On the Arthur-Barbasch-Vogan conjecture*

Chen-Bo Zhu (National University of Singapore)

> Soochow University (August 3, 2024)

*Joint with Barbasch, Ma and Sun

Contents

- 1. Real reductive groups: background
- 2. Special unipotent representations: Arthur-Barbasch-Vogan
- 3. Counting representations: coherent families
- 4. Constructing representations: theta correspondence
- 5. Distinguishing representations: associated cycles
- 6. More on the Arthur-Barbasch-Vogan conjecture

Real reductive groups: background

G: real reductive Lie group. For example, $GL_n(\mathbb{R})$, $O_{p,q}$, $Sp_{2n}(\mathbb{R})$.

- The fundamental algebraic objects: (\mathfrak{g}, K) -modules, where \mathfrak{g} is the complexified Lie algebra of G, and K is a maximal compact subgroup.
 - The good ones: admissible (\mathfrak{g}, K) -modules of finite length, called Harish-Chandra modules.
- The fundamental analytic objects: the canonical globalization of Harish-Chandra modules, called Casselman-Wallach representations.
 - Key requirements: smooth, Fréchet and of moderate growth.

Two fundamental invariants:

- Infinitesimal character $\chi \colon \mathcal{Z}(\mathfrak{g}) \to \mathbb{C}$.
 - An irreducible representation has an infinitesimal character.
 - Harish-Chandra isomorphism: An infinitesimal character χ is represented by (Weyl group orbit of) an element $\lambda \in \mathfrak{h}^*$.
- Complex associated variety $AV_{\mathbb{C}}(X) = V(Ann(X))$.
 - This is the variety of the zeroes of the graded ideal Gr(Ann(X)).
 - It is contained in

$$Nil(\mathfrak{g}^*) = \{ \lambda \in \mathfrak{g}^* \mid p(\lambda) = 0, \forall p \in S^+(\mathfrak{g})^G \}.$$

More refined invariants:

- associated variety AV(X), associated cycle AC(X) (Vogan).
- wavefront set = asymptotic support (Howe, Barbasch-Vogan).

Two fundamental results

• Harish-Chandra: for any fixed infinitesimal character χ ,

$$\sharp(\operatorname{Irr}_{\chi}(G)) < \infty.$$

- Borho-Brylinski, Joseph:
 - If X is irreducible,

$$V(\operatorname{Ann}(X)) = \bar{\mathcal{O}}.$$

- In words, the associated variety of a primitive ideal of $\mathcal{U}(\mathfrak{g})$ is the closure of single nilpotent $Ad(\mathfrak{g})$ -orbit in \mathfrak{g}^* .

Special unipotent representations: Arthur-Barbasch-Vogan

The problem:

- Determine all special unipotent representations (definition to follow) and show in particular that they are unitary.
 - The unitarity assertion: Arthur-Barbasch-Vogan conjecture
 - * Arthur's conjecture on L²- automorphic forms
- We solve the <u>classification</u> problem (for all real classical groups) by
 - counting, construction, distinguishing,
 - with unitarity as a direct consequence.

Arthur-Barbasch-Vogan conjecture:

- Complex classical groups: Barbasch (1989);
- Real classical groups (including the metaplectic groups and the spin groups): Barbasch-Ma-Sun-Z;
- Quasi-split real classical groups: Adams-Arancibia-Mezo;
- Exceptional groups: Miller, Adams-Van Leeuwen-Miller-Vogan.

- Given a \check{G} -orbit $\check{\mathcal{O}}$ in Nil($\check{\mathfrak{g}}$), one attaches an <u>infinitesimal character</u> $\chi_{\check{\mathcal{O}}}$, represented by $\lambda_{\check{\mathcal{O}}} \in \mathfrak{h}^*$ (via an \mathfrak{sl}_2 -triple containing $\check{\mathcal{O}}$).
- By a theorem of Duflo, there exists a unique <u>maximal</u> G-stable ideal $I_{\mathcal{O}}$ of $\mathcal{U}(\mathfrak{g})$ that contains the kernel of $\chi_{\mathcal{O}}$.
- The associated variety of $I_{\mathcal{O}}$ is the closure of a nilpotent $Ad(\mathfrak{g})$ -orbit \mathcal{O} in \mathfrak{g}^* .
 - $-\mathcal{O}$ is called the Barbasch-Vogan dual of \mathcal{O} .
 - $-\mathcal{O}$ is special in the sense of Lusztig.

Definition: (Barbasch-Vogan, 1985)

An irreducible Casselman-Wallach representation π of G is said to be special unipotent attached to $\check{\mathcal{O}}$ if $I_{\check{\mathcal{O}}}$ annihilates π .

Equivalent conditions:

• π has infinitesimal character $\chi_{\mathcal{O}}$, and $AV_{\mathbb{C}}(\pi) \subseteq \overline{\mathcal{O}}$.

Notation: Unip $\check{o}(G)$, the set of equivalent classes of irreducible Casselman-Wallach representations of G that are special unipotent attached to $\check{\mathcal{O}}$, now known as the weak ABV packet (attached to $\check{\mathcal{O}}$). Arthur-Barbasch-Vogan conjecture: (1980's)

• All representations in $\mathrm{Unip}_{\mathcal{O}}(G)$ are unitarizable.

Counting representations

Problem: count the set $Unip_{\mathcal{O}}(G)$.

- Main tool: coherent continuation
 - Every irreducible representation can be placed inside a coherent family of (virtual) representations.
 - The space of all coherent families carries a representation of the integral Weyl group, called the coherent continuation representation.
 - The coherent continuation representation can be analyzed in great detail via Kazhdan-Lusztig theory (primitive ideas, left cells, double cells, Springer correspondence, ...).

The coherent continuation representation: (Jantzen, Schmid, Zuckerman, Speh-Vogan)

- $\mathcal{K}(G)$: the Grothendieck group of the category of Casselman-Wallach representations of G.
- $\mathcal{K}_{\nu}(G)$: the subgroup of $\mathcal{K}(G)$ generated by $\operatorname{Irr}_{\nu}(G)$, $\nu \in \mathfrak{h}^*$.
- $\Lambda = \nu + P \subset \mathfrak{h}^*$: a coset of the weight lattice P for G.

- A $\mathcal{K}(G)$ -valued coherent family on Λ is a map $\Psi \colon \Lambda \to \mathcal{K}(G)$ such that, for all $\nu \in \Lambda$,
 - $-\Psi(\nu) \in \mathcal{K}_{\nu}(G)$, and
 - for any finite-dimensional representation F of G,

$$\Psi(\nu) \otimes F = \sum_{\mu} \Psi(\nu + \mu),$$

where μ runs over the set of all weights (counting multiplicities) of F.

• Theorem (Barbasch-Ma-Sun-Z, arXiv:2205.05266): If \mathcal{O} has good parity in the sense of Moglin, then

$$\sharp \mathrm{Unip}_{\check{\mathcal{O}}}(G) = \begin{cases} 2^{\sharp \mathrm{PP}_{\star}(\check{\mathcal{O}})} \cdot \sharp \mathrm{PBP}_{G}(\check{\mathcal{O}}), & \text{if } \star = C, \tilde{C}; \\ 2 \cdot 2^{\sharp \mathrm{PP}_{\star}(\check{\mathcal{O}})} \cdot \sharp \mathrm{PBP}_{G}(\check{\mathcal{O}}), & \text{if } \star = B, D. \end{cases}$$

- PBP_G($\check{\mathcal{O}}$): set of painted bipartitions attached to $(G, \check{\mathcal{O}})$ (painting rules depends on the group G);
- $-2^{\sharp PP_{\star}(\check{\mathcal{O}})}$: size of Lusztig's canonical quotient.

Example: $G = \mathrm{Sp}(28, \mathbb{R}), \, \check{G} = \mathrm{O}(29, \mathbb{C}).$

•
$$PP_{\star}(\check{\mathcal{O}}) = \{(1,2), (5,6)\}.$$

- $\sharp PBP_G(\check{\mathcal{O}}) = 80.$
 - e.g. of a painted bipartition, with symbols \bullet , s, r, c, d:

•	•	r		•	•	$oxed{s}$
•	•		×	•	•	
c	d			s		•
		•		s		

• $\sharp \operatorname{Unip}_{\check{\mathcal{O}}}(G) = 320.$

Constructing representations 4

Main tool: theta correspondence

Definition: (Howe, 1979)

- W: a finite-dimensional real symplectic vector space.
- (G, G'): a reductive dual pair in Sp(W), i.e., a pair of subgroups such that
 - -G and G' are mutual centralizers of each other;
 - -G and G' act reductively on W.

Irreducible reductive dual pairs (seven families):

• Type II: correspond to a division algebra D

$$(\operatorname{GL}_m(\mathbb{R}), \operatorname{GL}_n(\mathbb{R})) \subseteq \operatorname{Sp}_{2mn}(\mathbb{R})$$
 $(\operatorname{GL}_m(\mathbb{C}), \operatorname{GL}_n(\mathbb{C})) \subseteq \operatorname{Sp}_{4mn}(\mathbb{R})$
 $(\operatorname{GL}_m(\mathbb{H}), \operatorname{GL}_n(\mathbb{H})) \subseteq \operatorname{Sp}_{8mn}(\mathbb{R})$

$$(\mathcal{O}_{p,q}, \operatorname{Sp}_{2n}(\mathbb{R})) \subseteq \operatorname{Sp}_{2(p+q)n}(\mathbb{R})$$

$$(\mathcal{O}_{p}(\mathbb{C}), \operatorname{Sp}_{2n}(\mathbb{C})) \subseteq \operatorname{Sp}_{4pn}(\mathbb{R})$$

$$(\mathcal{U}_{p,q}, \mathcal{U}_{r,s}) \subseteq \operatorname{Sp}_{2(p+q)(r+s)}(\mathbb{R})$$

$$(\operatorname{Sp}_{p,q}, \operatorname{O}_{2n}^{*}) \subseteq \operatorname{Sp}_{4(p+q)n}(\mathbb{R})$$

(G, G'): a reductive dual pair in Sp(W).

- Fix an oscillator (or Weil) representation $\widehat{\omega}$ (by fixing a nontrivial unitary character on \mathbb{R}). This is a unitary representation of $\widetilde{\mathrm{Sp}}(W)$ (the real metaplectic group), constructed by Segal, Shale and Weil.
 - The existence of $\widehat{\omega}$ (essentially) amounts to the uniqueness of the canonical commutation relations (CCR).
- Let ω be the associated smooth representation, called a smooth oscillator representation.
- For a reductive subgroup E of $\mathrm{Sp}(W)$, denote by \widetilde{E} its inverse image in Sp(W), and
 - $\operatorname{Irr}(\widetilde{E},\omega)$: the subset of $\operatorname{Irr}(\widetilde{E})$ which are realizable as quotients by $\omega(\widetilde{E})$ -invariant closed subspaces of ω .

- Howe duality theorem: The set $Irr(\widetilde{G} \cdot \widetilde{G}', \omega)$ is the graph of a bijection between $\operatorname{Irr}(\widetilde{G},\omega)$ and $\operatorname{Irr}(\widetilde{G'},\omega)$. Moreover any element $\pi \otimes \pi'$ of $\operatorname{Irr}(\widetilde{G} \cdot \widetilde{G}', \omega)$ occurs as a quotient of ω in a unique way.
 - The correspondence $\pi \leftrightarrow \pi'$ is defined by the condition

$$\operatorname{Hom}_{\widetilde{G}\times\widetilde{G'}}(\omega,\pi\otimes\pi')\neq 0.$$

Companion statement: (multiplicity-1)

$$\dim \operatorname{Hom}_{\widetilde{G} \times \widetilde{G'}}(\omega, \pi \otimes \pi') \leq 1.$$

- Howe duality also holds true for *p*-adic local fields:
 - works of Waldspurger, Minguez, Gan-Takeda, Gan-Sun

An important question is to describe first the domain of theta correspondence, and then

- theta correspondence in terms of the Langlands parameters.
 - Many works, but still no full answer.

Another important question is to understand how unitarity behaves under theta correspondence:

• Li, He, Barbasch-Ma-Sun-Z (via integration of matrix coefficients)

Construction:

- repeatedly apply theta lifting, starting from the trivial representation, and possibly twisting by quadratic characters of orthogonal groups.
- The construction is guided by the <u>descent</u> structure of combinatorial parameters of special unipotent representations.

Descent of combinatorial parameter:

$$\xrightarrow{\nabla} \qquad \boxed{r} \times \boxed{s} \times C \ \xrightarrow{\nabla} \ \boxed{r} \times \emptyset \times D \ \xrightarrow{\nabla} \ \emptyset \times \emptyset \times C.$$

Corresponding Lie groups:

$$Sp(28, \mathbb{R}) \to O(10, 10)$$

$$\to Sp(14, \mathbb{R}) \to O(5, 5)$$

$$\to Sp(4, \mathbb{R}) \to O(2, 0) \to Sp(0, \mathbb{R}).$$

Distinguishing the representations 5

Main tool: associated cycle

• Write $\mathcal{K}_{\mathcal{O}}(G)$ for the Grothedieck group of the category of Casselman-Wallach representations π of G such that

$$AV_{\mathbb{C}}(\pi) \subset \overline{\mathcal{O}}.$$

- We say π is <u>O-bounded</u>.

- $\mathscr{O} \subset \mathscr{O} \cap \mathfrak{p}$: a **K**-orbit. (**K** = $K_{\mathbb{C}}$, the complexification of K)
- $\mathcal{K}_{\mathscr{O}}(\mathbf{K})$: the Grothedieck group of the category of **K**-equivariant algebraic vector bundles on \mathcal{O} .

$$\mathcal{K}_{\mathcal{O}}(\mathbf{K}) := igoplus_{\mathscr{O} ext{ is a } \mathbf{K} ext{-orbit in } \mathcal{O} \cap \mathfrak{p}} \mathcal{K}_{\mathscr{O}}(\mathbf{K}).$$

• There is a canonical homomorphism: (Vogan, 1989)

$$AC_{\mathcal{O}}: \mathcal{K}_{\mathcal{O}}(G) \to \mathcal{K}_{\mathcal{O}}(\mathbf{K}).$$

 $- AC_{\mathcal{O}}(\pi)$ is called the associated cycle of π .

An important question is to understand how associated cycle behaves under theta correspondence.

• Tool: geometry of moment maps

$$\mathfrak{p} \stackrel{M}{\longleftarrow} \mathcal{X} \stackrel{M'}{\longrightarrow} \mathfrak{p}',$$

$$\phi^* \phi \stackrel{}{\longleftarrow} \phi \stackrel{}{\longleftarrow} \phi^*$$

→ notion of the descent of a nilpotent **K**-orbit:

$$\mathscr{O} \mapsto \mathscr{O}' =: \nabla(\mathscr{O}).$$

→ notion of the geometric theta lift:

$$\check{\vartheta}_{\mathscr{O}'}^{\mathscr{O}}:\mathcal{K}(\mathscr{O}')\to\mathcal{K}(\mathscr{O}).$$

• Result: the associated cycles of all constructed representations.

6 More on the Arthur-Barbasch-Vogan conjecture

- $G_{\mathbb{C}}$: connected reductive complex Lie group;
- G: a real form of $G_{\mathbb{C}}$.

Arthur-Barbasch-Vogan conjecture:

• All representations in $\mathrm{Unip}_{\mathcal{O}}(G)$ are unitarizable.

It suffices to consider the case:

• $G_{\mathbb{C}}$ is simply connected, and Lie(G) is simple.

Type A:

- $G_{\mathbb{C}}: \mathrm{SL}_n(\mathbb{C}) \text{ or } \mathrm{SL}_n(\mathbb{C}) \times \mathrm{SL}_n(\mathbb{C})$
- $G = \mathrm{SL}_n(\mathbb{R}), \ \mathrm{SU}(p,q) \ (p+q=n), \ \mathrm{SL}_{\frac{n}{2}}(\mathbb{H}) \ (n \text{ is even}), \ \mathrm{or} \ \mathrm{SL}_n(\mathbb{C})$

[BMSZ4]: (easy)

• Special unipotent representations of simple linear groups of type A, Acta Math. Sin. (2024).

Type B, D: (genuine)

- $G_{\mathbb{C}} : \mathrm{Spin}(m, \mathbb{C}) \text{ or } \mathrm{Spin}(m, \mathbb{C}) \times \mathrm{Spin}(m, \mathbb{C})$
- $G = \operatorname{Spin}(p,q) \ (p+q=m), \ \operatorname{Spin}^*(2n) \ (m=2n), \ \operatorname{or} \ \operatorname{Spin}(m,\mathbb{C})$

[BMSZ3]: (moderate)

• Genuine special unipotent representations of spin groups, Kobayashi Festscrhift (2024).

Type B, D: (classical)

- $G_{\mathbb{C}}: \mathrm{SO}(m,\mathbb{C}) \text{ or } \mathrm{SO}(m,\mathbb{C}) \times \mathrm{SO}(m,\mathbb{C})$
- $G = SO(p,q) \ (p+q=m), \ SO^*(2n) \ (m=2n), \ \text{or } SO(m,\mathbb{C})$

Type C: (classical)

- $G_{\mathbb{C}}: \mathrm{Sp}(2n,\mathbb{C}) \text{ or } \mathrm{Sp}(2n,\mathbb{C}) \times \mathrm{Sp}(2n,\mathbb{C})$
- $G = \operatorname{Sp}(p,q) \ (p+q=n), \ \operatorname{Sp}(2n,\mathbb{R}), \ \operatorname{or} \ \operatorname{Sp}(2n,\mathbb{C})$

[BMSZ1] and [BMSZ2]: (difficult)

- Special unipotent representations of real classical groups: counting and reduction
- Special unipotent representations of real classical groups: construction and unitarity

Theorem: (Barbasch-Ma-Sun-Z, arXiv:1712.05552)

• Let $G_{\mathbb{C}}$ be a connected reductive complex Lie group, and G a real form of $G_{\mathbb{C}}$. Assume that every simple factor of the Lie algebra \mathfrak{g} of $G_{\mathbb{C}}$ is of a classical type. Let $\check{\mathcal{O}}$ be a nilpotent \check{G} -orbit in $\check{\mathfrak{g}}$. Then all representations in $\mathrm{Unip}_{\mathcal{O}}(G)$ are unitarizable.

Remark:

• The same result holds for the real metaplectic group. There is an analogous notion of metaplectic Barbasch-Vogan duality, and the corresponding representations are called metaplectic special.

Thank you!