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Abstract

Let G be a countable group and X be a totally regular curve. Suppose that φ : G → Homeo(X) is a 
minimal action. Then we show an alternative: either the action is topologically conjugate to isometries on 
the circle S1 (this implies that φ(G) contains an abelian subgroup of index at most 2), or has a quasi-
Schottky subgroup (this implies that G contains the free nonabelian group Z ∗ Z). In order to prove the 
alternative, we get a new characterization of totally regular curves by means of the notion of measure; and 
prove an escaping lemma holding for any minimal group action on infinite compact metric spaces, which 
improves a trick in Margulis’ proof of the alternative in the case that X = S1.
© 2022 Elsevier Inc. All rights reserved.
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1. Introduction

The notion of amenable group was first introduced by von Neumann, which forbids the ex-
istence of a paradoxical decomposition of a group. On the contrary, the free nonabelian group 
Z ∗ Z admits such a decomposition. This is the core of Banach-Tarski’s decomposition of the 
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sphere. So, the following question asked by von Neumann is very natural: whether every non-
amenable group contains Z ∗ Z (see [4]). This question was answered positively by J. Tits for 
linear groups:

Theorem 1.1. [28, Theorem 1] A finitely generated linear group either contains a free non-
abelian subgroup or has a solvable subgroup of finite index.

In general, von Neumann’s question has a negative answer; one may consult [13,18,23] for 
many counterexamples. Now, Theorem 1.1 is known as the Tits alternative. An interesting ques-
tion is which group has the Tits alternative. Many important groups coming from geometry and 
topology were shown to have this property (see e.g. [5, p. 545]). Nevertheless, the exact ana-
logue of Tits alternative does not hold even for subgroups of C∞ diffeomorphism group of S1

(see [8]). As a replacement of the Tits alternative, G. Margulis proved the following theorem 
which answered positively a conjecture proposed by Ghys. One may see [20,9] for a different 
proof of this theorem by Ghys.

Theorem 1.2. [14, Theorem 3] Let a group G act by homeomorphisms on S1. Then either there 
is a G-invariant probability measure on S1, or G contains a free nonabelian subgroup.

Recently, some people are interested in studying the alternative phenomena for group actions 
on curves (continua of one dimension). For example, it is implied by several authors’ work that 
every subgroup of a dendrite homeomorphism group either has a finite orbit or contains a free 
nonabelian group (see [6,16,10]). One may refer to [11,15,25–27] for some related investigations 
in this direction.

The purpose of the paper is to establish an alternative for group actions on a class of curves 
which contains all dendrites and all graphs. Explicitly, we obtain the following theorem.

Theorem 1.3. Let G be a countable group and X be a totally regular curve. Suppose that 
φ : G → Homeo(X) is a minimal action. Then either the action is topologically conjugate to 
isometries on the circle S1 (this implies that φ(G) contains an abelian subgroup of index at most 
2), or has a quasi-Schottky subgroup (this implies that G contains the free nonabelian group 
Z ∗Z).

Here we remark that the minimality condition in the theorem is not very strict, as there are 
many natural examples of minimal group actions on curves coming from geometry (see e.g. 
[3,17]). Margulis also established an alternative for minimal group actions on the circle [14, 
Theorem 2]. The proof of Theorem 1.3 follows the same line as in [14]; however, since the 
topology of the concerned curves is more complicated than that of the circle, we have to develop 
some topological and dynamical ideas to overcome the difficulties encountered.

During the process of the proof, we get a new characterization of totally regular curves by 
means of the notion of measure, which may have its own interest in continuum theory.

Theorem 1.4. A continuum X is totally regular if and only if there is an atomless probability 
Borel measure μ on X such that for every subcontinuum sequence (Ki)

∞
i=1 satisfying μ(Ki) → 0, 

we always have diam(Ki) → 0.
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We also get an escaping lemma holding for any minimal group action on infinite compact 
metric space. This lemma is an extension of a trick used by Margulis in [14], and we avoid using 
the Neumann’s theorem in group theory as he did.

Lemma 1.5 (Escaping lemma). Let X be an infinite compact metric space and let a countable 
group G act on X minimally. Then for any countable subset C ⊂ X and any finite subset F ⊂ X, 
there always exist a sequence (gn) in G and a finite set K in X such that gnF → K and K ∩C =
∅.

Note. We always assume that the group G appeared in this article is a countable discrete 
topological group; in particular, it is secondly countable and locally compact.

The paper is organized as follows. In Section 2, we introduce some basic notions and facts 
which will be used in this article. Then we show the existence of contractible neighborhoods 
for minimal and sensitive actions on regular curves with a point of finite order in Section 3, and 
we use size function to construct a measure on continua in Section 4. In Section 5, we give a 
new characterization of totally regular curves via measures. We prove the escaping lemma for 
minimal actions in Section 6. Finally, we conclude the alternative for minimal actions on totally 
regular curves in Section 7.

2. Preliminaries

In this section, we will introduce some notions, notations, and facts in continuum theory, 
measure theory, and the theory of dynamical system, which will be used in the sequel.

2.1. Characterizations of totally regular continua and the circle

By a continuum, we mean a connected compact metric space. A continuum X is said to be 
nondegenerate if it is not a single point. We say that X is a Peano continuum if it is locally 
connected. If a continuum X does not contain uncountably many mutually disjoint nondegenerate 
subcontinua, then X is called Suslinian. A continuum X is said to be

(1) regular if every point x ∈ X has an open neighborhood basis Nx each member of which has 
finite boundary;

(2) totally regular if for any countable subset F of a continuum X, there is a basis B of open 
sets for X such that for each B ∈ B, F ∩ ∂X(B) = ∅ and the boundary ∂X(B) of B is finite.

It is known that graphs and dendrites are totally regular; Suslinian continua are of one dimension; 
and regular curves are Peano continua of dimension 1.

There have been many equivalent characterizations of totally regular continua (see [22, Theo-
rem 7.5]). Now, we recall a characterization given by S. Eilenberg and O. Harrold. Let (X, d) be 
a metric space. For any ε > 0, let

L1
ε(X,d) = inf

∞∑
n=1

diam(Xi),

where the infimum is taken over all decompositions X = X1 ∪ X2 ∪ X3 ∪ · · · of X such that 
diam(Xi) < ε for each i = 1, 2, · · · . Then L1(X, d) is non-decreasing with respect to ε. Let
ε
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L1(X,d) = lim
ε→0+ L1

ε(X,d).

If L1(X, d) < ∞, then we say that (X, d) has finite linear measure.

Theorem 2.1 ([7]). A continuum X is totally regular if and only if it has finite linear measure.

Let X be a topological space and x ∈ X. Let β be a cardinal number. We say that x is of 
order ≤ β , written ord(x) ≤ β , provided that x has an open neighborhood basis N such that the 
cardinality of the boundary of each U ∈ N is less than or equal to β; if ord(x) ≤ β but ord(x) � α

for any α < β , then we say that x is of order β; if β < ℵ0, we say that x is of finite order. The 
following characterization of the simple closed curve is due to W. Ayres.

Theorem 2.2 ([2], Corollary 3). The simple closed curve is the only continuum all of whose 
points are of the same finite order.

A point p in a continuum X is called a local separating point provided that there is some 
neighborhood U of p such that the connected component C of U containing p is separated by p
in U . Using the concept of local separating, Whyburn gave the following equivalent characteri-
zation of totally regular curve.

Theorem 2.3 ([29], Theorem 4). A continuum X is totally regular if and only if every nondegen-
erate subcontinuum of X contains uncountable local separating points.

Together with the following Whyburn’s theorem, we know that every totally regular contin-
uum has a point of order 2.

Theorem 2.4 ([29], Theorem 1). A continuum with uncountable local separating points has a 
point of order 2.

2.2. Hyperspace and size functions

Let (X, d) be a compact metric space and set

2X = {A : A is a nonempty closed subset of X},
C(X) = {A ∈ 2X : A is connected}.

Then 2X is a compact metric space endowed with the Hausdorff metric dH and C(X) is closed 
in 2X ([19, Theorems 4.13, 4.17]). We call each of (2X, dH ) and (C(X), dH ) the hyperspace of 
X.

Definition 2.5. [19, 4.33] A continuous function τ : 2X → R is said to be a size function (or 
Whitney map) on 2X if

(1) if A, B ∈ 2X and A � B , then τ(A) < τ(B);
(2) τ({x}) = 0, for any x ∈ X.
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Lemma 2.6. [19, 4.33] For a compact metric space (X, d),

(1) there exists a size function on 2X;
(2) for any size function τ on 2X , An → A if and only if for any ε > 0, there is N > 0, such that 

for each n ≥ N ,

An ⊆ N(A,ε) and |τ(An) − τ(A)| < ε.

Note that N(A, ε) = {x ∈ X : d(x, A) < ε}. Here we recall an explicit construction of size 
functions in [19, 4.33], which will be used in the sequel. Choose a countable dense subset D =
{x1, x2, x3, · · · } of X. For each i, define fi : X → [0, 1] by

fi(x) = 1

1 + d(xi, x)
.

For any subset A of X, set τi(A) = diamfi(A). Then the function

τ(A) =
∞∑
i=1

1

2i
τi(A)

is a size function on 2X.

Lemma 2.7. Let τ be the size function defined above. Then, for any C, C1, C2, · · · ∈ C(X) with 
C ⊆ ⋃∞

k=1 Ck , we have

τ(C) ≤
∞∑

k=1

τ(Ck).

Proof. For each i, fi is continuous on X. So, fi(C), fi(C1), fi(C2), · · · are connected in [0, 1]. 
Let λ be the Lebesgue measure on [0, 1]. Thus

τi(C) = diam(fi(C)) = λ(fi(C))

≤
∞∑

k=1

λ(fi(Ck)) =
∞∑

k=1

diam(fi(Ck))

=
∞∑

k=1

τi(Ck).

Hence τ(C) ≤ ∑∞
k=1 τ(Ck). �

2.3. Metric outer measures

For a nonempty set 	 let P(	) denote the power set of 	, i.e., P(	) = {A : A ⊆ 	}. Recall 
that a function μ defined on P(	) is called an outer-measure on 	 if it satisfies:
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(1) 0 ≤ μ(E) ≤ +∞, for each subset E of 	;
(2) μ(∅) = 0;
(3) if E1 ⊆ E2, then μ(E1) ≤ μ(E2);
(4) if {Ei} is any sequence of subsets of 	, then

μ

( ∞⋃
i=1

Ei

)
≤

∞∑
i=1

μ(Ei).

Let μ be an outer-measure on 	. A subset E of 	 is said to be μ-measurable if for all subsets 
A, B with A ⊆ E and B ⊆ 	 \ E, we have

μ(A ∪ B) = μ(A) + μ(B).

Theorem 2.8. [24, Theorem 3] If μ is an outer-measure on 	, then the system M of μ-
measurable sets is a σ -algebra and the restriction of μ to M is a measure on M.

A function τ defined on a class C of subsets of 	 will be called a pre-measure if

(1) ∅ ∈ C and τ(∅) = 0;
(2) 0 ≤ τ(C) ≤ +∞ for all C in C.

Theorem 2.9. [24, Theorems 15,16,19] If τ is a pre-measure defined on a class C of subsets in a 
metric space (X, d), then the set function

μ(E) = sup
δ>0

μδ(E) (2.1)

is an outer-measure on X, where

μδ(E) = inf

{ ∞∑
i=1

τ(Ci) : Ci ∈ C,diam(Ci) ≤ δ,E ⊆
∞⋃
i=1

Ci

}
.

(We let μδ(E) = +∞ if the infimum is taken over the empty set.) Moreover, all Borel sets are 
μ-measurable.

2.4. Equicontinuity and sensitivity in minimal systems

Let G be a countable group and X be a compact metric space with metric d . A continuous 
action of G on X, written G � X, means a group homomorphism φ : G → Homeo(X), where 
Homeo(X) is the homeomorphism group of X. For brevity, we usually use gx instead of φ(g)(x)

for g ∈ G and x ∈ X. For A ⊂ X and g ∈ G, denote by gA the set {gx : x ∈ A}. We use GA to 
denote the set ∪g∈G = gA; if GA = A, then A is called G-invariant. For x ∈ X, the orbit of x
under the action G � X is the set {gx : g ∈ G}, which is denoted by O(x, G). If for every x ∈ X, 
O(x, G) is dense in X, then the action G � X is said to be minimal. If A ⊂ X is closed and 
G-invariant, and the restriction action G � A is minimal, then we call A a minimal set. If φ(G)

is an equicontinuous family in Homeo(X) with respect to the uniform convergence topology, 
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then G � X is said to be equicontinuous; that is, for every ε > 0 there is a δ > 0 such that 
d(gx, gy) < ε for all g ∈ G, whenever d(x, y) < δ. The action G � X is said to be sensitive if 
there is c > 0 such that for every nonempty open set U in X, there is a g ∈ G with diam(gU) > c; 
c is sad to be a sensitivity constant.

The following dichotomy is well known in the theory of dynamical system and easy to prove.

Theorem 2.10. Let G be a group and X be a compact metric space. Suppose the action G � X

is minimal. Then G � X is either equicontinuous or sensitive.

Let H be a compact metric topological group and K be a closed subgroup of H . Then ψ :
H → Homeo(H/K) define by ψ(h)(gK) = hgK is a continuous action of H on H/K , which is 
called the left translation action of H on H/K . We use L(H/K) to denote the subgroup ψ(H)

of Homeo(H/K).
The following theorem is classical and can be seen in [1].

Theorem 2.11. Let G be a group and X be a compact metric space. Suppose the action φ : G →
Homeo(X) is minimal and equicontinuous. Then there is a compact metric topological group H
and a closed subgroup K of H such that φ is topologically conjugate to left translations on H/K; 
that is, there is a homeomorphism h : X → H/K and a group homomorphism γ : G → L(H/K)

such that h(φ(g)(x)) = γ (g)(h(x)) for all g ∈ G and x ∈ X; in particular, X is topologically 
homogenous.

2.5. Contractible neighborhoods and strong ε-proximality

We will recall some notions used by Margulis in [14], some ideas of which are due to Fursten-
berg. Let a group G act on a compact metric space (X, d) and let M(X) denote the space of all 
Borel probability measures on X with the standard weak* topology. A subset K of X is said to 
be G-contractible if there is a sequence (gn) in G such that diam(gnK) → 0. We call a mea-
sure μ ∈ M(X) G-contractible if there is a sequence (gn) in G and x ∈ X such that gnμ → δx , 
where δx is the Dirac measure at x. We say that the G-action on X is strongly ε-proximal if every 
measure μ ∈M(X) with diam(supp(μ)) < ε is G-contractible.

The following lemma is implied by an argument of Lebesgue number.

Lemma 2.12. If every point x ∈ X has a G-contractible neighborhood, then the G-action on X
is strongly ε-proximal for some ε > 0.

The following lemma is Proposition 1(ii) in [14].

Lemma 2.13. If the G-action on X is strongly ε-proximal for some ε > 0, then for any μ ∈
M(X), there is a ν ∈ M(X) with finite support and a sequence (gn) in G such that gnμ → ν.

From Lemma 2.12 and Lemma 2.13, we immediately have

Proposition 2.14. If every point x ∈ X has a G-contractible neighborhood, then for any μ ∈
M(X), there is a ν ∈ M(X) with finite support and a sequence (gn) in G such that gnμ → ν.
408



E. Shi, H. Xu and X. Ye Journal of Differential Equations 341 (2022) 402–421
WU1 V1

V2

U2

h1 h−1
1

h−1
2

h2

h
−1

2
h 1

h1

h2

h
−1
1

h2

h −11
h −12

h1 h−1
1

h−1
2

h2

Fig. 1. Quasi-Schottky group.

2.6. Quasi-Schottky groups

(See Fig. 1.) A group H with two generators acting on a topological space X is said to be 
quasi-Schottky if there are generators h1, h2 of H and disjoint nonempty open sets U1, U2, V1, V2
and W of X such that

h1(U1 ∪ U2 ∪ V2 ∪ W) ⊂ U1, h−1
1 (U2 ∪ V1 ∪ V2 ∪ W) ⊂ V1,

and

h2(U1 ∪ U2 ∪ V1 ∪ W) ⊂ U2, h−1
2 (U1 ∪ V1 ∪ V2 ∪ W) ⊂ V2.

By a “ping-pong” argument of Tits [28], we know that H is a free nonabelian group. In addition, 
for any h �= e, h(W) ∩ W = ∅; this implies that the H action on the open set HW is discrete.

3. Existence of contractible neighborhoods

The following theorem is known as the Boundary Bumping Theorem (see e.g. [19, p. 73]).

Theorem 3.1. Let X be a continuum and let U be a nonempty proper open subset of X. If K is 
a component of U , then K ∩ ∂X(U) �= ∅.

The following two lemmas are taken from [30]. As the paper has not yet been officially pub-
lished, for the convenience of the readers, we repeat the proof again here.

Lemma 3.2. [30, Lemma 3.1] Let X be a regular curve and U be a connected open subset of X
with |∂X(U)| = n for some positive integer n. If diam(U) > ε for some ε > 0, then there is some 
connected open set V ⊂ U , such that d(V, ∂X(U)) ≥ ε/4n and diam(V ) ≥ ε/4n.
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Proof. Let ∂X(U) = {e1, e2, · · · , en}. We claim that U \ ⋃n
i=1 B(ei, ε/2n) �= ∅. In fact, if U ⊂⋃n

i=1 B(ei, ε/2n), then for any two distinct points a, b ∈ U , by the connectivity of U there are 
finite B(ei1, ε/2n), · · · , B(eim, ε/2n) (m ≤ n) such that a ∈ B(ei1 , ε/2n), b ∈ B(eim, ε/2n) and 
B(eik , ε/2n) ∩ B(eik+1 , ε/2n) �= ∅ for 1 ≤ k ≤ m − 1. Thus we have

d(a, b) ≤d(a, ei1) + d(ei1, ei2) + · · · + d(eim−1 , eim) + d(eim, b)

<
ε

2n
+ ε

n
· (m − 1) + ε

2n

≤ε.

It follows that diam(U) ≤ ε, which is a contradiction. Hence U \ ⋃n
i=1 B(ei, ε/2n) �= ∅.

Take a point x ∈ U \ ⋃n
i=1 B(ei, ε/2n). Then d(x, ∂X(U)) ≥ ε/2n, and hence

d(B(x, ε/4n), ∂X(U)) ≥ ε/4n.

Let V be the component of B(x, ε/4n) ∩ U which contains x. Then d(V, ∂X(U)) ≥ ε/4n. Let 
W = U ∩ B(x, ε/4n). Since U is connected, ∅ �= ∂X(W) ⊂ ∂X(B(x, ε/4n)). This together with 
Theorem 3.1 implies ∅ �= ∂X(V ) ⊂ ∂X(B(x, ε/4n)). So, diam(V ) = diam(V ) ≥ ε/4n. �
Lemma 3.3. [30, Proposition 3.2] Let X be a regular curve and let (Ui)

∞
i=1 be a sequence of 

connected open subsets of X with |∂X(Ui)| = n for some positive integer n and for each i. 
Suppose that there is some ε > 0 with diam(Ui) > ε for each i. Then there is a nonempty open 
subset W of X and infinitely many i’s such that W is contained in Ui .

Proof. For each i, it follows from Lemma 3.2 that there is a connected open subset Wi ⊂ Ui

with d(Wi, ∂X(Ui)) ≥ ε/4n and diam(Wi) ≥ ε/4n. By the compactness of 2X and C(X), there 
are subsequences (Wik ) and (∂X(Uik )) such that (Wik ) converges to a subcontinuum A, and

dH (∂X(Uik1
), ∂X(Uik2

)) < ε/4n,∀k1 �= k2. (1)

Take a point z ∈ A. Then there exists a connected open neighborhood Q of z such that ∂X(Q)

is finite and diam(Q) < ε/4n. Since (Wik ) converges to A, there exists a positive integer N
such that Wik ∩ Q �= ∅ for each k ≥ N . Noting that diam(Wik ) ≥ ε/4n and diam(Q) < ε/4n, 
we have Wik � Q. Thus Wik ∩ ∂X(Q) �= ∅ by the connectivity of Wik . Hence, there exist a point 
p ∈ ∂X(Q) and infinitely many k’s such that p ∈ Wik . Passing to a subsequence if necessary, we 
may assume that p ∈ Wik for each k ≥ N .

Let W = WiN . To complete the proof, we only need to show that W ⊂ Uik for all k ≥ N . 
Otherwise, there is some k′ ≥ N with W � Uik′ . Since W is connected and p ∈ W ∩ Uik′ , there 
is a point e ∈ W ∩ ∂X(Uik′ ). By (1), there is e′ ∈ ∂X(UiN ) such that d(e, e′) < ε/4n. Then we 
have d(W, e′) ≤ d(e, e′) < ε/4n. This contradicts the assumption that d(W, ∂X(UiN )) ≥ ε/4n at 
the beginning. �
Theorem 3.4. Let X be a regular curve with a point of finite order and let a group G act on X
minimally and sensitively. Then every point x ∈ X has a contractible neighborhood.
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Proof. Let x be a point of finite order in X. Then there is a positive integer n and a sequence of 
open neighborhoods (Ui)

∞
i=1 of x such that |∂X(Ui)| = n and diam(Ui) → 0 as i → ∞. Let c > 0

be a sensitivity constant of the action. Then for each i, there is gi ∈ G such that diam(gi(Ui)) > c. 
By Lemma 3.3, there exists a nonempty open set W in X such that W is contained in infinitely 
many Ui ’s. We may as well assume that W ⊂ Ui for each i. Then diam(g−1

i W) ≤ diam(Ui) → 0. 
For any y ∈ X, by the minimality of the action, there is some g ∈ G with gy ∈ W . Take an 
open neighborhood V of y such that gV ⊂ W . Then V is a contractible neighborhood of y as 
diam(g−1

i gV ) → 0 (i → ∞). �
4. Measures induced by size functions

Let X be a continuum. Let τ be the size function on 2X as defined in Section 2.2. Set C =
C(X) ∪ {∅} and τ(∅) = 0. Let μ be the outer-measure defined as in Theorem 2.9 by

μ(E) = sup
δ>0

μδ(E), (4.1)

where

μδ(E) = inf

{ ∞∑
i=1

τ(Ci) : Ci ∈ C,diam(Ci) ≤ δ,E ⊆
∞⋃
i=1

Ci

}
.

Here, we should note that μδ(E) = +∞ if the infimum is taken over an empty set. By Theo-
rem 2.9, the restriction of μ to the Borel σ -algebra is a measure.

Lemma 4.1. μ is atomless.

Proof. For any x ∈ X, it is clear τ({x}) = 0. By the definition of μ, we have μ({x}) = 0. �
Lemma 4.2. For any C ∈ C(X), we have μ(C) ≥ τ(C).

Proof. If for some δ > 0, there is no sequence (Ci) in C with diam(Ci) ≤ δ and C ⊆ ∪Ci , then

μ(C) ≥ μδ(C) = +∞ ≥ τ(C).

Otherwise, for every δ > 0 and ε > 0, there is a sequence (Ci) in C with diam(Ci) ≤ δ and 
C ⊆ ∪Ci such that

τ(C) ≤
∞∑
i=1

τ(Ci) ≤ μδ(C) + ε,

by Lemma 2.7. By the arbitrariness of ε and the definition of μ, we still have μ(C) ≥ τ(C). �
Lemma 4.3. For any continuum X, there exists an atomless Borel measure μ on X such that for 
any sequence (Yn) of subcontinua, if μ(Yn) → 0, then diam(Yn) → 0.
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Proof. Let μ be the measure defined as (4.1). If diam(Yn) does not converge to 0, then there 
exist a subsequence (Ynk

) and Y ∈ C(X) with diam(Y ) > δ for some δ > 0, such that Ynk
→ Y . 

By Lemma 4.2, τ(Ynk
) ≤ μ(Ynk

) → 0. Since τ is continuous on 2X , we have τ(Y ) = 0. By the 
Definition 2.5 of the size function, Y must be degenerate. This is a contradiction. �

Note. Here we should note that the measure μ in Lemma 4.3 may take the infinite value at 
some Borel subsets.

5. A characterization of totally regular curves

Before the proof of the main result in this section, let us first recall and show some lemmas in 
continuum theory.

Lemma 5.1. [19, 7.21] A Peano continuum (X, d) is ULAC (uniformly locally arcwise con-
nected). That is for any ε > 0 there exists δ > 0 such that if d(x, y) < δ and x �= y, then there is 
an arc A ⊂ X such that A has end points x and y and diam(A) < ε.

The following lemma is an easy conclusion of the regularity of Borel measures on metric 
spaces.

Lemma 5.2. Let μ be an atomless Borel probability measure on a continuum (X, d). Then for any 
sequence of subcontinua (Kn) of X with limn→∞ diam(Kn) = 0, we have limn→∞ μ(Kn) = 0.

Lemma 5.3. Let X be a Peano continuum. Let V be a connected open subset and F be a closed 
subset of X. If F ⊂ V , then there is a subcontinuum K of X satisfying F ⊂ K ⊂ V .

Proof. Since X is locally connected, for every x ∈ F , there is a connected neighborhood Wx of x
such that Wx ⊂ V . By the compactness, there exist x1, · · · , xn ∈ F such that F ⊂ Wx1 ∪· · ·∪Wxn . 
Noting that every connected open set of a Peano continuum is arcwise connected, for each i ∈
{1, · · · , n − 1}, there is an arc Ai ⊂ V connecting Wxi

and Wxi+1 . Let

K = (∪n
i=1Wxi

) ∪ (∪n−1
i=1 Ai).

Then K is a subcontinuum satisfying F ⊂ K ⊂ V . �
The following definition describes a kind of 1-dimensionality of a continuum from the view-

point of measure.

Definition 5.4. A continuum (X, d) is said to be of 1-dimension in the sense of measure if there 
is an atomless Borel probability measure μ on X such that for any sequence of subcontinua (Yn)

of X with μ(Yn) → 0, we always have diam(Yn) → 0.

It can be seen from the following lemma that a continuum of 1-dimension in the sense of 
measure is always a Peano continuum.

Lemma 5.5. If a continuum X is of 1-dimension in the sense of measure, then it is a Peano 
continuum.
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Proof. If X is not a Peano continuum, then there exists a convergence continuum ([19, 5.12]), 
i.e., there is a nondegenerate subcontinuum A and a sequence (An)

∞
n=1 of mutually disjoint sub-

continua An such that

A = lim
n→∞An and A ∩ An = ∅ for each n.

Let μ be a probability measure on X such that for any sequence of subcontinua (Yn) of X
with μ(Yn) → 0, we always have diam(Yn) → 0. Since An’s are pairwise disjoint and μ(X) =
1, we have μ(An) → 0 as n → ∞. Then diam(An) → 0 by the assumption on μ, which is a 
contradiction. �

It is well known that the topological dimension of Suslinian continua is one. However, we 
did not find a reference giving an explicit proof. For the convenience of the readers, we afford a 
sketched proof here.

Lemma 5.6. Every Suslinian continuum is of topological dimension 1.

Proof. Let X be a Suslinian continuum with metric d and fix x ∈ X. Set

E = {r ∈ (0,diam(X)] : ∂B(x, r) has a non-degenerate component}.

Then E is countable by the definition of Suslinian continuum. Thus, {B(x, r) : r ∈ (0, diam(X)] \
E} forms an open neighborhood of x with 0-dimensional boundary. Hence dim(X) ≤ 1. Note that 
the dimension of every non-degenerate continuum is no less than 1. So dim(X) = 1. �

Now we start to state and prove the main theorem in this section which gives a new charac-
terization of totally regular curves.

Theorem 5.7. A continuum (X, d) is totally regular if and only if it is 1-dimensional in the sense 
of measure.

Proof. (⇐=) Suppose that (X, d) is 1-dimensional in the sense of measure, then there is an 
atomless Borel probability measure μ on X such that for any sequence of subcontinua (Yn) of X
with μ(Yn) → 0, we have diam(Yn) → 0. Define a function ρ : X × X →R by

ρ(x, y) = inf{μ(K) : K is a subcontinuum of X containing x and y}.

Claim 1. ρ is a metric on X.

It is clear that we only need to show the triangle inequality and the requirement that ρ(x, y) =
0 implies x = y.

Assume that ρ(x, y) = 0. Then there is a sequence (Kn) of subcontinua of X containing x
and y such that limn→∞ μ(Kn) = 0. By the assumption on μ, we have limn→∞ diam(Kn) = 0. 
Thus d(x, y) = 0, and hence x = y.

For any x, y, z ∈ X and any ε > 0, there exist subcontinua Kx,y and Ky,z of X containing 
{x, y} and {y, z} respectively such that
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μ(Kx,y) < ρ(x, y) + ε

2
, and μ(Ky,z) < ρ(y, z) + ε

2
.

Then K ≡ Kx,y ∪ Ky,z is a subcontinuum of X containing x and z such that

ρ(x, z) ≤ μ(K) ≤ μ(Kx,y) + μ(Ky,z) ≤ ρ(x, y) + ρ(y, z) + ε.

Since ε is arbitrary, we have ρ(x, z) ≤ ρ(x, y) + ρ(y, z). Thus ρ satisfies the triangle inequality.

Claim 2. The metric ρ is compatible with d .

We need to show that limn→∞ d(xn, x) = 0 is equivalent to limn→∞ ρ(xn, x) = 0 for any 
sequence (xn) of X.

On the one hand, suppose limn→∞ ρ(xn, x) = 0. Then for any ε > 0, there exists a positive 
integer N such that for any n ≥ N , ρ(xn, x) < ε

2 . By the definition of ρ, for each n ≥ N , there is 
a subcontinuum Kn containing xn and x such that diam(Kn) ≤ ρ(xn, x) + ε

2 < ε. Thus

d(xn, x) ≤ diam(Kn) < ε.

Hence limn→∞ d(xn, x) = 0.
On the other hand, suppose limn→∞ d(xn, x) = 0. Lemma 5.5 implies that X is a Peano 

continuum. Fix ε > 0. Then by Lemma 5.1, there exists δ > 0 such that if d(x, y) < δ and x �= y, 
then there is an arc A ⊂ X such that A has end points x and y and diam(A) < ε. Since d(xn, x) →
0, there exists N such that for any n ≥ N , d(xn, x) < δ. Therefore, for any n ≥ N , there is an arc 
An connecting xn and x and diam(An) < ε. Thus there exists a sequence (Kn) of subcontinua of 
X containing xn and x satisfying limn→∞ diam(Kn) = 0. By Lemma 5.2, limn→∞ μ(Kn) = 0. 
By the definition of ρ, we have ρ(xn, x) ≤ μ(Kn) for each n. Thus limn→∞ ρ(xn, x) = 0.

Claim 3. X is of dimension 1.

By the definition of ρ, it is clear that diamρ(K) ≤ μ(K), for any subcontinuum K of X. 
Thus there are at most countable many pairwise disjoint nondegenerate subcontinua in X; oth-
erwise μ(X) = ∞, which is a contradiction. Then X is Suslinian and hence has dimension 1 by 
Lemma 5.6.

From Claim 3, for any ε > 0, there is a finite open cover U = {U1, · · · , Un} with mesh(U) < ε

and ord(U) ≤ 1 (here ord(U) = −1 +supx∈X |{i ∈ {1, · · · , n} : x ∈ Ui}|). For each i ∈ {1, · · · , n}, 
let Ui be the set of connected components of Ui . By the local connectivity, the connected 
components of an open set are all open. Then 

⋃n
i=1 Ui is an open cover of X. By the com-

pactness of X, there is a finite subcover V = {V1, V2, · · · , Vm} of X. Moreover, mesh(V) < ε and 
Vi ∩ Vj ∩ Vk = ∅ for any distinct i, j, k ∈ {1, · · · , m}.

For each i ∈ {1, · · · , m}, we can choose a closed subset Fi contained in Vi such that X =
F1 ∪ F2 ∪ · · · ∪ Fm and Fi ∩ Fj ∩ Fk = ∅ for any distinct i, j, k ∈ {1, · · · , m}. By Lemma 5.3, 
there exists a subcontinuum Ki satisfying Fi ⊂ Ki ⊂ Vi for each i. It is clear that K ≡ {Ki : i =
1, · · · , m} also satisfies

X = K1 ∪ K2 ∪ · · · ∪ Km, mesh(K) < ε, and Ki ∩ Kj ∩ Kk = ∅, (i)
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for any distinct i, j, k ∈ {1, · · · , m}. Set K̂i = Ki \ (∪j �=iKj ) for each i. Then, by (i),

μ(Ki) = μ(K̂i) +
∑
j �=i

μ(Ki ∩ Kj). (5.1)

Note that diamρ(Ki) ≤ μ(Ki) for each i. By (5.1) and the definitions in Section 2.1,

L1
ε(X,ρ) ≤

m∑
i=1

diamρ(Ki) ≤
m∑

i=1

μ(Ki)

=
m∑

i=1

⎛
⎝μ(K̂i) +

∑
j �=i

μ(Ki ∩ Kj)

⎞
⎠

=
m∑

i=1

μ(K̂i) +
m∑

i=1

∑
j �=i

μ(Ki ∩ Kj)

= μ
(
∪m

i=1K̂i

)
+ μ(∪1≤i<j≤mKi ∩ Kj)

≤ 2.

Since ε is arbitrary, we have L1(X, ρ) ≤ 2. By Theorem 2.1, X is totally regular.

(=⇒) Now assume that X is a totally regular curve. We may assume that the metric d on X
is such that all open balls are connected (see [19, 8.50]). We claim that the measure μ defined in 
(4.1) is finite.

Let A be a subset of X. By the definitions in Section 2.2, for each positive integer i,

τi(A) = diam(fi(A)) = sup
x,y∈A

∣∣∣∣ 1

1 + d(x, xi)
− 1

1 + d(y, xi)

∣∣∣∣
= sup

x,y∈A

∣∣∣∣ d(x, xi) − d(y, xi)

(1 + d(x, xi))(1 + d(y, xi))

∣∣∣∣
≤ sup

x,y∈A

d(x, y) ≤ diam(A).

Thus

τ(A) =
∞∑
i=1

1

2i
τi(A) ≤ diam(A).

For every δ > 0, let X = X1 ∪ X2 ∪ X3 ∪ · · · be a decomposition of X with diam(Xi) < δ for 
each i. Note that the metric d is such that all open balls are connected. Then each Xi is contained 
in a connected closed ball Bi with diam(Bi) ≤ 2diam(Xi). Thus

inf

{ ∞∑
τ(Ci) : Ci ∈ C,diam(Ci) ≤ δ,X ⊆

∞⋃
Ci

}
≤ 2L1

δ/2(X,d).
i=1 i=1
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Therefore

μ(X) = sup
δ>0

μδ(X) = lim
δ→0+ μδ(X)

= lim
δ→0+ inf

{ ∞∑
i=1

τ(Ci) : Ci ∈ C,diam(Ci) ≤ δ,X ⊆
∞⋃
i=1

Ci

}

≤ lim
δ→0+ inf

{ ∞∑
i=1

diam(Ci) : Ci ∈ C,diam(Ci) ≤ δ,X ⊆
∞⋃
i=1

Ci

}

≤ lim
δ→0+ 2L1

δ/2(X,d)

= 2L1(X,d) < ∞.

This together with Lemma 4.1 and Lemma 4.3 implies that X is of 1-dimension in the sense of 
measure. �
6. An escaping lemma for minimal actions

Let G be a countable group. A subset S of G is said to be syndetic if there is a finite set 
F ⊂ G such that G = FS. Suppose X is a compact metric space with metric d and G � X is a 
continuous action. Then a point x ∈ X is said to be almost periodic if for every neighborhood U
of x, the set R(x, U) ≡ {g ∈ G : gx ∈ U} is syndetic. The following theorem is well known (see 
e.g. [1, Ch.1-Theorem 1]).

Theorem 6.1. Let G � X be an action of a countable group G on a compact metric space X. 
Then x ∈ X is almost periodic if and only if Gx is a minimal set.

For x �= y ∈ X, if there is a sequence (gn) in G such that d(gnx, gny) → 0, then x and y are 
said to be proximal. The following theorem can be seen in [1, Ch.5-Theorem 3].

Theorem 6.2. Let G � X be an action of a group G on a compact metric space X. Then for 
every x ∈ X, there is an almost periodic point x∗ which is proximal to x.

Lemma 6.3. Let G be a group acting on a compact metric space X. Suppose x1, x2, ..., xn

are n points in X. Then there are y1, y2, ..., yk in X with 1 ≤ k ≤ n and (gi) in G such that 
gi{x1, x2, ..., xn} → {y1, y2, .., yk} and for any p �= q , yp and yq are not proximal.

Proof. Take k to be the minimal positive integer such that there are y1, y2, ..., yk and a sequence 
(gi) in G with gi{x1, x2, ..., xn} → {y1, y2, .., yk}. Then for any p �= q , yp and yq are not proxi-
mal. �

Now we state and prove the escaping lemma, which is key in constructing a ping-pong-game 
in next section.

Lemma 6.4 (Escaping lemma). Let X be an infinite compact metric space and let a countable 
group G act on X minimally. Then for any countable infinite set C ⊂ X and any finite set F ⊂
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X, there always exist a sequence (gn) in G and a finite set K in X such that gnF → K and 
K ∩ C = ∅.

Proof. (See Fig. 2.) Write C = {ci : i = 1, 2, 3, ...} and F = {a1, a2, ..., ak} for some positive 
integer k. From Lemma 6.3, we may suppose that ai and aj are not proximal for any i �= j . 
Consider the product action G � Xk defined by

g(x1, x2, ..., xk) = (gx1, gx2, ..., gxk).

From Theorem 6.2, there is an almost periodic point (w1, w2, ..., wk) ∈ Xk which is proximal 
to (a1, a2, ..., ak). Then there is (b1, b2, ..., bk) ∈ G(w1,w2, ...,wk) ⊂ Xk and a sequence (gn)

with gnai → bi for each 1 ≤ i ≤ k, as n → ∞. By the non-proximality of each pair of ai and aj , 
these bi ’s are pairwise distinct. Note that (b1, b2, ..., bk) is still almost periodic by Theorem 6.1. 
Set B = {b1, b2, ..., bk} ⊂ X; then gnF → B . We can suppose that c1 /∈ B; otherwise replace B
by gB for some g ∈ G, by the minimality of G � X and the infinity of X.

Now we inductively define a sequence of neighborhoods Vi of ci for each i = 1, 2, 3, ..., 
and open sets Uj,i for each j = 1, 2, ..., k and i = 1, 2, 3, ... as follows. Take pairwise disjoint 
open sets V1 and U1,1, U2,1, ..., Uk,1 such that c1 ∈ V1, diam(Uj,1) < 1 and bj ∈ Uj,1 for j =
1, 2, ..., k. Let S1 = {g ∈ G : gbj ∈ Uj,1, ∀ j = 1, 2, ..., k}. Then S1 is syndetic by Theorem 6.1.

Claim A. There is some g1 ∈ S1 such that c2 /∈ {g1b1, g1b2, ..., g1bk}. Otherwise, WLOG, we 
may assume that c2 = gb1 for all g ∈ S1. Noting that e ∈ S1, b1 is fixed by all g ∈ S1. Since S1
is syndetic, Gb1 is finite and then X is finite by the minimality of G � X. This contradicts the 
infiniteness of X.

From Claim A, we can take pairwise disjoint open sets V2 and U1,2, U2,2, ..., Uk,2 such that 
c2 ∈ V2, diam(Uj,2) < 1/2 and g1bj ∈ Uj,2 ⊂ Uj,2 ⊂ Uj,1 for j = 1, 2, ..., k. Applying the above 
discussions to c3, {g1bj : j = 1, 2, ..., k}, and {Uj,2 : j = 1, 2, ..., k}, we get g2 ∈ G and pairwise 
disjoint open sets V3 and U1,3, U2,3, ..., Uk,3 such that c3 ∈ V3, diam(Uj,3) < 1/3 and g2bj ∈
Uj,3 ⊂ Uj,3 ⊂ Uj,2 for j = 1, 2, ..., k. Going on in this way, we obtain in the end a sequence of 
neighborhoods Vi of ci for each i = 1, 2, 3, ..., and open sets Uj,i for each j = 1, 2, ..., k and 
i = 1, 2, 3, ..., such that for each positive m,

(∪m
i=1Vi) ∩ (∪k

j=1Uj,m) = ∅, (∗)

and for each j = 1, 2, ..., k and i = 1, 2, 3...,

Uj,i+1 ⊂ Uj,i and diam(Uj,i) < 1/i. (**)

From (∗∗), we may let zj = ∩∞
i=1Uj,i for j = 1, 2, ..., k. Then by the construction, we see that 

(z1, z2, ..., zk) ∈ G(b1, b2, ..., bk) ⊂ G(a1, a2, ..., ak). By (∗), {z1, z2, ..., zk} ∩ C = ∅. Set K =
{z1, z2, ..., zk}. Then K satisfies the requirement. �

Corollary 6.5. Let X be an infinite compact metric space and let a countable group G act on X
minimally. Then for any finite sets A, B ⊂ X, there is a g ∈ G such that gA ∩ B = ∅.
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V1c1

U1,1

U1,2

U1,3

V2

c2b1

g1b1

· · ·

U2,1

U2,2

U2,3

V3

c3

b2

g1b2

· · ·

· · ·

Uk,1
Uk,2

Uk,3

bk

g1bk

· · ·

Fig. 2. Illustration of the construction process.

Proof. Take a countable infinite set C ⊃ B . Then applying Lemma 6.4 to the sets C and A will 
lead to the conclusion. �

Here we remark that Corollary 6.5 is used by Margulis in [14] in order to construct a ping-
pong-game, the proof of which relies on a theorem due to Neumann in group theory ([21]). The 
proof here avoids using any algebraic techniques.

7. Existence of quasi-Schottky subgroups

Let X be a connected space. A point x ∈ X is said to be a separating point of finite order if 
X \ {x} has finite connected components, otherwise we say that x is a separating point of infinite 
order.

Lemma 7.1. Let X be a regular curve and A be a finite set of separating points of finite order. 
Then X \ A has finite components.

Proof. Let A = {a1, · · · , an} for some positive integer n. Suppose that the conclusion is 
false. Then there exists k ∈ {2, · · · , n} such that X \ {a1, · · · , ak−1} has finite components but 
X \ {a1, · · · , ak} has infinite components. Let C denote the component of X \ {a1, · · · , ak−1}
containing ak . Then C \ {ak} has infinite components, saying B1, B2, B3, · · · . Since ak is a sepa-
rating point of finite order, there are only finitely many i’s such that Bi = Bi ∪ {ak}. Hence, there 
are infinitely many i’s with Bi ∩ {a1, ..., ak−1} �= ∅. Take an open neighborhood U of ak such 
that U ⊂ X \ {a1, · · · , ak−1}. Then for every open set V ⊂ U with ak ∈ V , the boundary ∂X(V )

is infinite, which contradicts the regularity of ak. �
Lemma 7.2. [12, Theorem 1, p. 160] There are at most countably many separating points of 
infinite order in a continuum.

Now we are ready to prove the main theorem of the paper.
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Theorem 7.3. Let G be a countable group and X be a totally regular curve. Suppose that 
φ : G → Homeo(X) is a minimal action. Then either the action is topologically conjugate to 
isometries on the circle S1 (this implies that φ(G) contains an abelian subgroup of index at most 
2), or has a quasi-Schottky subgroup (this implies that G contains the free nonabelian group 
Z ∗Z).

Proof. From Theorem 2.10, we discuss in two cases:

Case 1. The action G � X is equicontinuous. Then it topologically conjugates to minimal left 
translations on some homogenous space H/K by Theorem 2.11, where H is a compact metric 
topological group and K is a closed subgroup of H . From Theorem 2.3 and Theorem 2.4, X has a 
point of finite order; and then all points of X have the same order by the topological homogeneity 
of X. Hence X is a simple closed curve by Theorem 2.2. Then it is a canonical fact that G � X

is topologically conjugates to isometries on S1 and φ(G) contains an abelian subgroup of index 
at most 2 (see [14, Lemma 3]).

Case 2. The action G � X is sensitive. By Theorems 2.3 and 2.4, X has a point of finite
order. Then, by Theorem 3.4, every x ∈ X has a contractible neighborhood. It follows from 
Theorem 5.7 and Definition 5.4 that there is an atomless Borel probability measure μ on X such 
that for any sequence of subcontinua (Yn) of X,

μ(Yn) → 0 =⇒ diam(Yn) → 0. (a)

Applying Proposition 2.14 to μ, there is a sequence (gn) in G and a Borel probability measure ν
of finite support on X such that gnμ → ν. Since X has at most countably many separating points 
of infinite order by Lemma 7.2, we may further assume that each point of supp(ν) is a separating 
point of finite order. In fact, it follows from the Escaping Lemma (Lemma 6.4) that Gν always 
contains some element whose support consists of separating points of finite order.

Set A = supp(ν) = {a1, a2, ..., ak} for some positive integer k. Then for each subcontinuum 
K ⊂ X \ A, we have

0 = ν(K) ≥ lim sup
n→∞

gnμ(K) = lim sup
n→∞

μ(g−1
n K) ≥ 0. (b)

Then, from (a), diam(g−1
n K) → 0. Let C be a component of X \ A. Then C is open since every 

component of an open set is open in Peano continuum. By Lemma 5.3, for every compact subset 
F of C, there is a connected compact subset K satisfying F ⊂ K ⊂ C. Thus, passing to a sub-
sequence if necessary, we may suppose g−1

n |C converges uniformly on compact sets to a point. 
This together with Lemma 7.1 implies that there is a finite set B = {b1, b2, ..., bp} such that

g−1
n |X\A converges uniformly on compact sets to a map to B. (c)

We may suppose B ∩ A = ∅; otherwise, by Corollary 6.5, we can replace B by gB and (g−1
n ) by 

(gg−1
n ) for some g ∈ G. Applying Corollary 6.5 again, there is some h ∈ G with

h(A ∪ B) ∩ (A ∪ B) = ∅.

Set C = hA and D = hB . Then
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hg−1
n h−1|X\C convergences uniformly on compact sets to a map to D. (d)

Now take pairwise disjoint nonempty open sets U1, V1, U2, V2 and W such that

A ⊂ U1,B ⊂ V1,C ⊂ U2, and D ⊂ V2.

From (c), for sufficiently large n, we have g−1
n (X \ U1) ⊂ V1. Thus X \ g−1

n (U1) ⊂ V1, hence 
X \ V1 ⊂ g−1

n (U1). Then gn(X \ V1) ⊂ U1. Therefore,

gn(U1 ∪ U2 ∪ V2 ∪ W) ⊂ U1, g−1
n (U2 ∪ V1 ∪ V2 ∪ W) ⊂ V1.

Similarly from (d), for sufficiently large n, we have

hgnh
−1(U1 ∪ U2 ∪ V1 ∪ W) ⊂ U2, hg−1

n h−1(U1 ∪ V1 ∪ V2 ∪ W) ⊂ V2.

Thus gn and hgnh
−1 generate a quasi-Schottky subgroup of G. �
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