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THE NONEXISTENCE OF EXPANSIVE ACTIONS OF GROUPS WITH
SUBEXPONENTIAL GROWTH ON SUSLINIAN CONTINUA

BINGBING LIANG, ENHUI SHI, ZHIWEN XIE, AND HUI XU

ABSTRACT. We show that if G is a finitely generated group of subexponential growth
and X is a nondegenerate Suslinian continuum, then any continuous action of G on X is
not expansive.

1. INTRODUCTION

By a continuum we mean a nonempty compact connected metric space. A continuum X
is said to be nondegenerate if it is not a singleton. By a curve we mean a one-dimensional
continuum. If X does not contain uncountably many mutually disjoint nondegenerate sub-
continua, then it is called Suslinian [13]. It is known that Suslinian continua are curves
and all rational curves are Suslinian. The Cantor fan is a quick example of a curve but not
Suslinian. Cook and Lelek constructed a chainable Suslinian curve that is not rational [3].

Let X be a compact metric space and Homeo(X) the homeomorphism group on X . By
a continuous action of a discrete group G on X , written as (X ,G,φ), G ↷ X , or G-action,
we mean a group homomorphism φ : G → Homeo(X). For brevity, we shall use gx or g(x)
in place of φ(g)(x).

A continuous action G ↷ X on a compact metric space (X ,d) is called expansive if
there exists c > 0 such that supg∈G d(gx,gy)> c for any distinct points x and y of X . Such
c is called an expansive constant for the action G ↷ X . Expansivity is closely related
to the topological stability of dynamical systems. Walters showed that every expansive
Z-action with pseudo-orbit tracing property is topologically stable [18]. Recently Chung
and Lee considered the pseudo-orbit tracing property for actions of (finitely generated)
countable groups and extended Walter’s result [1].

We are interested in the following question.

Question 1.1. What groups G and continua X admit expansive actions G ↷ X and what
groups and continua do not?

There has been intensively studied around this question. It is well known that the Cantor
set, the solenoid, and every compact orientable surface of positive genus admit expansive
Z-actions [20, 17]. The unit interval admits an expansive action of some solvable groups
(for example, an action of the Baumslag-Solitar group BS(1,q) for q ≥ 2 on the real line
by affine transformations can induce an expansive action on [0,1] ∼= R∪{±∞}). On the
contrary, the interval, the circle, and the 2-dimensional sphere admit no expansive Z-
actions [8]. It is asked by Ward [12] whether the unit circle admits an expansive action
of a nilpotent group. This question was implicitly answered by Inaba and Tsuchiya in a

2020 Mathematics Subject Classification. Primary 37B45, 37B02, 54F50.
Key words and phrases. expansivity, Suslinian continua, subexponential growth.

1

Click here to view linked References

https://www.editorialmanager.com/topol/viewRCResults.aspx?pdf=1&docID=18513&rev=0&fileID=115813&msid=c4e59b07-cc2c-4012-92af-bd643842b6b2
https://www.editorialmanager.com/topol/viewRCResults.aspx?pdf=1&docID=18513&rev=0&fileID=115813&msid=c4e59b07-cc2c-4012-92af-bd643842b6b2


2 B. LIANG, E. SHI, Z. XIE, AND H. XU

more general situation of expansive foliations [10]. Connell, Furman, and Hurder gave a
more self-contained proof via Ping-pong lemma [2].

For one-dimensional continua, Kato proved the following theorem.

Theorem 1.2. [11] There are no expansive Z-actions on nondegenerate Suslinian con-
tinua.

The purpose of the paper is to extend this theorem to the actions of groups with subex-
ponential growth. Let H be a finitely generated group with a finite generating set. For each
h ∈ H denote by |h| the word length of h with respect to S. For each k ∈ N define

β (H,S;k) = #{h ∈ H : |h| ≤ k},

which is called the growth function of H with respect to S. If limk→∞
k
√

β (H,S;k) = 1, H
is said to be of subexponential growth.

The following is the main result of the paper.

Theorem 1.3. Let G be a finitely generated group of subexponential growth and X a
nondegenerate Suslinian continuum. Then there are no expansive actions of G on X.

We remark that this theorem can be improved in a continuum-wise expansive setting
(see Remark 4.4). On the other hand, by [14], a Suslinian continuum of Theorem 1.3
cannot be changed to a chainable continuum.

By Gromov’s theorem [7] on groups of polynomial growth, every finitely generated
nilpotent group is of subexponential growth. Thus the following corollary is immediate,
which gives a negative answer to [19, Question 1.4].

Corollary 1.4. Let G be a finitely generated nilpotent group and X a nondegenerate
Suslinian continuum. Then G cannot act on X expansively.

As is already mentioned, there exists an expansive action G ↷ [0,1] of a solvable group
G on the unit interval [0,1]. Theorem 1.3 implies that

Corollary 1.5. If there is an expansive action G ↷ [0,1] of a finitely generated solvable
group G, then G must be of exponential growth.

The proof of Theorem 1.3 relies on a comparison of the growth rates between the acting
group and the cardinality of pairwise disjoint nondegenerate subcontinua subject to a
uniformly expansive scale. A key input is a delicate lemma on expansivity by Meyerovitch
and Tsukamoto [15, Lemma 4.4], which is adapted from Fathi’s method [5, Section 5].
Taking an advantage of a characterization of Suslinian continua, we then finish the proof
following Kato’s method for Z-actions.

2. PRELIMINARIES

2.1. Kato’s characterization of Suslinian continua.

Definition 2.1. For a continuum X the hyperspace C(X) is the set of all subcontinua of
X . For A,B ∈C(X) define

dH(A,B) = inf{δ > 0 : A ⊂ Nδ (B) and B ⊂ Nδ (A)},
where Nδ (A) denotes the δ -neighborhood of A in X . Then dH is a metric on C(X) and is
called the Hausdorff metric. It is known that (C(X),dH) is a continuum [16, Chapter IV].
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In [11], for any subset M of C(X), define

M̃ = {A ∈C(X) : for any ε > 0 and k ∈ N, there exist pairwise disjoint nondegenerate
subcontinua A1,A2, . . . ,Ak ∈ M such that dH(A,Ai)< ε for every 1 ≤ i ≤ k}.

Set M0 = M. Assume that Mβ has been defined for every ordinal β < α . We define Mα =

M̃β if α = β +1, and Mα = ∩β<αMβ if α is a limit ordinal. By [11, Proposition 3.3], we
see that the family {Mα}α is decreasing with respect to α .

Example 2.2. Let X be the topologist’s sine curve and L = {0}× [−1,1]. For M =C(X),
we have M1 =C(L), M2 consists of all singletons of C(L), and M3 = /0.

In [11, Theorem 3.4], Kato gave the following characterization of Suslinian continua.

Theorem 2.3. Let X be a continuum and M = C(X). Then X is Suslinian if and only if
Mα = /0 for some countable ordinal α .

If (X ,G,φ) is a continuous action on a continuum X , then it naturally induces a contin-
uous action (C(X),G, φ̃) via φ̃(g)(A) = φ(g)(A) for every g ∈ G and A ∈C(X).

By the definition of Mα , we have

Proposition 2.4. [11, Proposition 3.2] If M ⊆C(X) is G-invariant and closed, so is Mα .

2.2. Pairwise disjoint subcontinua of uniform diameter.

Let X be a compact metric space and A a subset of X . Recall that the boundary of A in
X is defined by BdX(A) = A∩ (X \A). Since all the underlying spaces in the sequel are
understood to be X , we shall simply write Bd(A) to denote BdX(A).

The following is known as the Boundary Bumping Theorem [16, Theorem 5.4].

Theorem 2.5. Let U be a nonempty proper open subset of a continuum X. If K is a
connected component of U, then K ∩Bd(U) ̸= /0.

A variant version of the Boundary Bumping Theorem is as follows.

Lemma 2.6. [11, Lemma 2.2] Let X be a compact metric space and let U,V be open
subsets of X such that V ⊆ U. If A is a subcontinuum of X such that A ∩V ̸= /0 and
A\U ̸= /0, then there is a subcontinuum B of A∩U such that B∩V ̸= /0 and B∩Bd(U) ̸= /0.

Definition 2.7. Let (X ,d) be a compact metric space. For a subset E of X and ε > 0,
we say E is ε-separated if d(x,y) ≥ ε for any distinct x,y ∈ E. Let S(X ,ε) denote the
cardinality of a maximal ε-separated subset of X . The lower box dimension of (X ,d) is
defined as

dimB(X ,d) = liminf
ε→0

logS(X ,ε)

log(1/ε)
.

The following lemma says that for a nondegenerate continuum there are plenty of sub-
continua with a uniform lower bound on diameters.

Lemma 2.8. Let X be a nondegenerate continuum. Then there exists ε0 > 0 such that
for any ε ∈ (0,ε0), there are more than 1/

√
ε pairwise disjoint subcontinua of X whose

diameters are greater than or equal to ε/3.
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Proof. Since X is nondegenerate and connected, the topological dimension dim(X) of X is
positive [4, Proposition 1.3.3]. Since the lower box dimension bounds above the topolog-
ical dimension [9, Chapter VII], we obtain that dimB(X ,d)≥ dim(X)≥ 1. Then there ex-
ists ε0 > 0 such that S(X ,ε)> 1√

ε
for any ε ∈ (0,ε0). Choose a maximal ε-separated sub-

set E of X . Then |E|= S(X ,ε)> 1√
ε
. For each x∈E consider the connected component Ax

of the closed ball B(x,ε/3) containing x. By Lemma 2.5, we have Ax∩Bd(B(x,ε/3)) ̸= /0
and hence diam(Ax)≥ ε

3 . It follows that these Ax’s satisfy the requirements. □

We also need the following refined version of Lemma 2.8, which will be used in the
proof of Theorem 1.3.

Lemma 2.9. Let X be a nondegenerate continuum and M a subset of C(X). Suppose
that M satisfies the following boundary bumping property: for any nondegenerate C ∈ M
and any open sets U,V of X satisfying V ⊆ U, C∩V ̸= /0 and C \U ̸= /0, there exists a
nondegenerate subcontinuum D of C∩U such that D ∈ M,D∩V ̸= /0, and D∩Bd(U) ̸= /0.
Then for any nondegenerate C ∈ M, there exists ε0 > 0 such that for any ε ∈ (0,ε0), there
are more than 1/

√
ε pairwise disjoint subcontinua of C in M whose diameters are all

greater than or equal to ε/6.

Proof. By the proof of Lemma 2.8, there exists ε0 > 0 such that S(C,ε) > 1√
ε

for any

ε ∈ (0,ε0). Picking a maximal ε-separated subset E of C, we have that |E| > 1√
ε
, the

family {B(x,ε/3)}x∈E is pairwise disjoint, and C \B(x,ε/3) ̸= /0 for every x ∈ E.
For every x ∈ E, applying the boundary bumping property of M to U = B(x,ε/3) and

V = B(x,ε/6), we obtain a subcontinuum Ax of C ∩ B(x,ε/3) such that Ax ∈ M,Ax ∩
B(x,ε/6) ̸= /0 and Ax∩Bd(B(x,ε/3)) ̸= /0. It follows that diam(Ax)≥ ε/6 for every x ∈ E
and the family {Ax}x∈E is pairwise disjoint. □

3. PROOF OF THE MAIN THEOREM

To prove Theorem 1.3 we shall start with the following two lemmas.

Lemma 3.1. [11, Lemma 2.1] Let (Y,d) be a compact metric pace, ε > 0, and k ∈ N.
Then there exists a positive integer n = n(ε,k)≥ k satisfying the following. If y1,y2, . . . ,yn
are points of Y , then there exists y ∈ Y and 1 ≤ i(1) < i(2) < · · · < i(k) ≤ n such that
d(y,yi( j))< ε for every j ∈ {1,2, . . . ,k}.

The following key lemma is proved for Zk-actions [15, Lemma 4.4] and the proof works
here for any continuous action of finitely generated groups. For readers’ convenience, we
would add the proof in the appendix.
Lemma 3.2. Let G ↷ X be an expansive action of a finitely generated group on a com-
pact metric space. Then there exist a > 1 and a compatible metric D on X such that for
every n ∈ N and any x,y ∈ X satisfying that D(x,y)≥ a−n, we have

max
g∈G,|g|≤n

D(gx,gy)≥ 1
4a

.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. we shall adapt Kato’s method [11, Theorem 3.1] into our situation.
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Fix a finite generating subset S of G. Assume that G ↷ X is an expansive action. By
Lemma 3.2, there exist a > 1 and a compatible metric D on X such that for any n ∈N and
any x,y ∈ X satisfying D(x,y)≥ a−n, we have

max
g∈G,|g|≤n

D(gx,gy)≥ 1
4a

.

We shall use this metric D in the following argument. Since G is of subexponential growth,
for sufficiently large n, we have

β (G,S;n)≤ ( 3
√

a)n.

Set M = M0 =C(X). For each countable ordinal α , consider the following property:

Property Pα . If C ∈ Mα is nondegenerate, then for any open sets U,V of X satisfying
V ⊂U, C∩V ̸= /0, and C \U ̸= /0, there exists a nondegenerate subcontinuum D of C∩U
such that D ∈ Mα , D∩V ̸= /0, and D∩Bd(U) ̸= /0.

We shall show that for every countable ordinal λ , the collection Mλ satisfies Property
Pλ and contains a nondegenerate subcontinuum Aλ with diam (Aλ ) ≥ 1

4a . Therefore, by
Theorem 2.3, X is not Suslinian, which contradicts to the hypothesis on X .

For λ = 0, by Lemma 2.6, M0 satisfies Property P0. Since X is not degenerate, by
Lemma 3.2, M0 contains an element A0 with diam (A0)≥ 1

4a .
Now assume that for every α < λ , the collection Mα satisfies Property Pα and contains

a nondegenerate subcontinuum Aα with diam (Aα)≥ 1
4a . We need to show that Mλ satis-

fies Property Pλ and contains an subcontinuum Aλ with diam (Aλ ) ≥ 1
4a . We discuss the

following two cases.
Case 1. λ = α +1.
First we show that there exists Aλ ∈ Mλ with diam(Aλ ) ≥ 1

4a . Pick an element Aα of
Mα with diam (Aα)≥ 1

4a . Since Mα satisfies Property Pα , by Lemma 2.9, for sufficiently
large n, there exists a family Kn of pairwise disjoint subcontinua of Aα in Mα with |Kn| ≥√

an/6 and diam(K) ≥ a−n for every K ∈ Kn. By Lemma 3.2, for every K ∈ Kn, there
exists g ∈ G with |g| ≤ n such that diam(gK)≥ 1

4a .
By the pigeonhole principle, we have

Claim. For every sufficiently large n, there exists gn ∈ G with |gn| ≤ n such that

#{K ∈ Kn : diam(gnK)≥ 1
4a

} ≥ an :=

√
an/6

( 3
√

a)n =
an/6
√

6
.

Take a decreasing sequence {εk}k∈N of positive real numbers converging to zero. Con-
sider the compact metric space Mα and εk for every k ∈N. Then we obtain nk = n(εk,k)≥
k as in Lemma 3.1.

Since an tends to the infinity, we may take an increasing sequence {mk}k∈N of positive
integers such that both amk ≥ nk and mk ≥ nk hold for each k ∈ N. By Claim, as k ∈ N
is large enough, we can find hk ∈ G with |hk| ≤ mk and pairwise disjoint nondegenerate
subcontinua B1,B2, . . . ,Bnk of Aα in Kn such that for each i = 1,2, . . . ,nk, we have

(3.1) diam(hk(Bi))≥
1

4a
.

In this way, we obtain nk pairwise disjoint subcontinua of Aα in Kn with a uniform lower
bound on diameters. On the other hand, by the choice of nk, there exist B(k) ∈ Mα and
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1 ≤ i1 < i2 < · · ·< ik ≤ nk such that

(3.2) dH(B(k),hk(Bi j))< εk, for each j = 1,2, . . . ,k.

By the compactness of Mα , we may assume that B(k) converges to a point Aα+1 of Mα .
By (3.1) and (3.2) we have Aα+1 ∈ M̃α = Mα+1 = Mλ and diam(Aα+1)≥ 1

4a .
Now we show that Mα+1 satisfies Property Pα+1. Let C ∈ Mα+1 be nondegenerate.

Suppose that U and V are open subsets of X such that V ⊂U, C∩V ̸= /0 and C \U ̸= /0.
We need to find D ∈ Mα+1 such that D ⊂C∩U , D∩V ̸= /0, and D∩Bd(U) ̸= /0.

Since C is an element of Mα+1, for each k ∈ N, there exist pairwise disjoint nondegen-
erate subcontinua D1,D2, . . . ,Dnk ∈ Mα such that

dH(C,Di)< εk

for each i = 1,2, . . . ,nk. Since Mα satisfies Property Pα , as k is large enough, for each
i = 1,2, . . . ,nk, there exists Ei ∈Mα such that Ei ⊆Di∩U , Ei∩V ̸= /0 and Ei∩Bd(U) ̸= /0.
By Lemma 3.1, there exists E(k) ∈ Mα and 1 ≤ i1 < i2 < · · ·< ik ≤ nk such that

dH(E(k),Ei j)< εk

for each j = 1,2, . . . ,k. Furthermore, we may assume that {E(k)} converges to a point D
of Mα . It follows that D ⊂ C∩U , D∩V ̸= /0 and D∩Bd(U) ̸= /0. Since D ∈ Mα+1, we
have that Mα+1 satisfies Property Pα+1.

Case 2. λ is a limit ordinal.
Take a sequence α1 < α2 < · · · of countable ordinals such that limi→∞ αi = λ . By

the inductive assumption, there exists Ai ∈ Mαi such that diam(Ai) ≥ 1
4a for every i ∈ N.

Furthermore, we may assume that {Ai} converges to a point Aλ of C(X). It follows that
Aλ ∈

⋂
α<λ Mα = Mλ and diam(Aλ ) ≥ 1

4a . Running the same argument as in Case 1,
applying Lemmas 2.9 and 3.1, we conclude that Mλ satisfies Property Pλ .

□

4. APPENDIX

In this appendix, following the same argument of [15, Lemma 4.4], we give the proof
of Lemma 3.2 in the framework of general group actions. Throughout this section, we fix
an expansive action G ↷ X by a finitely generated group G on a compact metric space
(X ,d). Let c > 0 be an expansive constant for the action G ↷ X .

Lemma 4.1. For any ε > 0, there is an integer n = n(ε) > 0 such that for any x,y ∈ X
satisfying d(x,y)≥ ε , we have

max
g∈G,|g|≤n

d(gx,gy)≥ c.

Proof. Assume the conclusion is false. Then there exist ε0 > 0 and xk,yk ∈ X for every
k ∈ N satisfying that

d(xk,yk)≥ ε0, and max
g∈G,|g|≤k

d(gxk,gyk)< c.

By the compactness of X , we may assume that xk and yk converge to some x and y of X
respectively. It follows that d(x,y)≥ ε0 and supg∈G d(gx,gy)≤ c, which contradicts to the
expansivity. □
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From Lemma 4.1, there exists an integer l > 0 such that for any x,y ∈ X satisfying
d(x,y)≥ c

2 , we have maxg∈G,|g|≤l d(gx,gy)≥ c. Fix a real number a > 1 such that al < 2.
For x,y ∈ X , consider the following minimal time witnessing the expansivity of x and

y defined as

n(x,y) = min{n ∈ N : d(gx,gy)≥ c for some g ∈ G with |g| ≤ n},
if x ̸= y and n(x,y)=+∞ otherwise. It induces a function ρ on X×X via ρ(x,y)= a−n(x,y).

Lemma 4.2. The function ρ satisfies the following:
(1) ρ(x,y) = ρ(y,x) for any x,y ∈ X;
(2) ρ(x,y)≥ 0 and ρ(x,y) = 0 if and only if x = y;
(3) ρ(x,z)≤ 2max{ρ(x,y), ρ(y,z)} for any x,y,z ∈ X;
(4) If d(xk,x)→ 0 and d(yk,y)→ 0, then

limsup
k→∞

ρ(xk,yk)≤ ρ(x,y);

(5) ρ is compatible with the topology of X. That is, for all r > 0 and x ∈ X, the balls

Bρ(x,r) = {y ∈ X : ρ(x,y)< r}
form an open base of the topology of X.

Proof. (1) and (2) are clear. To prove (3), we may assume x ̸= z. Write m = n(x,z). Then
there exists g ∈ G with |g| ≤ m such that d(gx,gz) ≥ c. By the triangle inequality, we
may assume d(gx,gy)> c/2. By the choice of l, there exists h ∈ G with |h| ≤ l such that
d(hgx,hgy)≥ c. Thus n(x,y)≤ |hg| ≤ m+ l. By the choice of a we have

ρ(x,y) = a−n(x,y) ≥ a−ma−l >
ρ(x,z)

2
.

(4). It suffices to show liminfk→∞ n(xk,yk)≥ n(x,y). Without loss of generality we may
assume that liminfk→∞ n(xk,yk) = m < ∞. Furthermore, we may assume that n(xk,yk)≤
m for every k ∈ N. By definition, this means that for every k ∈ N, there exists hk ∈ G
with |hk| ≤ m such that d(hkxk,hkyk) ≥ c. Thus there exists h ∈ G with |h| ≤ m and two
subsequences {xki}i and {yki}i satisfying d(hxki,hyki)≥ c for every i ∈ N.

Since d(xk,x)→ 0 and d(yk,y)→ 0, we have

d(hx,hy) = lim
i→∞

d(hxki,hyki)≥ c.

This implies that n(x,y)≤ m = liminfk→∞ n(xk,yk).
(5). From (4), each Bρ(x,r) is open under the topology of X . By Lemma 4.1, for any

x ∈ X and R > 0 there exists r > 0 satisfying Bρ(x,r) ⊆ Bd(x,R). It follows that those
Bρ(x,r)’s form a base of the topology of X . □

We can use the following Frink’s metrization lemma to obtain a compatible metric [6,
pp.134-135].

Lemma 4.3. [15, Theorem 4.1] Let ρ be the function as above. Consider the function D
defined as

D(x,y) = inf
n−1

∑
i=0

ρ(xi,xi+1),

for all x0,x1, . . . ,xn ∈ X with x0 = x and xn = y. Then for every x,y ∈ X we have
1
4

ρ(x,y)≤ D(x,y)≤ ρ(x,y).
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Now we are ready to prove Lemma 3.2.

Proof of Lemma 3.2. By Lemma 4.2 and Lemma 4.3, we obtain a compatible metric D on
X such that

1
4

ρ(x,y)≤ D(x,y)≤ ρ(x,y).

for every x,y∈X . Suppose that D(x,y)≥ a−n for some x,y∈X and n∈N. Since D(x,y)≤
ρ(x,y), we have ρ(x,y)≥ a−n. By the definition of ρ , there exists h ∈ G such that |h| ≤ n
and d(hx,hy)≥ c. It follows that n(hx,hy) = 0 and hence ρ(hx,hy)> 1

a . Therefore,

max
g∈G,|g|≤n

D(gx,gy)≥ D(hx,hy)≥ ρ(hx,hy)
4

>
1

4a

as desired. □

Remark 4.4. Recall that a continuous action G ↷ X is continuum-wise expansive if there
exists a constant c > 0 such that supg∈G diam(gK) > c for any nondegenerate subcontin-
uum K of X . Adapting the proof of Lemma 3.2, we can obtain a continuum-wise expansive
version of Proposition 3.2. In this way, we can improve Theorem 1.3 into the continuum-
wise expansive setting.
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