文震
职称: 助理研究员
院部/部门: 功能纳米与软物质研究院(FUNSOM)

最高学历: 博士

最高学位: 工学博士

毕业学校: 浙江大学

毕业专业: 材料物理化学

通信地址: 江苏省苏州市工业园区仁爱路199号

邮政编码: 215123

电子邮箱: wenzhen2011@suda.edu.cn

联系电话: 0512-65882337

传真号码: 0512-65880820

办公地点: 独墅湖校区910-F102

个人简介

学术经历:

2016.9~至今 苏州大学 功能纳米与软物质研究院(FUNSOM),助理研究员,苏州大学优秀青年学者

2014.9~2016.2 美国佐治亚理工学院(Georgia Tech),国家留学基金委公派联合培养博士(导师:王中林教授)

2011.8~2016.9 浙江大学,材料科学与工程学院,工学博士(导师:朱丽萍教授)

2007.8~2011.6 中国矿业大学,材料科学与工程学院,工学学士





研究方向

1.基于摩擦纳米发电机的纳米材料及器件研究

2.柔性可拉伸可穿戴自供电系统的研究

3.新能源器件及自驱动传感系统研究


科学研究

摩擦纳米发电机是近几年兴起的新型能量采集技术,基于摩擦起电和静电感应原理,将人体动能和环境振动等动能高效低转化为电能为微型器件供能。由于摩擦纳米发电机具有质量轻、价格低廉,甚至在低的工作频率下仍然高效等先天优势,并且能够将人体运动和海洋波动的能量转换成电能,已经被证实作为一种潜在的解决方案可用于自驱动传感网络和大规模可再生蓝色能源。将摩擦纳米发电机和能量存储单元(比如超级电容器或锂离子电池)集成为自充电能源系统,可以克服摩擦纳米发电机输出是间歇式脉冲输出和电能存储单元能量有限等缺点,获得可以持续对电子器件稳定供电的新时代能源系统。作为一种能量收集器件,摩擦电荷密度决定了摩擦纳米发电机的输出功率密度和效率。这里将介绍几种增加摩擦起电电荷密度的方法,比如微纳米结构、柔性接接触、真空工作环境和表面极化和介质极化的耦合等。最终我们得到了极限状态下的摩擦电荷密度,并构建了相应的摩擦纳米发电机—超级电容器自充电能量系统,实现收集人体运动的机械能实时驱动可穿戴电子器件。

科研团队

所在课题组:孙旭辉教授课题组

课题组主管教授:孙旭辉 教授
博士后:
张罗嶽(中国台湾

博士生:聂宇婷,聂开琪,夏雨健,袁国涛,彭明发,程萍
硕士生:谢欣凯,杨艳琴,石基宏,姜洪雪,谢凌婕,鲍德全,陶毅,雷浩,祝芊芊,张乙,刘赛男
国际联合培养博士:陈晨,王康弘,孙飞,王继伟,向恒
国际交流生:
Yasmeen Shamiya (加拿大)
校际交流生:
韩磊(上海电力大学),付璟璟(香港中文大学),魏雪莲(中国矿业大学)

论文成果

已发表SCI论文五十余篇,总引用次数超过2000次,H-index: 30,i10-index: 39

Google Scholar: https://scholar.google.com/citations?user=_AP52WgAAAAJ&hl=zh-CN

SCI Publication Record: http://www.researcherid.com/rid/B-2462-2016

ResearchGate: https://www.researchgate.net/profile/Zhen_Wen3/publications

ORCID: http://orcid.org/0000-0001-9780-6876


近五年代表性论文(*-通讯作者;#-同等贡献):

[1] Z. Wen*, N. Sun, Y. Yang, G. Li, Y. Liu, C. Chen, J. Shi, H. Jiang, D. Bao, Q. Zhuo and X. Sun*. Wrinkled PEDOT:PSS Electrode Based Stretchable and Transparent Triboelectric Nanogenerator as Wearable Energy Harvester and Active Motion Sensor. Advanced Functional Materials, 2018, Just Accept. (2017 SCI-IF 13.325)
[3] M. Peng#, Y. Wang#, Q. Shen#, X. Xie, H. Zheng, W. Ma, Z. Wen* and X. Sun*. High-Performance Flexible and Broadband Photodetectors Based on PbS Quantum Dots/ZnO Nanoparticles Heterostructure. Science China Materials, 2018, DOI: 10.1007/s40843-018-9311-9. (2017 SCI-IF 4.318)
[4] H. Shao#, P. Cheng#, R. Chen#, L. Xie, N. Sun, Q. Shen, X. Chen, Q. Zhu, Y. Zhang, Y. Liu, Z. Wen* and X. Sun*. Triboelectric–Electromagnetic Hybrid Generator for Harvesting Blue Energy. Nano-micro Letters, 2018, 2018, 10 (3): 54. (2017 SCI-IF 7.381)
[5] X. Xie, Z. Wen*, Q. Shen, C. Chen, M. Peng, Y. Yang, N. Sun, P. Cheng, H. Shao, Y. Zhang, Q. Zhu, P. Cheng and X. Sun*. Impedance Matching Effect between Triboelectric Nanogenerator and Piezoresistive Pressure Sensor Induced Self-Powered Weighing. Advanced Materials Technologies, 2018, 3(6): 1800054. (2017 SCI-IF 4.622)
[6] Y. Liu#, N. Sun#, J. Liu, Z. Wen*, X. Sun*, S.-T. Lee and B. Sun*. Integrating Silicon Solar Cell with Triboelectric Nanogenerator via a Mutual Electrode for Harvesting Energy from Sunlight and Raindrops. ACS Nano, 2018, 12(3): 2893-2899.(Reported by more than 100 media agencies; Highlighted by Nature Climate Change) (2017 SCI-IF 13.709)
[7] Y. Yang#, N. Sun#, Z. Wen*, P. Cheng, H. Zheng, H. Shao, Y. Xia, C. Chen, H. Lan, X. Xie, C. Zhou, J. Zhong, X. Sun* and S. -T. Lee*. Liquid Metal Based Super-Stretchable and Structure-Designable Triboelectric Nanogenerator for Wearable Electronics. ACS Nano, 2018, 12(2), 2027-2034. (Reported by Chemical & Engineering News 2018, 96, 4) (2017 SCI-IF 13.709)
[8] C. Zhou#, Y. Yang#, Na Sun#, Z. Wen*, P. Cheng, X. Xie, H. Shao, Q. Shen, X. Chen, Y. Liu, Z. L. Wang* and X. Sun*. Flexible self-charging power units for portable electronics based on folded carbon paper. Nano Research, 2018, DOI: 10.1007/s12274-018-2018-8. (2017 SCI-IF 7.994)
[9] Q. Shen#, X. Xie#, M. Peng#, N. Sun, H. Shao, H. Zheng, Z. Wen* and X. Sun*. Self-Powered Vehicle Emission Testing System Based on Coupling of Triboelectric and Chemoresistive Effects. Advanced Functional Materials, 2018, 28(10): 1703420. (Selected as Back Cover Article) (2017 SCI-IF 13.325)
[10] H. Shao, Z. Wen*, P. Cheng, Q. Shen, N. Sun, C. Zhou, M. Peng, Y. Yang, X. Xie and X. Sun*. Multifunctional Power Unit by Hybridizing Contact-Separate Triboelectric Nanogenerator, Electromagnetic Generator and Solar Cell for Harvesting Blue Energy. Nano Energy, 2017, 39: 608-615. (2017 SCI-IF 13.120)
[11] M. Peng, Z. Wen*, M. Shao, X. Sun*. One-Dimensional CdSxSe1-x Nanoribbons for High-Performance Rigid and Flexible Photodetectors. Journal of Materials Chemistry C, 2017, 5(30): 7521-7526. (2017 SCI-IF 5.976)
[12] N. Sun, Z. Wen*, F. Zhao, Y. Yang, H. Shao, C. Zhou, Q. Shen, K. Feng, M. Peng, Y. Li and X. Sun*. All Flexible Electrospun Papers Based Self-Charging Power System for Wearable Electronics. Nano Energy, 2017, 38: 210-217. (Selected as Back Cover Article) (2017 SCI-IF 13.120)
[13] Z. Wen, Q. Shen, X. Sun*. Nanogenerators for Self-powered Gas Sensing. Nano-micro Letters, 2017, 9: 45. (Invited Review, Highlight by Springer) (2017 SCI-IF 7.381)
[14] X. Wang#, Z. Wen#, H. Guo, C. Wu, X. He, L. Lin, X. Cao* and Z. L. Wang*. A Fully Packaged Blue Energy Harvester by Hybridizing Rolling Triboelectric Nanogenerator and Electromagnetic Generator. ACS Nano, 2016, 10(12), 11369-11376. (2017 SCI-IF 13.709)
[15] Z. Wen#, M.-H. Yeh#, H. Guo#, J. Wang, Y. Zi, W. Xu, L. Zhu, J. Deng, X. Wang, L. Zhu, X. Sun and Z. L. Wang*. Self-Powered Textile for Wearable Electronics by Hybridizing Fibers-Shaped Nanogenerators, Solar Cells, and Supercapacitors. Science Advances, 2016, 2: e1600097. (2017 SCI-IF 11.511)
[16] Z. Wen#, H. Guo#, Y. Zi#, M.-H. Yeh, X. Wang, J. Deng, J. Wang, S. Li, C. Hu, L. Zhu and Z. L. Wang*. Harvesting Broad Frequency-band Blue Energy by a Triboelectrification-Electromagnetic Hybrid Nanogenerator. ACS Nano, 2016, 10(7): 6526-6534. (2017 SCI-IF 13.709)
[17] J. Wang#, Z. Wen#, Y. Zi#, L. Lin, C. Wu, H. Guo, Y. Xi, Y. Xu and Z. L. Wang*. Self-powered electrochemical synthesis of polypyrrole from pulsed output of triboelectric nanogenerator as a sustainable energy system. Advanced Functional Materials, 2016, 26(20): 3542-3548. (2017 SCI-IF 13.325)
[18] J. Wang#, Z. Wen#, Y. Zi#, P. Zhou, J. Lin, H. Guo, Y. Xu and Z. L. Wang*. All-Plastic-Materials Based Self-charging Power System Composed of Triboelectric Nanogenerators and Supercapacitors. Advanced Functional Materials, 2016, 26(7): 1070-1076. (2017 SCI-IF 13.325)
[19] Y. Zi#, H. Guo#, Z. Wen#, M.-H. Yeh, C. Hu and Z. L. Wang*. Harvesting Low-Frequency (<5 Hz) Irregular Mechanical Energy: A Possible Killer Application of Triboelectric Nanogenerator. ACS Nano, 2016, 10(4): 4797-4805. (2017 SCI-IF 13.709)
[20] H. Guo#, Z. Wen#, Y. Zi#, M.-H. Yeh, L. Zhu, C. Hu and Z. L. Wang*. A Water-Proof Triboelectrification and Electromagnetic Induction Hybrid Generator for Harvesting Rotational Energy in Harsh Environments. Advanced Energy Materials, 2016, 6(6): 1501593. (2017 SCI-IF 21.875)
[21] Z. Wen#, J. Chen#, M.-H. Yeh#, H. Guo, Z. Li, X. Fan, T. Zhang, L. Zhu* and Z. L. Wang*. Blow-driven triboelectric nanogenerator as an active alcohol breathe analyzer. Nano Energy, 2015, 16: 38-46. (2017 SCI-IF 13.120)
[22] Z. Wen, L. Zhu*, Z. Zhang and Z. Ye. Fabrication of gas sensor based on mesoporous rhombus-shaped ZnO rod arrays. Sensors and Actuators B: Chemical, 2015, 208: 112-121. (2017 SCI-IF 5.667)
[23] Z. Wen, L. Zhu*, Y. Li, Z. Zhang and Z. Ye. Mesoporous Co3O4 nanoneedle arrays for high-performance gas sensor. Sensors and Actuators B: Chemical, 2014, 203: 873-879. (2017 SCI-IF 5.667)
[24] Z. Wen, L. Zhu*, L. Li, L. Sun, H. Cai and Z. Ye. A fluorine-mediated hydrothermal method to synthesize mesoporous rhombic ZnO nanorod arrays and their gas sensor application. Dalton Transactions, 2013, 42(44): 15551-15554. (2017 SCI-IF 4.099)
[25] Z. Wen, L. Zhu*, W. Mei, L. Hu, Y. Li, L. Sun, H. Cai and Z. Ye. Rhombus-shaped Co3O4 nanorod arrays for high-performance gas sensor. Sensors and Actuators B: Chemical, 2013, 186: 172-179. (2017 SCI-IF 5.667)
[26] Z. Wen, L. Zhu*, W. Mei, Y. Li, L. Hu, L. Sun, W. Wan and Z. Ye. A facile fluorine-mediated hydrothermal route to controlled synthesis of rhombus-shaped Co3O4 nanorod arrays and their application in gas sensing. Journal of Materials Chemistry A, 2013, 1(25): 7511-7518. (2017 SCI-IF 9.931)

荣誉奖励

课程教学

招生信息