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An action of a group G on a topological space X is called minimal if for every point x ∈ X ,
the orbit Gx of x is dense in X . A connected and locally connected compact metric space
which contains no simple closed curve is called a dendrite. In this paper, it is shown that
if a group G acts minimally on a nondegenerate dendrite, then G must contain a free
noncommutative subgroup. This is an extension of a Margulis’ theorem for minimal group
actions on the circle.
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1. Introduction

Let X be a topological space, Homeo(X) the homeomorphism group of X and G a group. Recall that a group homomor-
phism ϕ : G → Homeo(X) is called an action of G on X . The action ϕ is said to be minimal if for every point x ∈ X the
orbit Gx ≡ {ϕ(g)(x): g ∈ G} is dense in X .

It is proved by G. Margulis that if a group G acts on the circle S1 minimally, then either G contains a free noncommu-
tative subgroup or there is a G-invariant probability measure on S1 (see [7, Theorem 2]). This theorem solved a conjecture
proposed by É. Ghys which can be viewed as a replacement of the well-known Tits alternative theorem for Homeo(S1). One
may see [10] or [13] for a different proof of this theorem given by Ghys.

Remark. (1) Tits alternative theorem says that if Γ is a finitely generated linear group, then either Γ contains a noncom-
mutative free subgroup or Γ is virtually solvable (see [18]). Nevertheless the exact analogue of the Tits alternative is false
for subgroups of the group Homeo(S1) and false even for subgroups of the group of C∞-diffeomorphisms of S1 (see [12]).

(2) Margulis’ proof used classical methods of boundary theory first introduced by Furstenberg (see [5]). For minimal ac-
tions, it was later shown that, up to a finite cover, the circle is a boundary of the acting group provided it is not Abelian [4].

Recall that a Kleinian group is a group Γ acting freely and properly discontinuously on hyperbolic 3-space, H3. It is well
known that the action of Γ on the limit set Λ(Γ ) ⊂ ∂H3 is minimal (see [14, p. 601]). In some cases, Λ(Γ ) is known to
be a dendrite and its Hausdorff dimension has been calculated by some authors (see e.g. [2,8,9]). These facts motivate us to
study the question: Does the above theorem proved by Margulis hold for the groups acting on a dendrite minimally?
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In fact, the author and his collaborators have shown that if a group G acts on a nondegenerate dendrite X minimally,
then X admits no G-invariant probability measure (see [17]). In this paper we prove further the following theorem.

Main Theorem. If a group G acts on a nondegenerate dendrite X minimally, then G must contain a noncommutative free subgroup.

The strategy of the proof is the same as Margulis’ in [7]. Nevertheless, the expanding-contracting behavior of composi-
tions is difficult to handle in this situation. (For the case of the circle, this is rather elementary thanks to the circular order.)
So we have to develop some technical ingredients to overcome this difficulty.

We should notice that the homeomorphism group of a dendrite X may have many free noncommutative subgroups
even for X being the interval [0,1]. Indeed, it can be shown by exactly the same proof as in [13, Prop. 4.5] that, for a
generic set of pairs ( f , g) of elements of the orientation preserving group Homeo+([0,1]), the group generated by ( f , g)

is a free noncommutative group. In addition, there are also some big subgroups of Homeo+([0,1]) which have no free
noncommutative subgroup such as the group PL+([0,1]) of piecewise linear homeomorphisms of [0,1] (see [3] or [13,
Theorem 4.6]). Clearly, this is not contradict to the main theorem in this paper, since any group action on the interval [0,1]
cannot be minimal.

For a group action ϕ : G → Homeo(X), we often use the symbols gx or g(x) instead of ϕ(g)(x) throughout the paper for
convenience.

2. Dendrite

In this section, we will recall and prove some properties of dendrites which will be used in the following.
Recall that a continuum is a connected compact metric space. If a continuum X is not a single point, then X is called

nondegenerate. If X is a locally connected continuum and contains no simple closed curve, then X is called a dendrite.
Clearly X is a dendrite if and only if for any two points x, y ∈ X there is a unique arc [x, y] ⊂ X connecting x and y. It is
known that each point of a dendrite is either a cut point or an endpoint and every subcontinuum of a dendrite is also a
dendrite.

The following lemma is taken from [15].

Lemma 2.1. ([15, 10.28]) If X is a nondegenerate dendrite, then X can be written as follows:

X = End(X) ∪
( ∞⋃

i=1

Ai

)

where End(X) is the endpoint set of X and each Ai is an arc with endpoints pi and qi such that

Ai+1 ∩
(

i⋃
j=1

A j

)
= {pi+1} for each i = 1,2, . . .

and diam(Ai) → 0 as i → ∞.

Let X be a dendrite with metric d′ . From Lemma 2.1, we may write X = End(X) ∪ (
⋃∞

i=1 Ai). Fix hi to be a homeomor-
phism from the unit interval [0,1] to Ai , for each i = 1,2, . . . . For x, y ∈ [0,1], the symbol ρ([x, y]) will denote the length
of the arc [x, y] under the Euclidean metric on [0,1], i.e., ρ([x, y]) = |x − y|. For any a,b ∈ X , define

d(a,b) =
∞∑

i=1

1

2i
ρ
(
h−1

i

([a,b] ∩ Ai
))

. (2.1)

Define a probability measure μ on X by

μ(A) =
∞∑

i=1

1

2i
ν
(
h−1

i (A ∩ Ai)
)

(2.2)

for all Borel subsets A of X , where ν is the Lebesgue measure on [0,1].
Clearly the new metric d on X defined in (2.1) is topologically equivalent to d′ , since X is compact. The following lemma

is easily seen by the definitions of d and μ.

Lemma 2.2. The probability measure μ on X defined in (2.2) satisfies that for each arc [a,b] in X, μ([a,b]) = d(a,b).

From Lemma 2.1 and Lemma 2.2, we can easily deduce the following
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Proposition 2.3. Let X be a dendrite with metric d and measure μ defined above and let Di be a sequence of subdendrites of X . If
limi→∞ μ(Di) = 0 then limi→∞ diam(Di) = 0.

Let us recall some definitions following Mai and the author in [6] or [16]. Let A be an arc, End(A) the set of two

endpoints of A, and
◦
A = A − End(A).

For a dendrite X and an arc A in X , define

X(A) = A ∪
( ⋃{

Y : Y is a component of X − A, and Y ∩ ◦
A �= ∅})

.

X(A) is called the subdendrite of X strung by A, and A is called the trunk of X(A).
The following properties can be deduced directly from the above definitions.

Lemma 2.4. Let X(A) be a subdendrite of X strung by A.

(a) X(A) − End(A) is open in X.
(b) If A′ is a subarc of A, then X(A′) ⊂ X(A).
(c) If f : X → X is a homeomorphism, then f (X(A)) = X( f (A)).

Lemma 2.5. Let X be a nondegenerate dendrite with metric d and [a,b] an arc in X. If diam(X([a,b])) > ε, then there is an arc
[c,d] ⊂ X(A) such that X([c,d]) ⊂ X([a,b]) and d(c,d) = ε/3.

Proof. If diam([a,b]) > ε/3, then we can select c,d ∈ [a,b] such that d(c,d) = ε/3. Clearly X([c,d]) ⊂ X([a,b]). Otherwise,
by the triangular inequality, there must be some x ∈ X([a,b]) such that d(x, y) > ε/3 where y is the (unique) point in [a,b]
such that [a,b] ∩ [a, x] = [a, y]. Now select c,d ∈ [x, y] such that d(c,d) = ε/3, then X([c,d]) ⊂ X([a,b]). �

The following lemma is well known in continuum theory and is a direct corollary of [15, 8.30].

Lemma 2.6. Let X be a dendrite with metric d. Then for any ε > 0, there is a δ = δ(ε) such that for any x, y ∈ X with 0 < d(x, y) � δ,
the diameter diam([x, y]) < ε.

Lemma 2.7. Let X be a nondegenerate dendrite with metric d. Then for every ε > 0 there is a δ > 0 such that, for any arcs [a,b] and
[c,d] in X with d(a,b) = d(c,d) = ε, d(a, c) < δ and d(b,d) < δ, we have [a′,b′] ⊂ [a,b] ∩ [c,d], where a′ and b′ are points in [a,b]
such that d(a′,a) = d(b,b′) = ε/3.

Proof. For any ε > 0, from Lemma 2.6, there is a δ > 0 such that diam([x, y]) < ε/3 whenever d(x, y) < δ. So if [a,b] and
[c,d] are two arcs such that d(a,b) = d(c,d) = ε, d(a, c) < δ and d(b,d) < δ, then diam([a, c]) < ε/3 and diam([b,d]) < ε/3.
Let a′,b′ ∈ [a,b] be such that d(a′,a) = d(b,b′) = ε/3. By the uniquely arcwise connectedness of X , we have [a′,b′] ⊂
[a,b] ⊂ [a, c] ∪ [c,d] ∪ [d,b]. Since [a′,b′] ∩ [a, c] = ∅ and [a′,b′] ∩ [d,b] = ∅, we obtain [a′,b′] ⊂ [c,d]. Thus the proof is
completed. �
3. Contractible neighborhood

First, let us recall some notions which were used by Margulis in [7] and many of the ideas of which are due to Fursten-
berg. Let a group G act on a compact metric space (X,d) and let M(X) denote the set of all Borel probability measures
on X with the standard weak topology. A set F ⊂ X is called G-contractible if there is a sequence {gn} in G such that
diam(gn F ) → 0 as i → ∞. We say that a measure μ ∈ M(X) is G-contractible, if there exist a sequence {gn} in G and
x ∈ X such that gnμ → δx , where δx is the probability measure with support {x}. We say that the action of G on X is
strongly ε-proximal if every measure μ ∈M(X) with diam(supp(μ)) < ε is G-contractible.

The following lemma is clear from the compactness of X .

Lemma 3.1. If every point x ∈ X has a G-contractible neighborhood, then the action of G on X is strongly ε-proximal for some ε > 0.

The following lemma is a direct corollary of Proposition 1(ii) in [7].

Lemma 3.2. Assume that the action of G on X is strongly ε-proximal. Then for any measure μ ∈M(X) there are a measure ν ∈M(X)

with finite support and a sequence {gn} in G such that gnμ → ν as n → ∞.

Recall that the action of G on X is called equicontinuous if for every ε > 0 there is a δ > 0 such that d(gx, gy) < ε
for all g ∈ G , whenever d(x, y) < δ. We say the action is sensitive if there is some c > 0 such that for any nonempty open
subset U of X , there is some g ∈ G such that diam(gU ) > c. Such a constant c is called a sensitivity constant of G-action.
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Now we will prove some dynamical properties of minimal group actions on nondegenerate dendrites.

Lemma 3.3. Let a group G act on a nondegenerate dendrite (X,d) minimally. Then this action must be sensitive.

Proof. First this action cannot be equicontinuous, otherwise X will be homogeneous (see [1, Chap. 3, Theorem 6]) and so
X is a single point. This is a contradiction, since X is nondegenerate. So there is some c > 0 such that for any natural
number n, there exist xn, yn ∈ X and gn ∈ G such that d(xn, yn) < 1

n and d(gnxn, gn yn) > c. Passing to a subsequence if
necessary, we may suppose that limn→∞ xn = limn→∞ yn = z for some z ∈ X . For any nonempty open subset U of X , there
is some g ∈ G such that gz ∈ U by the minimality of the action. Thus gxn and gyn belong to U for sufficiently large n. It
follows that diam(gn g−1U ) > c for sufficiently large n. So the action is sensitive. �
Proposition 3.4. Let a group G act minimally on a nondegenerate dendrite X. Then for every x ∈ X there is a contractible neighborhood
U of x.

Proof. From Lemma 3.3, we may suppose that c is a sensitivity constant of G-action. Now select a nondegenerate arc
[c1,d1] ⊂ X such that diam(X([c1,d1])) < 1. Write Y1 = X([c1,d1]). By the sensitivity of G-action, there is some g1 ∈ G such
that diam(g1Y1) > c. By Lemma 2.5, there is a subarc [a1,b1] ⊂ g1Y1 such that X([a1,b1]) ⊂ g1Y1 and d(a1,b1) = c/3. Write
X1 = X([a1,b1]). Select a subarc [c2,d2] ⊂ X such that diam(X([c2,d2])) < 1/2. Write Y2 = X([c2,d2]). By the sensitivity,
there is a g2 ∈ G such that diam(g2Y2) > c. By Lemma 2.5, there is a subarc [a2,b2] ⊂ g2Y2 such that X([a2,b2]) ⊂ g2Y2
and d(a2,b2) = c/3. Write X2 = X([a2,b2]). Continuing this process, we get a sequence of subdendrites Xn = X([an,bn]), Yn

and gn ∈ G such that

d(an,bn) = c/3, g−1
n (Xn) ⊂ Yn and diam(Yn) < 1/n. (3.1)

For ε = c/3, let δ = δ(ε) be as in Lemma 2.6. By the compactness of X , there is a sequence ni such that d(ani ,an j ) < δ

and d(bni ,bn j ) < δ for all i, j = 1,2,3, . . . . It follows from Lemma 2.7 that [a′
n1

,b′
n1

] ⊂ [ani ,bni ] for all i = 1,2,3, . . . ,
where a′

n1
,b′

n1
∈ [an,bn] satisfy d(an1 ,a′

n1
) = d(bn1 ,b′

n1
) = ε/3. This together with Lemma 2.4(b) implies that X([a′

n1
,b′

n1
]) ⊂

X([ani ,bni ])(= Xni ) for all i. Then diam(g−1
ni

X([a′
n1

,b′
n1

])) < 1/ni from (3.1). Thus the subdendrite X([a′
n1

,b′
n1

]) is contractible,
which together with the minimality of G-action implies that every point of X has a contractible neighborhood. �
4. Proximality

Let a group G act on a compact metric space (X,d). Two points x, y ∈ X are said to be proximal if there is a sequence
{gi} such that limi→∞ d(gi x, gi y) = 0. If x and y are not proximal, then we say x and y are distal, that is, there is some
c > 0 such that d(gx, gy) > c for all g ∈ G . We say the action of G on X is proximal if any two points x, y ∈ X are proximal.
An nonempty open subset U of X is said to be strongly proximal if every compact subset K of U is contractible.

Lemma 4.1. Assume that a group G acts on a nondegenerate dendrite X minimally. Then the set {(x, y) ∈ X × X: x, y are proximal}
is open in X × X.

Proof. Let x, y ∈ X be proximal. By Proposition 3.4, we can select a nonempty contractible open subset U of X . Since x, y
are proximal and the G-action is minimal, there is some g ∈ G such that gx ∈ U and gy ∈ U . By the continuity of G-action,
there are open neighborhoods Ux of x and U y of y such that gUx ⊂ U and gU y ⊂ U . Since U is contractible, we see that u
and v are proximal for any u ∈ Ux and v ∈ U y . The proof is complete. �

Let y be a cut point of a nondegenerate dendrite X and x �= y ∈ X . We use the symbol U y(x) to denote the connected
component of X \ {y} containing x. If the number of connected components of X \ {y} is two, then y is called a 2-cut point.
It is well known that for any nondegenerate arc [a,b] ⊂ X , the set of 2-cut points in [a,b] is dense in [a,b].

Lemma 4.2. Let a group G act minimally on a nondegenerate space X. If x, y ∈ X are distal and every point in the open arc ]x, y[ (≡
[x, y] \ {x, y}) is proximal to x, then the connected component U y(x) of X \ {y} is strongly proximal.

Proof. Since x, y are distal, there is some c > 0 such that d(hx,hy) > c for all h ∈ G . For any given 0 < ε < c, select a 2-cut
point w ∈ X such that one of the components, say W , of X \ {w} has diam(W ) < ε (it is not difficult to see that this can
always be done). For any compact subset K of U y(x), select a 2-cut point v ∈]x, y[ which is sufficiently close to y such
that the connected component U v (x) contains K and x, v are proximal (see Lemma 4.1). Since the G-action is minimal,
there is some g ∈ G such that g([x, v]) ⊂ W . In particular, gx ∈ W . This implies that gy /∈ W , because diam(W ) < ε and
d(gx, gy) > c > ε. It follows that g(U v (x)) ⊂ W , which means that g(K ) ⊂ W . So diam(g K ) < ε. By the arbitrariness of ε
and K , we obtain that U y(x) is strongly proximal. Thus we complete the proof. �
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Proposition 4.3. Assume that a group G acts on a nondegenerate dendrite X minimally. Then this action is proximal.

Proof. Assume to the contrary that there are two points x, y ∈ X which are distal. According to Lemma 4.1 and Proposi-
tion 3.4, we may suppose that every point v ∈]x, y[ is proximal to x. By the minimality of G-action, it is easy to see that
the arc [x, y] is nowhere dense in X , and so, there is some g ∈ G such that g(y) ∈ U y(x) \ [x, y]. (Recall that U y(x) is the
connected component of X \ {y} containing x.) Since U y(x) is strongly proximal by Lemma 4.2 and gx, gy are distal, we
must have g(x) /∈ U y(x). It follows that y ∈ [gx, gy] and then [x, y] ⊂ U gy(gx) (noting that g(y) /∈ [x, y]). But U gy(gx) is still
strongly proximal, which contradicts the distality of x and y. �
5. Free subgroup

In this section, we shall prove the main result of the paper.

Lemma 5.1. Assume that a group G acts on a nondegenerate dendrite X minimally and μ is the probability measure defined as in
(2.2). Then there are an endpoint x ∈ End(X) and a sequence gi ∈ G such that giμ → δx as i → ∞, where δx is the Dirac measure
with support x.

Proof. From Lemma 3.1 and Proposition 3.4, we see that the G-action on X is strongly ε-proximal for some ε > 0. Then
from Lemma 3.2 we obtain that there is some measure ν ∈ Gμ ⊂M(X) with finite support. Since the G-action is proximal
by Proposition 4.3, we get further that there is a Dirac measure δx ∈ Gν and we can take x to be an endpoint of X by the
minimality of G-action. Since δx ∈ Gν ⊂ Gμ, there exists a sequence gi ∈ G such that giμ → δx as i → ∞. Thus we complete
the proof. �
Proposition 5.2. Assume that a group G acts on a nondegenerate dendrite X minimally. Then there are two endpoints x �= y ∈ End(X)

and a sequence gi ∈ G such that for any subdendrite K of X \ {x} we have gi(K ) → y and for any subdendrite K of X \ {y} we have
g−1

i (K ) → x as i → ∞.

Proof. Let μ be the probability measure defined as in (2.2). From Lemma 5.1, there exists a sequence hi ∈ G such that
hiμ → δx (i → ∞) for some x ∈ End(X). Thus, for any subdendrite K ⊂ X \ {x}, we have μ(h−1

i K ) = hiμ(K ) → 0 as i → ∞.
It follows from Proposition 2.3 that

diam
(
h−1

i K
) → 0 as i → ∞. (5.1)

Now choose an endpoint y �= x. Suppose xn is a sequence in the arc [x, y] such that xn → x as n → ∞. Let Kn = X([y, xn])
be the subdendrite of X strung by [y, xn] (see the definition before Lemma 2.4). Passing to a subsequence if neces-
sary, we may suppose that K1 ⊂ K2 ⊂ · · ·, and h−1

i K1 → z for some z ∈ X by (5.1). Since K1 ⊂ Kn for all n � 2 and

limi→∞ diam(h−1
i Kn) = 0 by (5.1), we obtain further that h−1

i Kn → z (i → ∞) for all n. By the minimality of G-action,

there is a sequence rn ∈ G such that rnz → y as n → ∞. Then for each Kn we may choose an in such that h−1
in

Kn is suffi-

ciently close to z that d(rnh−1
in

Kn, y) < 1/n. Write gn = rnh−1
in

. Because X \ {x} = ⋃∞
n=1 Kn and every subdendrite of X \ {x} is

contained in Kn for some n, we obtain that

gn K → y (n → ∞) for all subdendrites K ⊂ X \ {x}. (5.2)

Choose a sequence yn ∈ [x, y] such that yn → y and X([x, yn]) ⊂ X([x, yn+1]) for all n. Write Fn = X([x, yn]) and Un =
X \ Fn . Then X \ {y} = ⋃∞

n=1 Fn and the family {Un: n = 1,2, . . .} becomes a neighborhood base of y. It follows from (5.2)
that for each n, there is an N such that gi Kn ⊂ Un for all i > N . This implies that gi(Kn ∩ g−1

i Fn) = gi Kn ∩ Fn = ∅ for all

i > N . So Kn ∩ g−1
i Fn = ∅ for all i > N . Thus g−1

i Fn → x as i → ∞ for each n. Since X \ {y} = ⋃∞
n=1 Fn and every subdendrite

of X \ {y} is contained in Fn for some n, we obtain that

g−1
i K → x (i → ∞) for all subdendrites K ⊂ X \ {y}. (5.3)

Thus we complete the proof from (5.2) and (5.3). �
A group with two generators acting on a topological space X is called quasi-Schottky if there exist generators h1, h2 of

H and nonempty disjoint open subsets U1, U2, V 1, V 2 and W of X such that for i = 1,2,

hi(Ui ∪ U3−i ∪ V 3−i ∪ W ) ⊂ Ui and h−1
i (V i ∪ V 3−i ∪ U3−i ∪ W ) ⊂ V i .

The “ping-pong” argument of Tits shows that H is a free noncommutative group.
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The following lemma is taken from [11].

Lemma 5.3. A group H cannot be represented as a union of finite number of left cosets hi Hi of subgroups Hi ⊂ H of infinite index.

The following lemma can be easily deduced from Lemma 5.3 (see the proof of Theorem 1 in [7]).

Lemma 5.4. Let a group G act on a nondegenerate dendrite minimally. Then for any two different points x, y ∈ X, there is a g ∈ G such
that x, y, gx, gy are pairwise different.

Now we start to prove the main theorem of this paper.

Theorem 5.5. If a group G acts on a nondegenerate dendrite X minimally, then G must contain a noncommutative free subgroup.

Proof. From Proposition 5.2, there are a sequence gi ∈ G and two different endpoints x, y ∈ X such that for any subdendrite
K of X \ {x, y} we have

gi(K ) → x and g−1
i (K ) → y as i → ∞. (5.4)

From Lemma 5.4, there is a g ∈ G such that x, y, gx, gy are pairwise different. Write hi = ggi g−1 for all i. Then from
(5.4) we have that for each subdendrite K of X \ {gx, gy},

hi(K ) → gx and h−1
i (K ) → gy as i → ∞. (5.5)

Let U1, V 1, U2, V 2 be some connected open neighborhoods of x, y, gx, gy respectively such that the closures U 1, V 1, U 2,
V 2 are pairwise disjoint. Choose an open set W ⊂ X such that W ∩ U i = ∅ and W ∩ V i = ∅ for i = 1,2. Then from (5.4) and
(5.5) we obtain that there is a sufficiently large i0 such that

gi0(U1 ∪ U2 ∪ V 2 ∪ W ) ⊂ U1, g−1
i0

(U2 ∪ V 1 ∪ V 2 ∪ W ) ⊂ V 1,

and

hi0(U1 ∪ U2 ∪ V 1 ∪ W ) ⊂ U2, h−1
i0

(U1 ∪ V 1 ∪ V 2 ∪ W ) ⊂ V 2.

It follows that the subgroup 〈gi0 ,hi0 〉 of G generated by gi0 and hi0 is quasi-Schottky. Thus 〈gi0 ,hi0〉 is a noncommutative
free group and this completes the proof. �

Clearly, circle and dendrites are both locally connected one-dimensional continua. It is natural to ask whether Margulis’s
conclusion holds for such more general spaces. Namely, we have the following

Question A. Let X be a locally connected one-dimensional continuum and let a group G act on X minimally. Is it true that
either G contains a free noncommutative subgroup or there is a G-invariant probability measure on X?
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