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Abstract
Let Homeo+(S1) denote the group of orientation preserving homeomorphisms of the circle
S
1. A subgroup G of Homeo+(S1) is tightly transitive if it is topologically transitive and

no subgroup H of G with [G : H ] = ∞ has this property; is almost minimal if it has
at most countably many nontransitive points. In the paper, we determine all the topological
conjugation classes of tightly transitive and almostminimal subgroups ofHomeo+(S1)which
are isomorphic to Z

n for any integer n ≥ 2.

Keywords Circle homeomorphism · Topological conjugation · Topologically transitive

1 Introduction and Preliminaries

1.1 Background

Given a groupG and a topological space X , one basic question is to classify all the continuous
actions of G on X up to topological conjugations. Generally, in order to get satisfactory
results, one should make some assumptions on the topology of X , the algebraic structure of
G, and the dynamics of the action. Poincaré’s classification theorem for minimal orientation
preserving homeomorphisms on the circle S

1 is the first celebrated result toward the answer
to this question; the rotation numbers are complete invariants for such systems (see [12]).
In [5], Ghys classified all orientation preserving minimal group actions on the circle using
bounded Euler class; this extended the previous theorem due to Poincaré (see also [7]).

Minimality and topological transitivity can be viewed as two kinds of irreducibility for
nonlinear group actions. Inspired by the previous works of Poincaré and Ghys, it is natural to
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study the classification of topologically transitive group actions on the circle. However, the
phenomena of topological transitivity are much richer than that of minimality; we have to
make stronger assumptions on the algebraic structure of acting groups and on the dynamics
of the action to get interesting results. We should note that if we consider an orientation
preservingminimal action on the circle by an amenable group, the actionmust factor through a
commutative group action by rotations; this is an easy conclusion of the existence of invariant
probability measures on the circle. Contrary to the case of minimal actions, many solvable
groups possess faithful topological transitive actions on the real line R (see [13]), which
corresponds to the actions on S

1 with a global fixed point.

1.2 Notions and Notations

Denote by S
1 the unit circle in the complex plane C. In this paper, we want to study the

classification of topologically transitive orientation preserving faithful group actions on S
1.

This is essentially the same as determining the conjugation classes of topologically transitive
subgroups of Homeo+(S1). Before the statement of the main results, let us recall some
notions.

Let X be a topological space and Homeo(X) be the homeomorphism group of X . Then for
a subgroupG of Homeo(X), the pair (X ,G) is called a dynamical system. The orbit of x ∈ X
under G is Gx = {gx : g ∈ G}. For a subset A ⊆ X , define GA = ⋃

x∈A Gx . A subset
A ⊆ X is called G-invariant if GA = A. If A is G-invariant, denote G |A the restriction of
the action of G to A. We call x ∈ X a n-periodic point of G if the orbit Gx consists of n
elements. For a homeomorphism f ∈ G, a point x ∈ X is called a periodic point of f if x is
a period point of the cyclic group 〈 f 〉 generated by f . Particularly if Gx = {x}, then we call
x a fixed point of G. Denote by P(G) and Fix(G) the sets of periodic points and fixed points
of G respectively; denote by P( f ) and Fix( f ) the sets of periodic points and fixed points of
f respectively.
For a dynamical system (X ,G), G is said to be topologically transitive if for any two

nonempty open subsets U and V of X , there is some g ∈ G such that g(U ) ∩ V 	= ∅. If
there is some point x ∈ X such that the orbit Gx is dense in X then G is said to be f point
transitive and such x is called a transitive point. If x is not a transitive point, then it is said
to be a nontransitive point. It is well known that if G is countable and X is a Polish space
without isolated points, the notions of topological transitivity and point transitivity are the
same. G is calledminimal if every point of X is a transitive point. A homeomorphism f of X
is said to be topologically transitive (resp. minimal) if the cyclic group 〈 f 〉 is topologically
transitive (resp. minimal).

Let S
1 denote the circle. Denote by Homeo+(S1) the group of all orientation preserving

homeomorphisms ofS1. Two subgroupsG and H ofHomeo+(S1) are said to be topologically
conjugate (or conjugate for short), if there is a homeomorphism φ ∈ Homeo+(S1) such that
φGφ−1 = H . If G is topologically transitive and no subgroup F of G with [G : F] = ∞ is
topologically transitive, then G is said to be tightly transitive; G is said to almost minimal if
there are at most countably many nontransitive points of G.

1.3 Description of theMain Result

In [14], it determined all topological conjugation classes of tightly transitive almost minimal
subgroups of Homeo+(R) which are isomorphic to Z

n for any integer n ≥ 2. In this paper,
we extend this result to group actions on the circle S

1; that is, we determine all topological
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conjugation classes of tightly transitive and almostminimal subgroups ofHomeo+(S1)which
are isomorphic toZ

n for any integer n ≥ 2. Roughly speaking, all the conjugation classes are
parameterized by a combination of orbits of irrational numbers under the action of GL(2, Z)

byMöbius transformations and orbits ofZ
n under some specified affine actions (see Theorem

7.1). In fact, the Poincaré’s classification theorem indicates that, for minimal subgroups of
Homeo+(S1) which is isomorphic to Z, all conjugation classes are parameterized by the
orbits of irrationals under the Z action on R generated by the unit translation. Then we
compare these two classification theorems in the following tabular presentation. (“TT” and
“AM” denote the properties of tight transitivity and almost minimality respectively; O(...)

denotes the orbits of ... ).

Poincaré’s classification The present classification

Spaces S
1

S
1

Groups Z Z
n (n ≥ 2)

Dynamics Minimality TT & AM
Invariants O(integer translations) O(Möbius & affine actions)

Here we should remark that the subgroups of Homeo+(S1) constructed in the paper do
not occur in Diff1+ε(S1) for sufficiently large ε ∈ (0, 1) (see e.g. [3,11]), and we do not
plan to discuss the smooth realization of these groups in the present paper. Also, it may be
worthwhile to compare the actions ofZ

n with that of lattices in higher rank simple Lie groups
(higher rank lattices) on the circle. People believe that there are no interesting actions for
such lattices (see e.g. [1,6,10,15]). Certainly, the following question is left:

Questions 1.1 For each finitely generated torsion free nilpotent group �, determine the
topological conjugation classes of tightly transitive and almost minimal subgroups G of
Homeo+(S1) which is isomorphic to �.

We recommend the readers to consult [2,4,8] for the discussions about nilpotent group
actions on one-manifolds.

The paper is organized as follows. In Sect. 2, we give some auxiliary results which will
be used in the following sections. In Sect. 3, we recall and prove some results around group
actions on R, which is the starting point for further considerations. In Sect. 4, we construct a
class of tightly transitive and almost minimal subgroups Gα,n,k,g, f of Homeo+(S1), which
are isomorphic toZ

n and parameterized by five indices α, n, k, g, f . In Sect. 5, we show that
every tightly transitive and almost minimal subgroup of Homeo+(S1)which is isomorphic to
Z
n is topologically conjugate to some Gα,n,k,g, f . In Sect. 6, we determine all the topological

conjugation classes of theseGα,n,k,g, f . In the last section,we restate the classification theorem
in terms of matrix, with respect to a fixed standard basis of Gα,n .

2 Auxiliary Results

The following is the well-known Poincaŕe’s classification theorem (see e.g. [9, Chap. 11]).

Theorem 2.1 Let f : S
1 → S

1 be an orientation preserving homeomorphism.

(1) If f has a periodic point, then all periodic orbits have the same period.
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(2) If f has no periodic point, then there is a continuous surjection φ : S
1 → S

1 and a
minimal rotation T : S

1 → S
1 with φ f = Tφ. Moreover, the map φ has the property

that for each z ∈ S
1, φ−1(z) is either a point or a closed sub-interval of S

1.

We collect the following useful properties for the subgroup of Homeo+(S1) with periodic
orbits, which can be seen in [11] Exercise 2.1.2.

Proposition 2.2 Let H be a subgroup of Homeo+(S1). If H has a periodic orbit, then

(1) the set P(H) of periodic points is a compact subset of S
1;

(2) all periodic orbits have the same cardinality.

Let f be a homeomorphism on a topological space X . Recall that a point x in X is called a
wandering point of f , if there exists an open neighborhoodU of x such that the sets f n(U ),
n ∈ Z, are pairwise disjoint. We useW ( f , X) to denote the set of all wandering points. Then
W ( f , X) is an f invariant open set. The following lemma is direct.

Lemma 2.3 Let f and g be homeomorphisms on a topological space X such that f g = g f .
Then (1) g(W ( f , X)) = W ( f , X); (2) if x ∈ X is an n periodic point of f , then g(x) is also
an n periodic point of f .

Lemma 2.4 Let H be a subgroup of Homeo+(S1) and f ∈ Homeo+(S1). If f commutes
with each element of H, and P(H) 	= ∅ , P( f ) 	= ∅, then P(H) ∩ P( f ) 	= ∅ and the group
〈 f , H〉 has a periodic orbit.

Proof If P(H) ⊆ P( f ), then the first part of the conclusion holds. So we may assume
that there is some x ∈ P(H) \ P( f ). Take a maximal interval (a, b) ⊆ S

1 \ P( f ) with
x ∈ (a, b). Since P( f ) = Fix( f p) for some positive integer p, by Theorem 2.1, we have
a, b ∈ Fix( f p). So, either limn→∞ f np(x) = a or limn→∞ f −np(x) = a. We may assume
that limn→∞ f np(x) = a. By Lemma 2.3 (2), we have f np(x) ∈ P(H) for all n ∈ Z. By
Proposition 2.2, P(H) is compact. Thus a ∈ P(H). Hence P(H) ∩ P( f ) 	= ∅.

Let y ∈ P(H) ∩ P( f ). Then Hy = {h0(y), h1(y), · · · , hn−1(y)}, for some
h0, · · · , hn−1 ∈ H , and f k(y) = y, for some positive integer k. Since f commutes with H ,
we have

〈 f , H〉y =
⎧
⎨

⎩
f mh(y) : m ∈ Z, h ∈ H} =

n−1⋃

i=0

k−1⋃

j=0

{ f j hi (y)

⎫
⎬

⎭
,

which is finite. Hence the group 〈 f , H〉 has a periodic orbit. �

Proposition 2.5 Let G be a subgroup of Homeo+(S1) which is isomorphic to Z

n with n ≥ 2,
tightly transitive and almost minimal. Then there is a finite G-orbit {x1, · · · , xk} with k ≥
1. �

Proof By Lemma 2.4, it suffices to show that P(g) 	= ∅ for any g ∈ G. Otherwise, let
f ∈ G be such that P( f ) = ∅. Then there is a continuous surjection φ : S

1 → S
1 and a

minimal rotation T : S
1 → S

1 with φ f = Tφ by Theorem 2.1. If φ is a homeomorphism,
then f is minimal which contradicts to the tight transitivity of G. Thus W ( f , S

1) 	= ∅ and
S
1 \ W ( f , S

1) is homeomorphic to the Cantor set. Since S
1 \ W ( f , S

1) is G-invariant by
Lemma 2.3 (1), each point of which is nontransitive. This contradicts the almost minimality
of G. �
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The following lemma iswell known.We afford a proof here for convenience of the readers.

Lemma 2.6 Let T be a minimal rotation of S
1 and f ∈ Homeo(S1). If f commutes with T ,

then f is a rotation of S
1.

Proof Let T : S
1 → S

1, x �→ xei2πθ , where θ is irrational. Since f T = T f , f T n(1) =
T n f (1) for every integer n; that is f (ei2πnθ ) = ei2πnθ f (1) for each n. Since {ei2πnθ |n ∈ Z}
is dense in S

1, we have f (x) = f (1)x for any x ∈ S
1, by the continuity of f . �


For a ∈ R, denote by La the translation by a on R, i.e., La(x) = x + a for x ∈ R. The
following proposition can be deduced from Lemma 2.6 directly by quotienting the orbits of
L1.

Proposition 2.7 Let α be an irrational number and f ∈ Homeo+(R). If f commutes with
L1 and Lα simultaneously, then f = Lβ for some β ∈ R.

Lemma 2.8 ([14],Lemma 2.2) Let H be a topologically transitive subgroup of Homeo+(R)

which is isomorphic to Z
2. Then H is minimal.

Lemma 2.9 Let H be a topologically transitive subgroup of Homeo+(R)which is isomorphic
to Z

n. Then there exists a nonempty open interval (a, b) such that the restriction to (a, b)
of F = {h ∈ H : h(a, b) = (a, b)} is minimal and the set of nontransitive points of H is
R \ (⋃

h∈H h(a, b)
)
, where a may be −∞ and b may be +∞.

Proof We prove the lemma by induction on the rank of H . Firstly, we have n ≥ 2, by the fact
that H is topologically transitive. By Lemma 2.8, if n = 2, then take (a, b) = (−∞,+∞).
So we may assume that n ≥ 3 and the action of H is not minimal. Suppose that the assertions
hold for any topologically transitive subgroup of Homeo+(R) which is isomorphic to Z

m ,
with m < n. Let x0 ∈ R such that Hx0 	= R. Let (a1, b1) be a connected component of
R \ Hx0 and let F1 = {h ∈ H : h(a1, b1) = (a1, b1)}.

If F1|(a1,b1) is minimal, then F1 and (a1, b1) satisfy the first requirement. Suppose that it
is not minimal. For any h ∈ H , either h(a1, b1) = (a1, b1) or h(a1, b1)∩ (a1, b1) = ∅. Thus
the restriction of F1 to (a1, b1) is topologically transitive. Since H is topologically transitive,
there exists f ∈ H such that f (a1, b1)∩ (a1, b1) = ∅. Furthermore, because f preserves the
orientation of R, we have f k(a1, b1) ∩ (a1, b1) = ∅, for any k ∈ Z, k 	= 0. Thus [H : F1] =
∞. Take an orientation preserving homeomorphism ϕ : (a1, b1) → R. Then ϕF1|(a1,b1)ϕ−1

is a topologically transitive subgroup of Homeo+(R) which is isomorphic to Z
l , for some

l < n. By induction hypothesis, there exists a nonempty open interval (a2, b2) such that the
assertions in the lemma hold for ϕF1|(a1,b1)ϕ−1. Take (a, b) = ϕ−1(a2, b2) ⊆ (a1, b1). Then
the restriction to (a, b) of F = {h ∈ H : h(a, b) = (a, b)} is minimal.

For any topologically transitive point x ∈ R of H , there exists h ∈ H such that h(x) ∈
(a, b). Thus x ∈ h−1(a, b) ⊆ ⋃

h∈H h(a, b). Noting that
⋃

h∈H h(a, b) is H -invariant
and contains topologically transitive points, we have

⋃
h∈H h(a, b) = R. Since F |(a,b) is

minimal, Hy is dense in
⋃

h∈H h(a, b), for any y ∈ ⋃
h∈H h(a, b). Hence Hy is dense

in R. Therefore,
⋃

h∈H h(a, b) is the very set of transitive points. Consequently, the set of
nontransitive points is R \ (⋃

h∈H h(a, b)
)
. �


Lemma 2.10 LetG bea topologically transitive andalmostminimal subgroupofHomeo+(R)

which is isomorphic to Z
n. For any subgroup H of G, if H is topologically transitive, then

it is also almost minimal.
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Proof Since H is topologically transitive, by Lemma 2.9, there exists an interval (a, b) such
that the restriction to (a, b) of F = {h ∈ H : h(a, b) = (a, b)} is minimal, and the set
of nontransitive points of H is K := R \ (⋃

h∈H h(a, b)
)
. Since G is commutative, K is a

G-invariant closed set. Thus K is contained in the set of nontransitive points of G which is
countable by the almost minimality of G. Hence H is also almost minimal. �


3 Construction and Properties ofG˛,n

In [14], Shi and Zhou classified all the tightly transitive and almost minimal subgroups of
Homeo+(R), which are isomorphic toZ

n for any integer n ≥ 2. These results are the starting
point of the proof of the main theorem in this paper.

We first review the main results in [14]. Let α be an irrational number in (0, 1) and n ≥ 2
be an integer. Let a, b ∈ R. Denote by 〈La, Lb〉 the subgroup of Homeo+(R) generated by
La and Lb .

We defineGα,n inductively. LetGα,2 = 〈L1, Lα〉. Suppose that we have constructedGα,n

for n ≥ 2. Then we construct Gα,n+1 as follows. Choose a homeomorphism � from R to
(0, 1). For example we can take

�(x) = 1

π

(π

2
+ arctan x

)
for x ∈ R.

Then � induce a morphism of Homeo+(R) defined by

�(σ )(x) =
{

�σ�
−1(x − i) + i, x ∈ (i, i + 1) and i ∈ Z,

x, x ∈ Z,
(3.1)

for σ ∈ Homeo+(R). Here we use the same symbol � to represent the morphism, which will
not lead to confusion from the text. For n ∈ N

+, denote

�
(n)(σ ) := �(�(· · · (�(σ )) · · · )).

By the definition, we immediately have the following relation (Fig. 1).

Lemma 3.1 For any σ1, σ2 ∈ Homeo+(R),

�(σ1σ2) = �(σ1)�(σ2), and �(σ1)L1 = L1�(σ1).

Furthermore, for any m, n, k ∈ N, m > n,

�
(m)(σ1)�

(n)(Lk
1) = �

(n)(Lk
1)�

(m)(σ1).

Proof For x ∈ Z, �(σ1)�(σ2)(x) = �(σ1)(x) = x = �(σ1σ2)(x) and

�(σ1)L1(x) = �(σ1)(x + 1) = x + 1 = L1(x) = L1�(σ1)(x).

For x ∈ (i, i + 1), i ∈ Z,

�(σ1)�(σ2)(x) = �(σ1)
(
�σ2�

−1(x − i) + i
)

= �σ1�
−1

((
�σ2�

−1(x − i) + i
) − i

)
+ i

= �σ1σ2�
−1(x − i) + i

= �(σ1σ2)(x),

123
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Fig. 1 Definition of �(σ )

and

�(σ1)L1(x) = �(σ1)(x + 1) = �σ1�
−1(x − i) + i + 1

= �(σ1)(x) + 1 = L1�(σ1)(x).

The last assertion follows from

�
(m)(σ1)�

(n)(Lk
1) = �

(n)
(
�

(m−n)(σ1)L
k
1

)

= �
(n)

(
Lk
1�

(m−n)(σ1)
)

= �
(n)(Lk

1)�
(m)(σ1).

�

Let Gα,n+1 be the group generated by {�(σ ) : σ ∈ Gα,n} ∪ {L1}. Then the constructed Gα,n

has the following properties.

Lemma 3.2 Let intrGα,n denote the set of nontransitive points of Gα,n. Then

(1) Gα,n is tightly transitive and is isomorphic to Z
n.

(2) intrGα,2 = ∅, intrGα,3 = Z, and for n ≥ 4,

intrGα,n =
(

⋃

i∈Z
�(intrGα,n−1) + i

)

∪ Z

= Z ∪
⋃

i1,··· ,in−2∈Z

{
�
(
�
( · · · (�(i1) + i2) · · · ) + in−3

) + in−2
}
.

(3) Suppose that (a, b) is a connected component of R \ intrGα,n and F = {σ ∈ Gα,n :
σ((a, b)) = (a, b)}. Then F |(a,b) is minimal and isomorphic to Z

2. (Such an open
interval (a, b) is called a minimal interval.) Precisely, the minimal intervals (a, b) of
Gα,n are of the following form:

a) if n = 2, then (a, b) = (−∞,+∞);
b) if n = 3, then (a, b) = (i, i + 1), for some i ∈ Z;
c) if n ≥ 4, then (a, b) = �

(
�
( · · · �(

(i1, i1 + 1) + i2)
) · · · ) + in−3

) + in−2, for some
i1, i2, · · · , in−2 ∈ Z.
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Suppose that α and β are irrationals in (0, 1). We say that α is equivalent to β if there
exist m1, n1,m2, n2 ∈ Z with |m1n2 − n1m2| = 1 such that β = m1+n1α

m2+n2α
. The following

theorem completes the classification of tightly transitive and almost minimal subgroups of
Homeo+(R), which are isomorphic to Z

n with n ≥ 2.

Theorem 3.3 The following assertions hold:

(1) For any n ≥ 2 and irrationals α, β ∈ (0, 1), the subgroup Gα,n is conjugate to Gβ,n by
an orientation preserving homeomorphism if and only if α is equivalent to β.

(2) Let G be a tightly transitive and almost minimal subgroup of Homeo+(R) which is
isomorphic to Z

n for some n ≥ 2. Then G is conjugate to Gα,n by an orientation
preserving homeomorphism for some irrational α ∈ (0, 1).

From the construction of Gα,n , we can define a basis {e1, ..., en} of Gα,n as a Z module.
For Gα,2, we take e1 = L1 and e2 = Lα . Generally, for n ≥ 3, take

e1 = �
(n−2)(L1), e2 = �

(n−2)(Lα),

e3 = �
(n−3)(L1), · · · ,

en−1 = �
(1)(L1), en = L1.

The basis {e1, ..., en} so defined is called the standard basis of Gα,n .
Now we prove a technical lemma.

Lemma 3.4 Suppose that {e1, · · · , en} is the standard basis of Gα,n, where n ≥ 2 and α is
an irrational number in (0, 1). If f ∈ Homeo+(R) commutes with every element of Gα,n and
f 	= id, then there exists some i ∈ {1, 2} such that the group 〈 f , ei , e3, ..., en〉 is also tightly
transitive, almost minimal and isomorphic to Z

n.

Proof For n = 2, we know that f = Lβ for some β ∈ R \ {0} by Proposition 2.7. If β ∈ Q,
then 〈Lβ, Lα〉 is tightly transitive and minimal. If β is irrational, then 〈L1, Lβ〉 is tightly
transitive and minimal. Thus the conclusion holds for Gα,2.

For n ≥ 3, by Lemma 3.2, there is a minimal interval (a, b). By Lemma 3.2 (3), we
can take (a, b) = �

( · · · �(
(0, 1)

) · · · ), where the number of the iterations is n − 3. Set
F = {σ ∈ Gα,n : σ((a, b)) = (a, b)}. Then, by the definition of standard basis, F = 〈e1, e2〉.
Since f commutes with every element of Gα,n , f (a, b) is still a minimal interval of Gα,n .
By the structure of the minimal interval, there exist k3, · · · , kn ∈ Z such that

f (a, b) = �
(
�
( · · · �(

(k3, k3 + 1) + k4)
) · · · ) + kn−1

) + kn .

Then f e−k3
3 ...e−kn

n (a, b) = (a, b).

Let g′ = f e−k3
3 ...e−kn

n . Define g ∈ Homeo+(R) by g(x) = �
−(n−2)g′

�
n−2(x). Then g

commutes with L1 and Lα . By Proposition 2.7, there exists some θ ∈ R \ {0} such that
g = Lθ .

We claim that g′ = �
(n−2)(g). By the choice of (a, b) = �

( · · · �(
(0, 1)

) · · · ), we have,
for x ∈ (a, b),

�
(n−2)(g)(x) = �(�(n−3)(g))(x) = · · · = g′(x).

For x ∈ {a, b}, it is obvious that �
(n−2)(g)(x) = g′(x). Now for any x ∈ R \ Z, there exist

j3, · · · , jn ∈ Z such that e j33 · · · e jnn (x) ∈ [a, b]. Set q = e j33 · · · e jnn . Thus

g′(x) = q−1g′q(x) = q−1(�(n−2)(g))q(x) = �
(n−2)(g)(x).
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The last equality follows by Lemma 3.1. As for x ∈ Z, it is obvious that g′(x) =
�

(n−2)(g)(x) = x . Thus the claim follows.

Now it is clear that 〈 f , ei , e3, ..., en〉 = 〈g′, ei , e3, ..., en〉, for i ∈ {1, 2}.

If θ is irrational, then 〈 f , e1, e3, ..., en〉 = 〈�(n−2)(Lθ ), e1, e3, ..., en〉 = Gθ,n satisfies
the requirements. If θ is rational, then 〈 f , e2, e3, ..., en〉 = 〈�(n−2)(Lθ ), e2, e3, ..., en〉 also
satisfies the requirements. Indeed, in this case, the set of nontransitive points is

Z ∪
⋃

i1,··· ,in−2∈Z

{
�
(
�
( · · · (�(i1) + i2) · · · ) + in−3

) + in−2
}
,

which is countable. Hence 〈 f , e2, e3, ..., en〉 is almost minimal. Let H = 〈 f , e2, e3, ..., en〉
and suppose that F is topologically transitive subgroup of H . Note that (a, b) :=
(�(n−3)(0), �

(n−3)(1)) is a minimal interval of H . Let E = {h ∈ H : h(a, b) = (a, b)}.
Then E = 〈 f , e2〉. By the topological transitivity of F , (F ∩ E)|(a, b) is also topologi-
cally transitive, whence (F ∩ E)|(a, b) ∼= Z

2. For i = 3, · · · , n, the class modulo E of ei
is the unique element of H/E that maps (a, b) to another minimal interval ei (a, b). Thus
F/(F∩E) contains the class modulo E of ei , for i = 3, · · · , n. Hence F ∼= Z

n , whichmeans
that F is a subgroup of H of finite index. Therefore, H is tightly transitive. This completes
the proof. �


4 Construction and Properties ofG˛,n,k,g,f

Let integers n ≥ 2 and k ≥ 1. Let α be an irrational number in (0, 1). Let Gs
α,n = {gs :

g ∈ Gα,n}, for s ∈ N
∗. Suppose g ∈ Gα,n \ ⋃

gcd(k,s)	=1 G
s
α,n . Put x j = ei2π j/k for

j = 1, ..., k. Denote by (xi , xi+1) (resp. [xi , xi+1]) the open (resp. closed) interval from xi
to xi+1 anticlockwise. Fix an orientation preserving homeomorphism φ from R to (x1, x2).
Then φ define a homomorphism:

˜ : Homeo+(R) −→ Homeo+((x1, x2)), σ �→ σ̃ = φσφ−1.

Let f ∈ Homeo+(S1) be such that

• f (xi ) = xi+1, for i = 1, ..., k.
• f k |(x1,x2)= g̃ : (x1, x2) → (x1, x2).

In the above definition, we take xk+1 = x1. In the reminder of the paper we take this
convention as well. We denote the collection of such f ∈ Homeo+(S1) by Homeo+(S1)k,g .

Now we define a homomorphism:

or f : Homeo+(R) −→ Homeo+(S1), σ �→ σ f ,

where σ f is an orientation preserving homeomorphism of S
1 defined by

σ f (x) =
{
f i−1σ̃ f −(i−1)(x), x ∈ (xi , xi+1), i = 1, ..., k,

xi , x = xi , i = 1, ..., k.
(4.1)

We denote σ f by σ for short when it is clear that σ is extended by f .

Remark 4.1 Note that f does not commute with σ f in general. f commutes with σ f if and
only if σ commutes with g. In particular, σ f commutes with f , for any σ ∈ Gα,n .
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Fig. 2 Definition of σ f

Nowwe define Gα,n,k,g, f to be the subgroup of Homeo+(S1) generated by {σ : σ ∈ Gα,n}∪
{ f } (Fig. 2).

By the above construction, we immediately have

Lemma 4.2 The following assertions hold.

(1) Let H = {ϕ ∈ Gα,n,k,g, f : ϕ((x1, x2)) = (x1, x2)}, then H = Gα,n = {σ : σ ∈ Gα,n},
H |(x1,x2) = G̃α,n = φGα,nφ

−1 and Gα,n,k,g, f /H ∼= Z/kZ. Moreover,

Gα,n,k,g, f = H ∪ f H · · · ∪ f k−1H .

(2) Gα,n,k,g, f is a tightly transitive and almost minimal subgroup of Homeo+(S1).
(3) Gα,n,k,g, f is isomorphic to Z

n.

Proof (1) is direct from the construction of Gα,n,k,g, f . As for (2), it is clear that Gα,n,k,g, f is
topologically transitive and almost minimal, since Gα,n is tightly transitive and almost mini-
mal. For any topologically transitive subgroup F ofGα,n,k,g, f , (F∩H)|(x1,x2) is topologically
transitive. By (1), H |(x1,x2) is tightly transitive. Thus [H |(x1,x2) : (F∩H)|(x1,x2)] < ∞. Then
[Gα,n,k,g, f : F] < ∞, since [Gα,n,k,g, f : H ] = k. Therefore, Gα,n,k,g, f is tightly transitive.

It remains to show (3). Note that the possible torsion elements of Gα,n,k,g, f are of the
form f j h̄ for some h ∈ Gα,n and j = 1, · · · , k − 1. If it is a torsion element, then there
exists a positive integer r such that ( f j h̄)kr = id. Particularly,

( f j h̄)kr |(x1,x2)= g̃ jr hkr = (g̃ j hk)r = id.

Then (g j hk)r = id. Since Gα,n is torsion-free, we have g j = h−k ∈ Gk
α,n . Since the group

〈g, h〉 is free and abelian, it is cyclic. Thus there exists w ∈ Gα,n such that g = ws, h = w−t
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for some positive integers s, t . Then s j = tk. Since 1 ≤ j ≤ k − 1, we have gcd(s, k) 	= 1.
Therefore, g ∈ ⋃

gcd(k,s)	=1 G
s
α,n , which contradicts the choice of g.

Now we know that Gα,n,k,g, f is a finitely generated and torsion-free abelian group. This
together with the facts that Gα,n,k,g, f /H ∼= Z/kZ and H ∼= Z

n imply that Gα,n,k,g, f is
isomorphic to Z

n . �

Remark 4.3 In the above proof, we know that Gα,n,k,g, f is torsion free for g ∈ Gα,n \⋃

gcd(k,s)	=1 G
s
α,n . Conversely, if g ∈ Gs

α,n with gcd(s, k) 	= 1, then there exist torsion
elements. Indeed, if gcd(s, k) = k1 	= 1 (we write k = k1k2 and s = k1s1) and g = ws ∈
Gs

α,n , then f j h−1 with j = k2s2 and h = ws1s2 is a torsion element for any integer s2.

5 Tightly Transitive Subgroups of Homeo+(S1)

Suppose that G is a tightly transitive and almost minimal subgroup of Homeo+(S1) which
is isomorphic to Z

n with n ≥ 2. It follows from Proposition 2.5 that G has a finite orbit
{x1, · · · , xk} for some k ≥ 1.We assume that x1, · · · , xk are on the circle in the anticlockwise
ordering.

Proposition 5.1 Let H = {g ∈ G : g(xi ) = xi , 1 ≤ i ≤ k}. Then G/H ∼= Z/kZ. Moreover,
the restriction of H to (x1, x2) is tightly transitive and almost minimal.

Proof Take an f ∈ G such that f (x1) = x2. Since f is orientation preserving, we have
f (xi ) = xi+1 for each i . Thus f k(xi ) = xi and f k ∈ H .
For any g ∈ G, suppose that g(x1) = x j for some 1 ≤ j ≤ k. Then f −( j−1)g(x1) = x1

and so f −( j−1)g(xi ) = xi for each i . Thus f −( j−1)g ∈ H , that is g ∈ f ( j−1)H . Therefore,

G/H ∼= Z/kZ.

It is clear that the restriction of H to (x1, x2) must be topologically transitive and almost
minimal. It remains to show it is tightly transitive.

If the restriction of H to (x1, x2) is not tightly transitive, then there is a subgroup F of H
such that F |(x1,x2) is topologically transitive and [H |(x1,x2): F |(x1,x2)] = ∞. We may as
well assume that F |(x1,x2) is tightly transitive. By Lemma 2.10, F is almost minimal. Then,
by Theorem 3.3 (2), F |(x1,x2) is conjugate to Gα,m for some irrational α and m < n.

There are two cases:

Case 1. f k |(x1,x2)∈ F |(x1,x2). Then F̃ := 〈F, f 〉 is a topologically transitive subgroup
of Homeo+(S1) and [F̃ : F] = k. Hence [G : F̃] = ∞, since [G : H ] = k
and [H : F] = [H |(x1,x2): F |(x1,x2)] = ∞. We get a contradiction to the tight
transitivity of G.

Case 2. f k |(x1,x2) /∈ F |(x1,x2). Then, by Lemma 3.4, there is a subgroup F ′ of H such
that f k ∈ F ′ and the restriction F ′ |(x1,x2) is tightly transitive, almost minimal and
F ′ ∼= Z

m . Similar to Case 1, we get a contradiction again. �

By Proposition 5.1 and Theorem 3.3, we see that no point in S

1 \ {x1, ..., xk} has a finite
G-orbit. So, we have

Corollary 5.2 {x1, ..., xn} is the unique finite G-orbit.

Theorem 5.3 Let G be a tightly transitive and almost minimal subgroup of Homeo+(S1),
which is isomorphic to Z

n for some n ≥ 2. Then G is topologically conjugate to some
Gα,n,k,g, f .
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Proof By Propostion 2.5, there exists a finite G-orbit x1, · · · , xk which lie on S
1 in the

anticlockwise ordering. WLOG, we may assume x j = ei2π j/k for j = 1, ..., k as in Sect. 4,
otherwise we need only replace G by some G ′ conjugating to it. Let

H = {g ∈ G : g(xi ) = xi , 1 ≤ i ≤ k}.
Then H |(x1,x2) is tightly transitive, almost minimal and isomorphic to Z

n by Propostion
5.1. Therefore, by Theorem 3.3, there exists an irrational α ∈ (0, 1) such that H |(x1,x2) is
conjugate to G̃α,n . Precisely, let φ ∈ Homeo+(R, (x1, x2)) be as in the first paragraph of
Sect. 4. Then there exists a ψ ∈ Homeo+(R) such that

ψφ−1H |(x1,x2) φψ−1 = Gα,n .

Let f ∈ G be such that f (x1) = x2. Then f k |(x1,x2)∈ H |(x1,x2). Let g = ψφ−1 f k |(x1,x2)
φψ−1 ∈ Gα,n . By Remark 4.3, we have g /∈ ⋃

gcd(s,k)	=1 G
s
α,n , since G is torsion-free. Next

we show that

ψGψ
−1 = Gα,n,k,g, f .

Note that

ψ(x) =
{
f (i−1)(φψφ−1) f −(i−1)(x), x ∈ (xi , xi+1),

xi , x = xi ,

and G = H ∪ f H ∪ · · · ∪ f k−1H . For x ∈ (xi , xi+1) and h ∈ H ,

ψhψ
−1

(x)

=
[
f (i−1)(φψφ−1) f −(i−1)]h[ f (i−1)(φψ−1φ−1) f −(i−1)

]
(x)

= f (i−1)(φψφ−1)h |(x1,x2) (φψ−1φ−1) f −(i−1)(x)

= ψφ−1h |(x1,x2) φψ−1(x)

Sinceψhψ
−1

(xi ) = xi , we conclude thatψhψ
−1 ∈ Gα,n,k,g, f . It is clear thatψ f ψ

−1 = f .

Thus ψGψ
−1 ⊆ Gα,n,k,g, f . It is similar for the converse direction. Thus

ψGψ
−1 = Gα,n,k,g, f ,

which means that G is topologically conjugate to some Gα,n,k,g, f . �


6 Classification ofG˛,n,k,g,f

Theorem 5.3 indicates that, in order to determine all the conjugation classes of the concerned
systems, we need only classify the groups Gα,n,k,g, f defined in Sect. 4.

Lemma 6.1 Let n, k ∈ Z with n ≥ 2 and k ≥ 1, α be an irrational in (0, 1) and g ∈ Gα,n.
Then, for any f , f ′ ∈ Homeo+(S1)k,g, Gα,n,k,g, f is topologically conjugate to Gα,n,k,g, f ′ .

Proof Define ψ ∈ Homeo+(S1) by

ψ(x) =
{
f (i−1) f ′−(i−1)(x), x ∈ (xi , xi+1), i = 1, ..., k;
x, x = xi , i = 1, ..., k.
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For any σ ∈ Gα,n , recall that σ f ∈ Gα,n,k,g, f and σ f ′ ∈ Gα,n,k,g, f ′ are defined by (4.1).
So, for x ∈ (xi , xi+1),

ψσ f ′
ψ−1(x) = f (i−1) f ′−(i−1) f ′(i−1)σ̃ f ′−(i−1) f ′(i−1) f −(i−1)(x)

= f (i−1)σ̃ f −(i−1)(x)

= σ f (x).

It is obvious that ψσ f ′
ψ−1(xi ) = σ f ′

(xi ) = xi . Hence ψσ f ′
ψ−1 = σ f .

In addition, if x ∈ (xi , xi+1) with 1 ≤ i ≤ k − 1, then

ψ f ′(x) = f i f ′−i f ′(x) = f i f ′−i+1(x) = f f i−1 f ′−(i−1)(x) = f ψ(x);
if x ∈ (xk, x1), then

ψ f ′(x) = f ′k f ′−(k−1)(x) = g̃ f ′−(k−1)(x) = f k f ′−(k−1)(x) = f ψ(x).

Altogether, we have

ψGα,n,k,g, f ′ψ−1 = Gα,n,k,g, f .

That is to say that Gα,n,k,g, f is topologically conjugate to Gα,n,k,g, f ′ . �

Lemma 6.2 If Gα,n,k,g, f is topologically conjugate to Gα′,n′,k′,g′, f ′ , then k = k′, n = n′ and
α is equivalent to α′.
Proof n = n′ is clear; k = k′ follows from the fact that all finite orbits of a group of circle
homeomorphisms have the same cardinality (Lemma 2.2); α being equivalent to α′ follows
from Theorem 3.3 and the definition of Gα,n,k,g, f . �


Let NHomeo+(R)(Gα,n) denote the normalizer of Gα,n in Homeo+(R), i.e., NHomeo+(R)

(Gα,n) = {
ϕ ∈ Homeo+(R) : ϕGα,nϕ

−1 = Gα,n
}
. Thus we get an affine action on Gα,n

by the semidirect NHomeo+(R)(Gα,n) � Gk
α,n : (ϕ, f ).g := ϕgϕ−1 f , for any (ϕ, f ) ∈

NHomeo+(R)(Gα,n) � Gk
α,n and g ∈ Gα,n .

Lemma 6.3 Gα,n,k,g, f is topologically conjugate to Gα,n,k,g′, f ′ if and only if g and g′ are in
the same orbit of the affine action on Gα,n by NHomeo+(R)(Gα,n) � Gk

α,n.

Proof Sufficiency. Suppose that g and g′ are in the same orbit of the affine action on Gα,n

by NHomeo+(R)(Gα,n) � Gk
α,n . Then there exist some ϕ ∈ NHomeo+(R)(Gα,n) and h0 ∈ Gα,n

such that

g′ = ϕgϕ−1hk0 = ϕg(ϕ−1hk0ϕ)ϕ−1.

Since ϕ ∈ NHomeo+(R)(Gα,n), ϕ−1hk0ϕ ∈ Gα,n . Set h = ϕ−1h0ϕ. Thus g′ = ϕghkϕ−1.
Let {x1, ..., xk} and φ : R → (x1, x2) be defined as in Sect. 4. Then φϕφ−1 ∈

Homeo+((x1, x2)).
We show two special cases firstly.

Claim 1. If g′ = ghk , then Gα,n,k,g, f = Gα,n,k,g′, f ′′ with f ′′ = f h
f
, where the definition

of h
f
can consult (4.1). Thus Gα,n,k,g′, f ′ is conjugate to Gα,n,k,g′, f ′′ by Lemma 6.1.

Indeed, let σ be in Gα,n . For any x ∈ (xi , xi+1), 1 ≤ i ≤ k,

σ f ′′
(x) = f (i−1)(h

f
)(i−1)σ̃ (h

f
)−(i−1) f −(i−1)(x)

= f (i−1)h̃(i−1)σ̃ h̃−(i−1) f −(i−1)(x)

= f (i−1)σ̃ f −(i−1)(x)

= σ f (x).
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It is obvious that σ f ′′
(xi ) = xi = σ f (xi ). Thus σ f ′′ = σ f . Note that

Gα,n,k,g, f = 〈{σ f : σ ∈ Gα,n} ∪ { f }〉,
and

Gα,n,k,g′, f ′′ = 〈{σ f ′′ : σ ∈ Gα,n} ∪ { f ′′}〉.

In addition, f ′′ = f h
f ∈ Gα,n,k,g, f and f = f

′′
(h

f
)−1 = f

′′
(h

f
′′
)−1 ∈ Gα,n,k,g′, f ′′ .

Therefore,

Gα,n,k,g, f = Gα,n,k,ghk , f ′′ .

Claim 2. If g′ = ϕgϕ−1 with ϕ ∈ NHomeo+(R)(Gα,n), then Gα,n,k,g, f is conjugate to

Gα,n,k,g′, f ′ by � := ϕ−1
f
, where f ′ = � f �−1 ∈ Homeo+(S1).

Indeed, let σ ∈ Gα,n . For x ∈ (xi , xi+1) with 1 ≤ i ≤ k,

σ f ′
(x) = f ′(i−1)σ̃ f ′−(i−1)(x)

= � f (i−1)�−1σ̃� f −(i−1)�−1(x)

= � f (i−1)ϕ̃σϕ−1 f −(i−1)�−1(x)

= �(ϕσϕ−1)
f
�−1(x).

It is obvious that σ f ′
(xi ) = �(ϕσϕ−1)

f
�−1(xi ) = xi for any 1 ≤ i ≤ k. Hence

σ f ′ = �(ϕσϕ−1)
f
�−1.

Since ϕ ∈ NHomeo+(R)(Gα,n), we have (ϕσϕ−1)
f ∈ Gα,n,k,g, f . Thus

Gα,n,k,g, f = 〈{(ϕσϕ−1)
f : σ ∈ Gα,n} ∪ { f }〉,

Hence Gα,n,k,g′, f ′ = �Gα,n,k,g, f �
−1 (Fig. 3).

For general case, i.e. g′ = ϕghkϕ−1, we combine Claims 1 and 2 in order to obtain
that Gα,n,k,g, f is conjugate to Gα,n,k,g′, f ′ . Precisely, by Claim 1, we have Gα,n,k,g, f =
G

α,n,k,ghk , f h
f . Then, by Claim 2, G

α,n,k,ghk , f h
f is conjugate to

G
α,n,k,ϕghkϕ−1,(ϕ−1

f h f

) f h
f
(ϕ f h f

)

byϕ−1
f h

f

. ByLemma6.1,G
α,n,k,ϕghkϕ−1,(ϕ−1

f h f

) f h
f
(ϕ f h f

)

is conjugate to Gα,n,k,g′, f ′ . Hence Gα,n,k,g, f is conjugate to Gα,n,k,g′, f ′ .
Necessity. Suppose thatGα,n,k,g, f is topologically conjugate toGα,n,k,g′, f ′ . Then there exists
ψ ∈ Homeo+(S1) such that

ψGα,n,k,g, f ψ
−1 = Gα,n,k,g′, f ′ .

Note that the set {x1, · · · , xk} is ψ-invariant, since it represents the unique periodic orbit
of both groups.Moreover,ψ being orientation preserving, ifψ(x1) = x1, thenψ(xi ) = xi for
all i = 1, · · · , k.Wemay assume thatψ(xi ) = xi for any 1 ≤ i ≤ k whenceψ((xi , xi+1)) =
(xi , xi+1). Otherwise, suppose that ψ(x1) = x j for some integer j with 1 ≤ j ≤ k. It is
clear that Gα,n,k,g, f = f −( j−1)Gα,n,k,g, f f j−1. Thus

ψ f −( j−1)Gα,n,k,g, f f
j−1ψ−1 = Gα,n,k,g′, f ′ .

Then ψ f −( j−1) satisfies the condition that ψ f −( j−1)(xi ) = xi for any 1 ≤ i ≤ k.
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(a) Claim1 (b) Claim2

Fig. 3 Lemma 6.3

Let H = {q ∈ Gα,n,k,g, f : q(xi ) = xi , i = 1, · · · , k} =
{
h
f : h ∈ Gα,n

}
. Then

f H = {q ∈ Gα,n,k,g, f : q(xi ) = xi+1, i = 1, · · · , k}.
One has ψ−1 f ′ψ(xi ) = xi+1, for each i = 1, · · · , k. Thus ψ−1 f ′ψ ∈ f H , that is there

exists an h ∈ Gα,n such that ψ f h
f
ψ−1 = f ′. Thus

ψ g̃hkψ−1 =
(
ψ( f h

f
)kψ−1

)
|(x1,x2)= f ′k |(x1,x2)= g̃′.

Let φ be the orientation preserving homeomorphism fromR to (x1, x2), fixed in Sect. 4. Thus

ψφghkφ−1ψ−1 = φg′φ−1.

Let ϕ = φ−1ψφ. Then ϕghkϕ−1 = g′.
It remains to show ϕ ∈ NHomeo+(R)(Gα,n). It is obvious that ϕ ∈ Homeo+(R). For any

σ ∈ Gα,n ,

ϕσϕ−1 = φ−1ψσ̃ψ−1φ.

Note that ψ |(x1,x2) conjugates Gα,n,k,g, f |(x1,x2) to Gα,n,k,g′, f ′ |(x1,x2), and they both coin-

cide with G̃α,n . Thus ψ(G̃α,n)ψ
−1 = G̃α,n , i.e., ψφGα,nφ

−1ψ−1 = φGα,nφ
−1. Hence

φ−1ψφGα,nφ
−1ψ−1φ = Gα,n . Therefore, ϕ = φ−1ψφ ∈ NHomeo+(R)(Gα,n). �


Define

Conj(Gα,n,Gα′,n) = {ψ ∈ Homeo+(R) : Gα,n = ψGα′,nψ
−1}.

If α and α′ are equivalent, then Conj(Gα,n,Gα′,n) 	= ∅ by Theorem 3.3; and we fix a
conjugation ψα,α′ ∈ Conj(Gα,n,Gα′,n).

Analogous arguments to the Claim 2 in the proof of Lemma 6.2, allow to construct a
conjugation 
 of Gα,n,k,g, f to Gα′,n,k,g′, f ′ , with g′ = ψα,α′gψ−1

α,α′ and f ′ = 
 f 
−1.
Finally, by the above lemmas, we obtain
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Theorem 6.4 Gα,n,k,g, f is topologically conjugate to Gα′,n′,k′,g′, f ′ if and only if

• n = n′ and k = k′;
• α is equivalent to α′, i.e. there exist m1, n1,m2, n2 ∈ Z with |m1n2 − n1m2| = 1 such

that α′ = m1+n1α
m2+n2α

;

• g andψα,α′g′ψ−1
α,α′ are in the sameorbit of the affineactiononGα,n by NHomeo+(R)(Gα,n)�

Gk
α,n, i.e. there exist some ϕ ∈ NHomeo+(R)(Gα,n) and h ∈ Gα,n such thatψα,α′g′ψ−1

α,α′ =
ϕghkϕ−1.

7 Matrix Representation of NHomeo+(R)(G˛,n)

In this section, we want to restate Theorem 6.4 in terms of matrix, with respect to the standard
basis {e1, ..., en} of Gα,n defined as in Sect. 3. This will make us easier to determine whether
two systems Gα,n,k,g, f , Gα′,n′,k′,g′, f ′ are conjugate.

From Theorem 3.3-(1), we see that if α and β are equivalent irrationals in (0, 1), thenGα,n

and Gβ,n are conjugate. Now suppose that α = m1+n1β
m2+n2β

for some integers m1, n1,m2, n2
with |m1n2 − n1m2| = 1. We will define a sequence of conjugations φn between Gα,n and
Gβ,n for every n ≥ 2. When n = 2, the conjugation φ2 between Gα,2 and Gβ,2 can be taken
as a multiplication Mu : R → R, x �→ ux , where u = |m2 + n2β| (see [14, Lemma 3.3]).
More precisely, we may assume that m2 + n2β > 0, otherwise we can replay m1,m2, n1, n2
by −m1,−m2,−n1,−n2 respectively. Then

MuL1M
−1
u = Lu = Lm2

1 Ln2
β , and MuLαM

−1
u = Lαu = Lm1

1 Ln1
β . (7.1)

Since |m1n2 − n1m2| = 1 , we have

Z
2 ∼= Gβ,2 = 〈L1, Lβ〉 = 〈Lu, Lαu〉.

Therefore, MuGα,2M−1
u = Gβ,2. Fix standard basis {L1, Lα} , {L1, Lβ} of Gα,2 and Gβ,2

respectively. Then, by 7.1, the conjugation by φ2 = Mu can be represented by matrix
(
m2 m1

n2 n1

)

.

More precisely, under the standard basis {L1, Lα} of Z-module Gα,2, an element g =
Lxα

1 Lyα
α ∈ Gα,2 is represented by

(
xα

yα

)

. Then the coordinate of φ2gφ
−1
2 = L

xβ

1 L
yβ
β under

the basis {L1, Lβ} is
(
xβ

yβ

)

=
(
m2 m1

n2 n1

) (
xα

yα

)

.

Now for n ≥ 3, φn := �
(n−2)(φ2) is a conjugation between Gα,n and Gβ,n by [14, Theorem

3.4]. More precisely,

φn�
(n−2)(L1)φ

−1
n = �

(n−2)(φ2)�
(n−2)(L1)�

(n−2)(φ−1
2 )

= �
(n−2)(φ2L1φ

−1
2 ) (by Lemma 3.1)

= �
(n−2)(Lm2

1 Ln2
β ) (by 7.1)

=
(
�

(n−2)(L1)
)m2

(
�

(n−2)(Lβ)
)n2

,
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and

φn�
(n−2)(Lα)φ−1

n = �
(n−2)(φ2)�

(n−2)(Lα)�(n−2)(φ−1
2 )

= �
(n−2)(φ2Lαφ−1

2 )

= �
(n−2)(Lm1

1 Ln1
β )

=
(
�

(n−2)(L1)
)m1

(
�

(n−2)(Lβ)
)n1

.

For j = 0, 1, · · · , n − 3,

φn�
( j)(L1)φ

−1
n = �

(n−2)(φ2)�
( j)(L1)�

(n−2)(φ−1
2 )

= �
( j)

(
�

(n−2− j)(φ2)L1�
(n−2− j)(φ−1

2 )
)

= �
( j)(L1). (by Lemma 3.1)

Therefore, under the standardbases
{
�

(n−2)(L1), �
(n−2)(Lα), �

(n−3)(L1), · · · , �
(1)(L1), L1

}

and
{
�

(n−2)(L1), �
(n−2)(Lβ), �

(n−3)(L1), · · · , �
(1)(L1), L1

}
ofGα,n andGβ,n respectively,

φn can be represented by matrix

Ãα,β =
(
Aα,β O
O I

)

,

where Aα,β =
(
m2 m1

n2 n1

)

∈ GL(2, Z) and I is the identity matrix of rank n − 2. We call φn

so defined the standard conjugation between Gα,n and Gβ,n .
Now, we want to determine the matrix representation of the group NHomeo+(R)(Gα,n)with

respect to the standard basis {e1, ..., en}.
If ϕ ∈ Homeo+(R) such that ϕGα,2ϕ

−1 = Gα,2, then there are integersm1, n1,m2, n2 ∈
Z with |m1n2 − n1m2| = 1 such that Lm1

1 Ln1
α = ϕLαϕ−1, Lm2

1 Ln2
α = ϕL1ϕ

−1, and α =
m1+n1α
m2+n2α

(See [14] Lemma 3.3). So, the matrix representation of ϕ belongs to the following
group

Fα :=
{(

m2 m1

n2 n1

)

∈ GL(2, Z) : α = m1 + n1α

m2 + n2α

}

.

Thus by the definition of Gα,n , we see that each element in NHomeo+(R)(Gα,n) has the matrix
representation:

B̃α =
(

fα ∗
O B

)

∈ GL(n, Z),

where B is an (n − 2) × (n − 2) upper triangular matrix with diagonals 1 and fα ∈ Fα .
Here we remark that if α is not an algebraic number of degree 2 over Q, then Fα is trivial.
Conversely, given a matrix of the form B̃α as above, then there is a ϕ ∈ NHomeo+(R)(Gα,n)

whose matrix representation is B̃α by the construction process as in [14].
Moreover, it is clear that

Conj(Gα,n,Gα′,n) = {ϕ ◦ ψα,α′ : ϕ ∈ NHomeo+(R)(Gα,n)},
where ψα,α′ ∈ Conj(Gα,n,Gα′,n). So the matrix representation of each element in

Conj(Gα,n,Gα′,n) has the form: B̃α Ãα,α′ .
Altogether, we get a restatement of Theorem 6.4.

Theorem 7.1 Gα,n,k,g, f is topologically conjugate to Gα′,n′,k′,g′, f ′ if and only if
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• n = n′ and k = k′;
• there exists

Aα,α′ =
(
m2 m1

n2 n1

)

∈ GL(2, Z),

an upper triangular matrix B ∈ GL(n − 2, Z) with diagonals 1, and −→w ∈ kZ
n such

that

α′ = m1 + n1α

m2 + n2α
,

and

−→v = B̃α Ãα,α′−→u + −→w ,

where −→u ,−→v are vectors in Z
n corresponding to g and g′ respectively.
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