of N2 on Asymmetrical Coordinated Fe grafted 1T MoS2 at Room Temperature
    Guo JJ; Wang MY; Xu L; Li XM; Iqbal A; Sterbinsky GE; Yang H; Xie M; Zai JT*; Feng ZX*; Cheng T*; Qian XF;
    Chin. J. Chem. 2021, 39, 1898-1904.
  27. London Dispersion Corrections to Density Functional Theory for Transition Metals Based on Fitting to Experimental Temperature-Programmed Desorption of Benzene Monolayers
    Yang H; Cheng T*; Goddard WA*;
    J. Phys. Chem. Lett 2021, 12, 73–79.
  28. Theoretical Research on the Electroreduction of Carbon Dioxide
    Yuan Q; Yang H; Xie M; Cheng T*;
    Acta Phys. -Chim. Sin. 2021, 37, 2010040.
  29. Controllable CO adsorption determines ethylene and methane productions from CO2 electroreduction
    Bai HP; Cheng T; Li SY; Zhou ZY; Yang H; Li J; Xie M; Ye JY; Ji YJ; Li YY; Zhou ZY; Sun SG; Zhang Bo*; Peng HS*;
    Sci. Bull 2021, 66, 62-68.

Back to top

2020

  1. Compressed Intermetallic PdCu for Enhanced Electrocatalysis
    Flores Espinosa MM; Cheng T; Xu MJ; Abatemarco L; Choi C; Pan XQ; Goddard WA; Zhao ZP*; Huang Y*;
    ACS Energy Lett. 2020, 5, 3672–3680.
  2. Te-Doped Pd Nanocrystal for Electrochemical Urea Production by Efficiently Coupling Carbon Dioxide Reduction with Nitrite Reduction
    Feng YG#; Yang H#; Zhang Y; Huang XQ*; Li LG; Cheng T; Shao Q*;
    Nano Lett. 2020, 20, 8282–8289.
  3. Bismuth Oxyhydroxide-Pt Inverse Interface for Enhanced Methanol Electrooxidation Performance
    Wang XC#; Xie M#; Lyu FL*; Yiu YM; Wang ZQ; Chen JT; Chang LY; Xia YJ; Zhong QX; Chu MY; Yang H; Cheng T*; Sham TK*; Zhang Q*;
    Nano Lett. 2020, 20, 7751–7759.
  4. N-modulated Cu+ for efficient electrochemical carbon monoxide reduction to acetate
    Ni FL; Yang H; Wen YZ; Bai HP; Zhang LS; Cui CY; Li SY; He SS; Cheng T*; Zhang B*; Peng HS*;
    Sci. China Mater. 2020, 63, 2606–2612.
  5. Highly Selective Electrocatalytic Reduction of CO2 into Methane on Cu–Bi Nanoalloys
    Wang ZJ*; Yuan Q; Shan JJ; Jiang ZH; Xu P; Hu YF; Zhou JG; Wu LN; Niu ZZ; Sun JM*; Cheng T*; Goddard WA*;
    J. Phys. Chem. Lett. 2020, 11, 7261–7266.
  6. Highly Active and Stable Stepped Cu Surface for Enhanced Electrochemical CO2 Reduction to C2H4
    Choi C; Kwon S; Cheng T; Xu MJ; Tieu P; Lee C; Cai J; Lee HM; Pan XQ; Duan XF; Goddard WA*; Huang Y*;
    Nat. Catal. 2020, 3, 804–812.
  7. Surface engineering of RhOOH nanosheets promotes hydrogen evolution in alkaline
    Bai SX#; Xie M#; Cheng T*; Cao KL; Xu Y*; Huang XQ*;
    Nano Energy 2020, 78, 105224.
  8. Synergy between a Silver–Copper Surface Alloy Composition and Carbon Dioxide Adsorption and Activation
    Ye YF#; Qian J#; Yang H#; Su HY; Lee KJ; Etxebarria A; Cheng T; Xiao H; Yano J*; Goddard WA*; Crumlin EJ*;
    ACS Appl. Mater. Interfaces 2020, 12, 25374–25382.
  9. Atomistic Explanation of the Dramatically Improved Oxygen Reduction Reaction of Jagged Platinum Nanowires, 50 times better than Pt
    Chen YL; Cheng T; Goddard WA*;
    J. Am. Chem. Soc. 2020, 142, 8625-8632.
  10. A yolk–shell structured metal–organic framework with encapsulated iron-porphyrin and its derived bimetallic nitrogen-doped porous carbon for an efficient oxygen reduction reaction
    Zhang CC#; Yang H#; Zhong D#; Xu Y; Wang YZ; Yuan Q; Liang ZZ; Wang B; Zhang Wei; Zheng HQ*; Cheng T*; Cao R*;
    J. Mater. Chem. A, 2020, 8, 9536-9544.
  11. tert-Butyl substituted hetero-donor TADF compounds for efficient solution-processed non-doped blue OLEDs
    Xie FM#; An ZD#; Xie M; Li YQ*; Zhang GH; Zou SJ; Chen Li; Chen JD; Cheng T*; Tang JX*;
    J. Mater. Chem. C, 2020, 8, 5769-5776.
  12. Customizable Ligand Exchange for Tailored Surface Property of Noble Metal Nanocrystals
    Fan QK#; Yang H#; Ge J; Zhang SM; Liu ZJ; Lei B; Cheng T; Li YY; Yin YD; Gao CB*;
    Research 2020, 2020, 2131806.
  13. High-Performance Nondoped Blue Delayed Fluorescence Organic Light-Emitting Diodes Featuring Low Driving Voltage and High Brightness
    Zou SJ#; Xie FM#; Xie M#; Li YQ*; Cheng T; Zhang XH; Lee CS*; Tang JX*;
    Adv. Sci. 2020, 7, 1902508.
  14. Efficient Orange–Red Delayed Fluorescence Organic Light‐Emitting Diodes with External Quantum Efficiency over 26%
    Xie FM; Wu P; Zou SJ; Li YQ; Cheng T; Xie M; Tang JX*; Zhao X*;
    Adv. Electron. Mater. 2020, 6, 1900843.

Back to top

2019

  1. Design of a One-Dimensional Stacked Spin Peierls System with Room-Temperature Switching from Quantum Mechanical Predictions
    Yang H; Cheng T*; Goddard WA*; Ren XM*;
    J. Phys. Chem. Lett. 2019, 10, 6432-6437.
  2. Weakening Hydrogen Adsorption on Nickel via Interstitial Nitrogen Doping Promotes Bifunctional Hydrogen Electrocatalysis in Alkaline Solution
    Wang TT#; Wang M#; Yang H#; Xu MQ; Zuo GD; Feng K; Xie M; Deng J; Zhong J; Zhou W; Cheng T*; Li YG*;
    Energy Environ. Sci. 2019, 12, 3522-3529.
  3. Rational Molecular Design of Dibenzo[a,c]phenazine-based Thermally Activated Delayed Fluorescence Emitters for Orange-Red OLEDs with EQE up to 22.0%
    Xie FM; Li HZ; Dai GL; Li YQ; Cheng T; Xie M; Tang JX*; Zhao X*;
    ACS Appl. Mater. Interfaces 2019, 11, 26144-26151.
  4. Identifying Active Sites for CO2 Reduction on Dealloyed Gold Surfaces by Combining Machine Learning with Multiscale Simulations
    Chen YL; Huang YF; Cheng T; Goddard WA*;
    J. Am. Chem. Soc. 2019, 141, 11651-11657.
  5. Formation of Carbon-Nitrogen Bonds in Carbon Monoxide Electrolysis
    Jouny M#; Lv JJ#; Cheng T#; Ko BH; Zhu JJ; Goddard WA*; Jiao F*;
    Nat. Chem. 2019, 11, 846-851.
    (Jouny M, Lv JJ, and Cheng T contributed equally)
  6. Benzo-Fused Periacenes or Double Helicenes? Different Cy-clodehydrogenation Pathways on Surface and in Solution
    Zhong QG#; Hu YB#; Niu KF; Zhang HM; Yang B; Daniel E; Jalmar T; Cheng T; Andre S; Akimitsu N*; Klaus M*; Chi LF*;
    J. Am. Chem. Soc. 2019, 141, 7399-7406.
  7. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis
    Li MF#; Duanmu KN#; Wan CZ#; Cheng T#; Zhang L; Dai S; Chen WX; Zhao ZP; Li P; Fei HL; Zhu YM; Yu R; Luo J; Zang KT; Lin ZY; Ding MN; Huang J; Sun HT; Guo JH; Pan XQ; Goddard WA; Sautet P*; Huang Y*; Duan XF*;
    Nat. Catal. 2019, 2, 495–503.
    (Li MF, Duanmu KN, Wan CZ and Cheng T contributed equally)
  8. Electrocatalysis at Organic-Metal Interfaces: Identification of Structure-Reactivity Relationships for CO2 Reduction at Modified Cu Surfaces
    Buckley AK; Lee M; Cheng T; Kazantsev RV; Larson DM; Goddard WA; Tostel FD*; Toma FM*;
    J. Am. Chem. Soc 2019, 141, 7355–7364.
  9. Dramatic Differences in Carbon Dioxide Adsorption and Initial Steps of Reduction Between Silver and Copper
    Ye YF#; Yang H#; Qian J#; Su HY; Lee KJ; Cheng T; Xiao H; Yano J*; Goddard WA*; Crumlin EJ*;
    Nat. Commun. 2019, 10, 1875.
  10. Reaction Intermediates During Operando Electrocatalysis Identified from Full Solvent Quantum Mechanics Molecular Dynamics
    Cheng T; Fortunelli A; Goddard WA*;
    Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 7718-7722.
  11. Discrete Dimers of Redox-Active and Fluorescent Perylene Diimide-Based Rigid Isosceles Triangles in the Solid State
    Nalluri SKM; Zhou JW; Cheng T; Liu ZC; Nguyen MT; Chen TY; Patel HA; Krzyaniak MD; Goddard WA; Wasielewski MR*; Stoddart JF*;
    J. Am. Chem. Soc. 2019, 141, 1290–1303.
  12. A Highly Active Star Decahedron Cu Nanocatalyst for Hydrocarbon Production at Low Overpotentials
    Choi C; Cheng T; Expinosa MF; Fei HL; Duan XF; Goddard WA; Huang Y*;
    Adv. Mater. 2019, 31, 1805405.
  13. First-principles–based reaction kinetics from reactive molecular dynamics simulations: Application to hydrogen peroxide decomposition
    Ilyin DV; Goddard WA*; Oppenheim JJ; Cheng T;
    Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 18202-18208.
  14. First principles-based multiscale atomistic methods for input into first principles nonequilibrium transport across interfaces
    Cheng T; Jaramillo-Botero A; An Q; Ilyin DV; Naserifar S; Goddard WA*;
    Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 18193-18201.

Back to top

2018

  1. Identification of the Selective Sites for Electrochemical Reduction of CO to C2+ Products on Copper Nanoparticles by Combining Reactive Force Fields, Density Functional Theory, and Machine Learning
    Huang YF; Chen YL; Cheng T; Wang LW; Goddard WA*;
    ACS Energy Lett. 2018, 3, 2983–2988.
  2. Molecular Russian Dolls
    Cai K; Lipke MC; Liu ZC; Nelson J; Cheng T; Shi Y; Cheng CY; Shen DK; Han JM; Vemuri S; Feng YN; Stern CL; Goddard WA; Wasielewski MR; Stoddart JF*;
    Nat. Commun. 2018, 9, 5275.
  3. Neighboring Component Effect in a Tri-stable [2]Rotaxane
    Wang YP; Cheng T; Sun JL; Liu ZC; Frasconi M; Goddard WA; Stoddart JF*;
    J. Am. Chem. Soc. 2018, 140, 13827–13834.
  4. In silico Optimization of Organic-inorganic Hybrid Perovskites for Photocatalytic Hydrogen Evolution Reaction in Acidic Solution
    Wang L; Goddard WA*; Cheng T; Xiao H; Li YY*;
    J. Phys. Chem. C 2018, 122, 20918-20922.
  5. Electrochemical CO Reduction Builds Solvent Water into Oxygenate Products
    Lum YW#; Cheng T#; Goddard WA*; Ager JW*;
    J. Am. Chem. Soc. 2018, 140, 9337-9340.
    (Lum YW and Cheng T contributed equally)
  6. Explanation of Dramatic pH-Dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High pH.
    Cheng T; Wang L; Merinov BV; Goddard WA*;
    J. Am. Chem. Soc. 2018, 140, 7787-7790.
    (J. Am. Chem. Soc. Spotlights)
  7. Surface Ligand Promotion of Carbon Dioxide Reduction through Stabilizing Chemisorbed Reactive Intermediates
    Wang ZJ*; Wu LN; Sun K; Chen T; Jiang ZH; Cheng T*; Goddard WA*;
    J. Phys. Chem. Lett. 2018, 9, 3057-3061.
  8. Ordered Three-fold Symmetric Graphene Oxide/Buckled Graphene/Graphene Heterostructures on MgO (111) by Carbon Molecular Beam Epitaxy
    Ladewig C#; Cheng T#; Randle MD; Bird J; Olanipekun O; Dowben PA; Kelber J*; Goddard WA*;
    J. Mater. Chem. C 2018, 6, 4225-4233.
    (Ladewig C and Cheng T contributed equally)
  9. Reaction mechanisms and sensitivity of silicon nitrocarbamate and related systems from quantum mechanics reaction dynamics
    Zhou TT; Cheng T; Zybin SV; Goddard WA*; Huang FL;
    J. Mater. Chem. A 2018, 6, 5082-5097.
    (2018 Journal of Materials Chemistry A HOT Papers)
  10. Pb-Activated Amine-Assisted Photocatalytic Hydrogen Evolution Reaction on Organic–Inorganic Perovskites
    Wang L*; Xiao H; Cheng T; Li YY*; Goddard WA*;
    J. Am. Chem. Soc. 2018, 140, 1994–1997.
    (J. Am. Chem. Soc. Cover Publication)
  11. Predicted Detonation Properties at the Chapman-Jouguet State for Proposed Energetic Materials (MTO and MTO3N) from Combined ReaxFF and Quantum Mechanics Reactive Dynamics
    Zhou TT; Zybin SV; Goddard WA*; Cheng T; Naserifar S; Jaramillo-Botero A; Huang FL;
    Phys. Chem. Chem. Phys. 2018, 20, 3953-3969.

Back to top

2017

  1. Bulk Properties of Amorphous Lithium Dendrites
    Aryanfar A*; Cheng T; Goddard WA;
    ECS Trans. 2017, 80, 365-370.
  2. Ultrahigh Mass Activity for Carbon Dioxide Reduction Enabled by Gold-iron Core-shell Nanoparticles
    Sun K#; Cheng T#; Wu LN; Hu YF; Zhou JG; Maclennan A; Jiang ZH; Gao YZ; Goddard WA*; Wang ZJ*;
    J. Am. Chem. Soc. 2017, 139, 15608–15611.
    (Sun K and Cheng T contributed equally)
    (J. Am. Chem. Soc. Cover Publication)
  3. Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance
    Cheng T; Xiao H; Goddard WA*;
    J. Am. Chem. Soc. 2017, 139, 11642-11645.
  4. Predicted Structures of the Active Sites Responsible for the Improved Reduction of Carbon Dioxide by Gold Nanoparticles
    Cheng T; Huang YF; Xiao H; Goddard WA*;
    J. Phys. Chem. Lett. 2017, 8, 3317-3320.
  5. Quantum Mechanics Reactive Dynamics Study of Solid Li-Electrode/Li6PS5Cl-Electrolyte Interface
    Cheng T; Merinov BV*; Morozov S; Goddard WA;
    ACS Energy Lett. 2017, 2, 1454-1459.
  6. Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects
    Hajilar S; Shafei B*; Cheng T; Jaramillo-Botero A*;
    J. Phys. Chem. A 2017, 121, 4688-4697.
  7. Epitaxial Growth of Cobalt Oxide Phases on Ru(0001) for Spintronic Device Applications
    Olanipekun O; Ladewig C; Kelber JA*; Randle MD; Nathawat J; Kwan CP; Bird JP; Chakraborti P; Dowben PA; Cheng T; Goddard WA;
    Semicond. Sci. Technol. 2017, 32, 095011.
  8. The Cu Metal Embedded in Oxidized Matrix Catalyst to Promote CO2 Activation and CO Dimerization for Efficient and Selective Electrochemical Reduction of CO2
    Xiao H; Goddard WA*; Cheng T; Liu YY;
    Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 6685-6688.
  9. Subsurface Oxide Plays a Critical Role in CO2 Activation by Copper (111) Surfaces to Form Chemisorbed CO2, the First Step in Reduction of CO2
    Favaro M#; Xiao H#; Cheng T; Goddard WA*; Yano J*; Crumlin EJ*;
    Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 6706-6711.
  10. Intramolecular Energy and Electron Transfer Within a Diazaperopyrenium-Based Cyclophane
    Gong XR#; Young RM#; Hartlieb KJ; Miller C; Wu YL; Xiao H; Li P; Hafezi N; Zhou JW; Ma L; Cheng T; Goddard WA; Farha OK; Hupp JT; Wasielewski MR*; Stoddart JF*;
    J. Am. Chem. Soc. 2017, 139, 4107-4116.
  11. Size-Matched Radical Multivalency
    Lipke MC; Cheng T; Wu YL; Arslan H; Xiao H; Wasielewski MR; Goddard WA; Stoddart JF*;
    J. Am. Chem. Soc. 2017, 139, 3986-3998.
  12. Full Atomistic Reaction Mechanism with Kinetics for CO Reduction on Cu(100) from ab initio Molecular Dynamics Free-energy Calculations at 298 K.
    Cheng T; Xiao H; Goddard WA*;
    Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 1795-1800.
    (direct submission)
  13. Mechanism and Kinetics of the Electrocatalytic Reaction Responsible for the High Cost of Hydrogen Fuel Cells
    Cheng T; Goddard WA*; An Q; Xiao H; Merinov B; Morozov S;
    Phys. Chem. Chem. Phys. 2017, 19, 2666-2673.
    (2017 PCCP HOT Articles)
  14. Atomistic Mechanisms Underlying Selectivities in C1 and C2 Products from Electrochemical Reduction of CO on Cu(111)
    Xiao H; Cheng T; Goddard WA*;
    J. Am. Chem. Soc. 2017, 139, 130-136.
  15. Nucleation of Graphene Layers On Magnetic Oxides: Co3O4 (111) and Cr2O3 (0001) from Theory and Experiment
    Beatty J#; Cheng T#; Cao Y; Driver M; Goddard WA*; Kelber JA*;
    J. Phys. Chem. Lett. 2017, 8, 188-192.
    (Beatty J and Cheng T contributed equally)

Back to top

2016

  1. Ultrafine Jagged Platinum Nanowires Enable Ultrahigh Mass Activity for the Oxygen Reduction Reaction
    Li MF; Zhao ZP; Cheng T; Fortunelli A; Chen CY; Yu R; Zhang QH; Gu L; Merinov BV; Lin ZY; Zhu EB; Yu T; Jia QY; Guo JH; Zhang L; Goddard WA*; Huang Y*; Duan XF*;
    Science 2016, 354, 1414-1419.
  2. Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water
    Cheng T; Xiao H; Goddard WA*;
    J. Am. Chem. Soc. 2016, 138, 13802-13805.
    (Reported by JCAP highlight with linkage below)
  3. Influence of Constitution and Charge on Radical Pairing Interactions in Tris-radical Tricationic Complexes
    Cheng CY; Cheng T; Xiao H; Krzyaniak MD; Wang YP; McGonigal PR; Frasconi M; Barnes JC; Fahrenbach AC; Wasielewski MR; Goddard WA; Stoddart JF*;
    J. Am. Chem. Soc. 2016, 138, 8288-8300.
  4. Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu(111)
    Xiao H; Cheng T; Goddard WA*; Sundararaman R;
    J. Am. Chem. Soc. 2016, 138, 483-486.

Back to top

2015

  1. Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0
    Cheng T; Xiao H; Goddard WA*;
    J. Phys. Chem. Lett. 2015, 6, 4767-4773.
  2. Annealing Kinetics of Electrodeposited Lithium Dendrites
    Aryanfar A*; Cheng T; Colussi AJ; Merinov BV; Goddard WA; Hoffmann MR;
    J. Chem. Phys. 2015, 143, 134701.
    (reported by AIP publishing Extending a Battery's Lifetime with Heat)
  3. Rescaling of Metal Oxide Nanocrystals for Energy Storage Having High Capacitance and Energy Density with Robust Cycle Life
    Jeong HM; Choi KM; Cheng T; Lee DK; Zhou RJ; Ock IW; Milliron DJ; Goddard WA*; Kang JK*;
    Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 7914-7919.
  4. Initial Decomposition Reactions of Bicyclo-HMX [BCHMX or cis-1,3,4,6 Tetranitrooctahydroimidazo-[4,5-d]imidazole] from Quantum Molecular Dynamics Simulations
    Ye CC; An Q; Goddard WA*; Cheng T; Zybin SV; Ju XH;
    J. Phys. Chem. C 2015, 119, 2290-2296.
  5. Anisotropic Impact Sensitivity and Shock Induced Plasticity of TKX-50 (Dihydroxylammonium 5,5′-bis(tetrazole)-1,1′-diolate) Single Crystals: From Large-Scale Molecular Dynamics Simulations
    An Q#; Cheng T#; Goddard WA*; Zybin SV;
    J. Phys. Chem. C 2015, 119, 2196-2207.
    (An Q and Cheng T contributed equally)
  6. Reaction Mechanism from Quantum Molecular Dynamics for the Initial Thermal Decomposition of 2, 4, 6-triamino-1, 3, 5-triazine-1, 3, 5-trioxide (MTO) and 2, 4, 6-trinitro-1, 3, 5-triazine-1, 3, 5-trioxide (MTO3N), Promising Green Energetic Materials
    Ye CC; An Q; Cheng T; Zybin SV; Naserifar S; Ju XH; Goddard WA*;
    J. Mater. Chem. A 2015, 3, 12044-12050.
  7. Initial Decomposition Reaction of Di-tetrazine-tetroxide (Dtto) from Quantum Molecular Dynamics: Implications for a Promising Energetic Material
    Ye CC; An Q; Goddard WA*; Cheng T; Liu WG; Zybin SV; Ju XH;
    J. Mater. Chem. A 2015, 3, 1972-1978.

Back to top

2014

  1. Initial Steps of Thermal Decomposition of Dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate Crystals from Quantum Mechanics
    An Q#; Liu WG#; Goddard WA*; Cheng T; Zybin SV; Xiao H;
    J Phys. Chem. C 2014, 118, 27175-27181.
  2. Atomistic Explanation of Shear-Induced Amorphous Band Formation in Boron Carbide
    An Q; Goddard WA*; Cheng T;
    Phys. Rev. Lett. 2014, 113, 095501.
  3. Deformation Induced Solid–Solid Phase Transitions in Gamma Boron
    An Q; Goddard WA*; Xiao H; Cheng T;
    Chem. Mater. 2014, 26, 4289-4298.
  4. Adaptive Accelerated ReaxFF Reactive Dynamics with Validation from Simulating Hydrogen Combustion
    Cheng T; Jaramillo-Botero A*; Goddard WA*; Sun H*;
    J. Am. Chem. Soc. 2014, 136, 9434-9442.

Back to top

before 2014

  1. Adsorption of Ethanol Vapor on Mica Surface under Different Relative Humidities: A Molecular Simulation Study
    Cheng T; Sun H*;
    J. Phys. Chem. C 2012, 116, 16436-16446.
  2. Prediction of the Mutual Solubility of Water and Dipropylene Glycol Dimethyl Ether Using Molecular Dynamics Simulation
    Cheng T; Li F; Dai JX; Sun H*;
    Fluid Phase Equilibria. 2012, 314, 1-6.
  3. Molecular Engineering of Microporous Crystals: (Iv) Crystallization Process of Microporous Aluminophosphate Alpo4-11
    Cheng T#; Xu J#; Li X; Li Y; Zhang B; Yan WF*; Yu JH; Sun H; Deng F; Xu RR*;
    Micropor. Mesopor. Mater. 2012, 152, 190-207.
  4. Classic Force Field for Predicting Surface Tension and Interfacial Properties of Sodium Dodecyl Sulfate
    Cheng T; Chen Q; Li F; Sun H*;
    J. Phys. Chem. B 2010, 114, 13736-13744.
  5. On the Accuracy of Predicting Shear Viscosity of Molecular Liquids Using the Periodic Perturbation Method
    Zhao LF; Cheng T; Sun H*;
    J. Chem. Phys. 2008, 129, 144501.
  6. One Force Field for Predicting Multiple Thermodynamic Properties of Liquid and Vapor Ethylene Oxide
    Li XF; Zhao LF; Cheng T; Liu LC; Sun H*;
    Fluid Phase Equilib. 2008, 274, 36-43.


Books&Patents

Books Books: Patents Patents:

Honors

Honors:

Supervision

Supervision:

Postdoctoral scholar positions available in the Soochow University-Caltech International Center of Multiscale nanoMaterials Genome (SC-nMG), Soochow University in Suzhou, Directed by Professor William A. Goddard III

Professor William A. Goddard III from SC-nMGwould like to interview exceptional candidates for several postdoctoral scholar positions at Soochow. Interviews can be conducted via Zoom.

The SC-nMG joint center focuses on using both Quantum Mechanics (QM) and QM based multiscale reactive molecular dynamics (MD) to predict and explain the properties and performance of

·           Electrocatalysts for CO2 reduction to organics, water splitting (hydrogen evolution reaction and oxygen evolution reaction), nitrogen evolution reaction to NH3, and oxygen reduction reaction (fuel cell cathode)

·           Two-dimensional materials for electronics and catalysis

·           Membrane proteins for signaling

·           Other nanoscale materials

The SC-nMG joint center also focuses on developing new methods for more accurate methods for Quantum Mechanics (QM) and QM based multiscale reactive molecular dynamics (MD).

This requires the ability to write and modify computer programs written in languages such as C and scripting languages such python.

Examples of research areas being pursued can be found in recently published papers:

https://caltech-msc.github.io/publications/pubs-current.html

Applicant background expected:

1.      PhD in chemistry, physics, materials science, chemical engineering, biosciences, or computer science;

2.      Research Experience in computer based atomistic simulations using QM and/or MD

3.      Proficiency in using established MD software package such as LAMMPS, GROMACS, NAMD, and AMBER

4.      Proficiency in using established QM software package such as VASP, Quantum Expresso, Gaussian, and Jaguar

5.      Knowledge of enhanced sampling methods and free energy calculations.

6.      Knowledge of and Experience in machine learning methods

7.      able to reason about molecules and solids in terms of atomistic structures;

8.      Strong learning ability, able to complete routine research projects independently;

9.      Careful, responsible, hardworking, with good teamwork

10.  Excellent communication in spoken and written English.

Most important is to be very smart, resourceful, and unafraid to tackle impossible problems.

Qualified applicants should send:

1. CV with contact information and list of publications

2. Three personal references familiar with your background and accomplishments. Include phone numbers, fax numbers, and e-mail addresses, so we can contact them.

3. One paragraph description of how your background is appropriate for our projects

4. Two paragraph description of your career goals and how this position would be consistent with your goals.

5. pdf files for your best 3 publications

These materials should be sent in a single PDF file via e-mail to wag@caltech.edu with a copy to wag@suda.edu.cn and tcheng@suda.edu.cn

Salary and benefits:

The salary is 200,000-300,000 China Yuan;

May require visiting universities and national laboratories abroad (Such as Caltech);

Support for applying for post-doctoral funds, the National Natural Science Foundation of China, etc.;

The SC-nMG research team has sufficient funds and a good research environment.