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1 Introduction

For an integer m, the ×m map Tm on T = {z ∈ C : |z| = 1} is given by
Tm(z) = zm for all z ∈ T.

H. Furstenberg proved that under the action of a non-lacunary multiplicative
semigroup of positive integers on T, a nonempty closed invariant subset of T
containing a dense orbit is either finite or the whole T [3, Theorem IV.1]. Here
a multiplicative semigroup of positive integers is called non-lacunary if it is not
contained in any singly generated multiplicative semigroup. In other words a
non-lacunary multiplicative semigroup of positive integers always contains two
positive integers p and q with log p

log q irrational (we say that p, q are non-lacunary).
Furthermore, Furstenberg conjectured the following.

Conjecture 1.1 (Furstenberg’s Conjecture). An ergodic invariant Borel proba-
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bility measure on T under the action of a non-lacunary multiplicative semigroup
of positive integers is either finitely supported or the Lebesgue measure.

The first breakthrough of Furstenberg’s conjecture was achieved by R.
Lyons.

Theorem 1.1 [10, Theorem 1]. Suppose p, q ≥ 2 are two relatively prime
integers. If a non-atomic ×p,×q-invariant Borel probability measure µ on T
is Tp-exact, then it is the Lebesgue measure. Here µ is Tp-exact means that
(T,B, µ, Tp) has no nontrivial zero entropy factor.

This result was improved by D. J. Rudolph under the assumption that p
and q are coprime and an extra positive entropy condition [12, Theorem 4.9]
and later by A. S. A. Johnson [5, Theorem A] under the assumption that p, q
are non-lacunary and the positive entropy condition.

Theorem 1.2 (Rudolph–Johnson’s Theorem). Suppose p and q are non-
lacunary positive integers greater than 1. If µ is an ergodic ×p,×q-invariant
Borel probability measure on T such that Tp or Tq has positive measure entropy
with respect to µ, then µ is the Lebesgue measure.

One may consult [6–8] for the extensions of above results to automorphisms
on n-torus with n ≥ 2.

Recently, the first named author obtained the following rigidity theorem.

Theorem 1.3 [4, Theorem 1.5]. Let p be a nonzero integer. The Lebesgue
measure is the unique non-atomic ×p-invariant Borel probability measure on T
satisfying one of the following:

(1) It is ergodic and there exist a nonzero integer l and a Følner sequence
Σ = {Fm}∞m=1 in N such that µ is ×(pj + l)-invariant for all j in some
E ⊆ N with upper density DΣ(E) (see Definition 2.2) equal to 1;

(2) It is weakly mixing and there exist a nonzero integer l and a Følner se-
quence Σ = {Fm}∞m=1 in N such that µ is ×(pj + l)-invariant for all j in
some E ⊆ N with DΣ(E) > 0;

(3) It is strongly mixing and there exist a nonzero integer l and an infinite
set E ⊆ N such that µ is ×(pj + l)-invariant for all j in E.

Moreover, a ×p-invariant Borel probability measure satisfying (2) or (3) is ei-
ther a Dirac measure or the Lebesgue measure.

In this paper, we introduce so-called strongly independent matrices over a
field F, and use strongly independent matrices over the rational fieldQ to extend
the above measure rigidity results to endomorphisms on Tn = {(z1, . . . , zn) ∈
Cn : |z1| = · · · = |zn| = 1}.
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We say that an n-tuple (B1, B2, . . . , Bn) of n × n matrices over a field F
is strongly independent over F if for any nonzero column vector v in Fn×1, the
vectors B1v,B2v, . . . , Bnv are linearly independent over F. A nonzero matrix B
in Mn(F) is called strongly independent over F if the n-tuple (In, B, . . . , Bn−1)
is strongly independent over F.

The next main theorem illustrates the existence of an abundance of strongly
independent matrices.

Theorem 1.4. A nonzero matrix B in Mn(F) is strongly independent over F
iff the characteristic polynomial of B is irreducible in F[t].

The above shows existence of strongly independent matrices over certain
fields, say, the field of rational numbers Q. However over some fields, there are
no strongly independent matrices.

Theorem 1.5. If F is an algebraically closed field, then there are no strongly
independent n-tuples in Mn(F) for n ≥ 2.

We shall identify Rn/Zn with the n-torus Tn naturally via

Rn/Zn ∋ (x1, x2, . . . , xn) + Zn 7→ (e2πix1 , e2πix2 , . . . , e2πixn) ∈ Tn

for (x1, x2, . . . , xn) ∈ Rn. Let A be a matrix in Mn(Z). The ×A map on Tn is
defined by TA : Rn/Zn → Rn/Zn

TA((x1, x2, . . . , xn) + Zn) = (x1, x2, . . . , xn)A+ Zn

for (x1, x2, . . . , xn) in Rn.

Theorem 1.6. Let A be in Mn(Z). Suppose that µ is a ×A-invariant Borel
probability measure on Tn satisfying one of the following:

(1) It is ergodic and there exist an n-tuple (B1, B2, . . . , Bn) of matrices in
Mn(Z) strongly independent over Q and a Følner sequence Σ = {Fm}∞m=1

in N such that µ is ×(Aj + Bi)-invariant for all j in some E ⊆ N with
the upper density DΣ(E) = 1 and all i = 1, 2, . . . , n;

(2) It is weakly mixing and there exist an n-tuple (B1, B2, . . . , Bn) of matri-
ces in Mn(Z) strongly independent over Q and a Følner sequence Σ =
{Fm}∞m=1 in N such that µ is ×(Aj + Bi)-invariant for all j in some
E ⊆ N with DΣ(E) > 0 and all i = 1, 2, . . . , n;

(3) It is strongly mixing and there exist an n-tuple (B1, B2, . . . , Bn) of matri-
ces in Mn(Z) strongly independent over Q and an infinite set E ⊆ N such
that µ is ×(Aj +Bi)-invariant for all j in E and all i = 1, 2, . . . , n.

Then µ is either finitely supported or the Lebesgue measure.
Moreover, a ×A-invariant Borel probability measure satisfying (2) or (3) is

either a Dirac measure or the Lebesgue measure.
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Sataev [13] and Einsiedler–Fish [2] independently proved that a multiplica-
tive semigroup of positive integers with positive lower logarithmic density acting
on the circle has measure rigidity, whereas Theorem 1.4 implies that there ex-
ists a multiplicative semigroup of positive integers with zero logarithmic density
acting on the circle which also has measure rigidity [4, Theorem 5.2]. Analo-
gously, we conclude that there exist “very small” semigroups acting on Tn such
that the Lebesgue measure is the unique non-atomic invariant measure.

Corollary 1.1. There exist an abelian multiplicative semigroup S ⊆ Mn(Z)
and a matrix B in S such that the Lebesgue measure is the unique non-atomic
Borel probability measure on Tn which is both invariant under ×A for all A in
S and ergodic under ×B.

The paper is organized as follows. We lay down some definitions and nota-
tions in Section 2. Theorem 1.4 and Theorem 1.5 are proved in Section 3. In
Section 4, we characterize mixing properties of Borel probability measures on
Tn in terms of their Fourier coefficients. Finally we establish Theorem 1.6 in
Section 5.

2 Preliminaries

Denote the set of nonnegative integers by N, and the cardinality of a set E by
|E|.

For a ring R, denote by Mn(R) the ring of n×n square matrices with entries
in R. Denote by GLn(R) the group of invertible elements in Mn(R). For a field
F, denote by F its algebraic closure. For any A ∈ Mn(F), denote by PA(t) the
characteristic polynomial det(tIn −A) of A in F[t].

For a nonempty set Z, denote by Zn the set of row vectors of length n
with coordinates in Z, and by Zn×1 the set of column vectors of length n with
coordinates in Z.

Within this paper, a measure on a compact metrizable space X always
means a Borel probability measure. Denote by C(X) the space of complex-
valued continuous functions on X.

Definition 2.1. A Følner sequence in N is a sequence Σ = {Fm}∞m=1 of
nonempty finite subsets of N satisfying

lim
m→∞

|(Fm +m′)∆Fm|
|Fm|

= 0

for every m′ in N. Here ∆ stands for the symmetric difference.

Definition 2.2. Let Σ = {Fm}∞m=1 be a sequence of nonempty finite subsets
of N. For a subset E of N, the upper density DΣ(E) is given by

DΣ(E) := lim sup
m→∞

|E ∩ Fm|
|Fm|

.
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Definition 2.3. For k =

 k1
k2
...
kn

 ∈ Zn×1 and z = (z1, z2, . . . , zn) ∈ Tn, use zk

to denote zk11 zk22 · · · zknn , and the Fourier coefficient µ̂(k) of a measure µ on Tn

is defined by

µ̂(k) =

∫
Tn

zk dµ(z).

For a measure µ on a compact metrizable space X, if µ({x}) > 0 for some
x in X, then x is called an atom for µ. A measure with no atoms is called
non-atomic.

For a continuous map T : X → X, a measure µ on X is called T -invariant
if µ(E) = µ(T−1E) for every Borel subset E of X. For A in Mn(Z), we call a
measure µ on Tn ×A-invariant if µ is TA-invariant.

A T -invariant measure µ is called ergodic if every Borel subset E with
T−1E = E satisfies µ(E) = 0 or 1. A measure µ is called weakly mixing if µ×µ
is an ergodic T ×T -invariant measure on X×X, and it is called strongly mixing
if limj→∞ µ(T−jE ∩ F ) = µ(E)µ(F ) for all Borel subsets E,F of X.

3 Existence and Non-existence of Strongly Independent Matrices over
Certain Fields

In this section, we prove Theorems 1.4 and 1.5, which illustrate that the ex-
istence of strongly independent matrices over a field F depends on algebraic
properties of F.

Definition 3.1. For a field F, we call an n-tuple (B1, B2, . . . , Bn) of matrices
in Mn(F) strongly independent over F if for any nonzero v in Fn×1, the vectors
B1v,B2v, . . . , Bnv are linearly independent over F. We call a nonzero matrix B
inMn(F) strongly independent over F if the n-tuple (In, B, . . . , Bn−1) is strongly
independent over F.

Lemma 3.1. Let B1, . . . , Bn ∈ Mn(F). The tuple (B1, . . . , Bn) is strongly
independent over F iff for any nonzero (u1, . . . , un) ∈ Fn the matrix

∑n
j=1 ujBj

is invertible.

Proof. The tuple (B1, . . . , Bn) is strongly independent over F iff for any nonzero
v ∈ Fn×1 the vectors B1v, . . . , Bnv are linearly independent, iff for any nonzero
v ∈ Fn×1 and any nonzero (u1, . . . , un) ∈ Fn the vector

∑n
j=1 ujBjv is nonzero,

iff for any nonzero (u1, . . . , un) ∈ Fn the matrix
∑n

j=1 ujBj is invertible.

Proof of Theorem 1.4. Suppose that PB(t) is not irreducible in F[t]. We have
PB(t) = f(t)g(t) for some f, g ∈ F[t] with 1 ≤ deg(f), deg(g) ≤ n − 1. Then
0 = PB(B) = f(B)g(B) by Hamilton–Cayley Theorem [9, Theorem XIV.3.1],
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whence at least one of f(B) and g(B) is not invertible. By Lemma 3.1 we
conclude that B is not strongly independent over F.

Now assume that PB(t) is irreducible in F[t]. Denote by D the Jordan
canonical form of B. That is, D ∈ Mn(F) and there is some invertible W ∈
Mn(F) satisfying WB = DW and

D =

D1

. . .

Dk


for some positive integer k such that each Di is in Mmi(F) of the form

λi

1 λi

. . .
. . .

1 λi

1 λi


for some λi ∈ F and positive integer mi. Then PB(t) =

∏k
i=1(t−λi)

mi , whence
PB(λi) = 0 for every 1 ≤ i ≤ k. Since PB(t) is irreducible in F[t], it follows
that for any nonzero f(t) ∈ F[t] of degree at most n− 1, one has f(λi) ̸= 0 for
every 1 ≤ i ≤ k.

Let (u1, . . . , un) be a nonzero vector in Fn. Then f(t) =
∑n

j=1 ujt
j−1 ∈ F[t]

is nonzero and has degree at most n − 1. Thus f(λi) ̸= 0 for every 1 ≤
i ≤ k. It follows that f(D) is invertible, whence u1In + u2B + . . .+ unB

n−1 =
f(B) = W−1f(D)W is invertible. By Lemma 3.1 we conclude that B is strongly
independent over F.

Remark 3.1. Suppose f(t) = tn + a1t
n−1 + · · ·+ an−1t+ an is an irreducible

polynomial in F[t]. Define B ∈ Mn(F) as

0 0 0 · · · 0 −an
1 0 0 · · · 0 −an−1

0 1 0 · · · 0 −an−2
...
...
... · · ·

...
...

0 0 0 · · · 0 −a2
0 0 0 · · · 1 −a1


.

Then PB(t) = f(t) [11, Definition on page 173 and Lemma 7.17]. By Theo-
rem 1.4, the matrix B is strongly independent over F.

For any n ≥ 1, by Eisenstein’s criterion [9, Theorem IV.3.1], there exist
infinitely many monic polynomials of degree n in Z[t], which are irreducible in
Q[t] (for example tn + p for any prime number p in Z). Theorem 1.4 illustrates
that for n ≥ 2 there are infinitely many n-tuples of the form (In, B, . . . , Bn−1)
in Mn(Z) strongly independent over Q.
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Next we prove Theorem 1.5 which gives the non-existence of strongly inde-
pendent matrices over algebraically closed fields.

Proof of Theorem 1.5. For any matrices B1, B2, . . . , Bn in Mn(F), taking z =[ z1
z2
...
zn

]
, the polynomial f(z1, z2, . . . , zn) = det

[
B1z B2z · · · Bnz

]
is in F[z1, z2,

. . . , zn]. Now f(z1, z2, . . . , zn) = 0 always has a nonzero solution z̃ in Fn×1 since
F is algebraically closed and n ≥ 2.

4 Fourier Coefficients of Ergodic, Weakly Mixing and Strongly Mixing
Measures on Tn

In this section we prove Theorem 4.1, characterizing the mixing properties of
measures on Tn under ×A map via their Fourier coefficients.

Theorem 4.1. Let A ∈ Mn(Z) and let Σ = {Fm}∞m=1 be a Følner sequence in
N. The following are true.

(1) A measure µ on Tn is an ergodic ×A-invariant measure iff

lim
m→∞

1

|Fm|
∑
j∈Fm

µ̂(Ajk + l) = µ̂(k)µ̂(l) (4.1)

for all k, l in Zn×1.

(2) A measure µ on Tn is a weakly mixing ×A-invariant measure iff

lim
m→∞

1

|Fm|
∑
j∈Fm

|µ̂(Ajk + l)− µ̂(k)µ̂(l)|2 = 0 (4.2)

for all k, l in Zn×1.

(3) A measure µ on Tn is a strongly mixing ×A-invariant measure iff

lim
j→∞

µ̂(Ajk + l) = µ̂(k)µ̂(l) (4.3)

for all k, l in Zn×1.

To prove Theorem 4.1 we need to make some preparations.

Lemma 4.1. Let A ∈ Mn(Z). A measure µ on Tn is ×A-invariant iff µ̂(k) =
µ̂(Ak) for all k in Zn×1.

Proof. A measure µ on Tn is ×A-invariant iff
∫
Tn f(TAz) dµ(z) =

∫
Tn f(z) dµ(z)

for all f in C(Tn) [14, Theorem 6.8] iff
∫
Tn f(TAz) dµ(z) =

∫
Tn f(z) dµ(z) for all

f in a dense subset of C(Tn) iff
∫
Tn f(TAz) dµ(z) =

∫
Tn f(z) dµ(z) for f(z) = zk

for all k in Zn×1 since the linear span of zk’s is dense in C(Tn). Note that∫
Tn(TAz)

k dµ(z) = µ̂(Ak) for all k in Zn×1.
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Lemma 4.2. Let µ be a measure on Tn. For any k in Zn×1, if µ̂(k) = 1 then
the support of µ

supp(µ) ⊆ {z ∈ Tn : zk = 1}.

Proof. Since µ̂(k) = 1, by the definition of µ̂(k), we have∫
Tn

zkdµ(z) = 1.

Thus
∫
Tn Re(z

k)dµ(z) = 1. Therefore,∫
Tn

|zk − 1|2dµ(z) =
∫
Tn

(2− 2Re(zk))dµ(z) = 0.

Hence, supp(µ) ⊆ {z ∈ Tn : zk = 1}.

Lemma 4.3. Let µ be a measure on Tn. Let an n-tuple (B1, B2, . . . , Bn) of
matrices in Mn(Z) be strongly independent over Q. If there is some nonzero k
in Zn×1 such that µ̂(Bik) = 1 for every 1 ≤ i ≤ n, then µ is finitely supported.

Proof. Let L =
[
B1k . . . Bnk

]
∈ Mn(Z). Since B1k,B2k, . . . , Bnk are linearly

independent over Q, the matrix L is in GLn(Q). Write L as (Li,j)1≤i,j≤n and
put M =

∑
1≤i,j≤n |Li,j |. By Lemma 4.2, the support of µ, supp(µ), is a subset

of
∩n

i=1{z ∈ Tn : zBik = 1}. That is,

supp(µ) ⊆
n∩

i=1

{x+ Zn : x ∈ [0, 1)n, xBik ∈ Z}

= {x+ Zn : x ∈ [0, 1)n, xL ∈ Zn}
⊆ {wL−1 + Zn : w ∈ [−M,M ]n ∩ Zn}.

Note that {wL−1 : w ∈ [−M,M ]n ∩ Zn} is finite, so is supp(µ).

We need the following Lemma [4, Lemma 4.2] which is a special case of the
mean ergodic theorem for amenable semigroups [1, Theorem 1].

Lemma 4.4. For a compact metrizable space X and a continuous map T :
X → X, if ν is an ergodic T -invariant measure on X, then for every Følner
sequence {Fm}∞m=1 in N, one has

lim
m→∞

1

|Fm|
∑
j∈Fm

f ◦ T j =

∫
X
fdν

for every f ∈ L2(X, ν) (note that the identity holds with respect to L2-norm).
Consequently

lim
m→∞

1

|Fm|
∑
j∈Fm

∫
X
f(T jx)g(x)dν(x) =

∫
X
fdν

∫
X
gdν (4.4)

for all f, g in L2(X, ν).
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Proof of Theorem 4.1. For any Borel subset E of Tn, write 1E for the charac-
teristic function of E.

(1) Suppose µ is an ergodic ×A-invariant measure on Tn. Applying Lem-
ma 4.4 for X = Tn, T = TA and ν = µ, we have

lim
m→∞

1

|Fm|
∑
j∈Fm

∫
Tn

f(T j
Az)g(z)dµ(z) =

∫
Tn

fdµ

∫
Tn

gdµ (4.5)

for all continuous functions f, g on Tn. Letting f(z) = zk and g(z) = zl for z
in Tn and k, l in Zn×1, we obtain (4.1), which is the necessity.

Now assume that (4.1) holds for all k, l in Zn×1.
Let k ∈ Zn×1. Letting l = 0 in (4.1), we get limm→∞

1
|Fm|

∑
j∈Fm

µ̂(Ajk) =

µ̂(k). Replacing k by Ak, we also have

µ̂(Ak) = lim
m→∞

1

|Fm|
∑
j∈Fm

µ̂(Aj+1k) = lim
m→∞

1

|Fm|
∑

j∈Fm+1

µ̂(Ajk).

Then

|µ̂(Ak)− µ̂(k)| = lim
m→∞

1

|Fm|

∣∣∣∣ ∑
j∈Fm+1

µ̂(Ajk)−
∑
j∈Fm

µ̂(Ajk)

∣∣∣∣
≤ lim

m→∞

|(Fm + 1)∆Fm|
|Fm|

= 0,

whence µ̂(Ak) = µ̂(k). By Lemma 4.1, we get that µ is ×A-invariant.
From (4.1) we see that (4.5) is true for all f(z) = zk and g(z) = zl with k, l

in Zn×1. By linearity, (4.5) is also true for all f, g in the linear span V of zk for
all k ∈ Zn×1. Since V is dense in L2(Tn, µ), (4.5) is true for all f, g ∈ L2(Tn, µ).
For any Borel subset E of Tn satisfying T−1

A E = E, taking f = g = 1E in (4.5),
we get µ(E) = µ(E)2. Hence µ is ergodic.

(2) Suppose µ is a weakly mixing ×A-invariant measure on Tn, which means
µ× µ is an ergodic TA × TA-invariant measure on T2n. Let k, l ∈ Zn×1. Taking
f(z′, z′′) = (z′)k(z′′)−k and g(z′, z′′) = (z′)l(z′′)−l in (4.4) of Lemma 4.4 with
X = Tn × Tn, T = TA × TA and ν = µ× µ, we get

lim
m→∞

1

|Fm|
∑
j∈Fm

|µ̂(Ajk + l)|2 = |µ̂(k)|2|µ̂(l)|2. (4.6)

Taking f(z′, z′′) = (z′)k and g(z′, z′′) = (z′)l in (4.4) of Lemma 4.4 with X =
Tn × Tn, T = TA × TA and ν = µ× µ, we also get

lim
m→∞

1

|Fm|
∑
j∈Fm

µ̂(Ajk + l) = µ̂(k)µ̂(l). (4.7)
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Since

|µ̂(Ajk + l)− µ̂(k)µ̂(l)|2

= |µ̂(Ajk + l)|2 + |µ̂(k)|2|µ̂(l)|2 − µ̂(Ajk + l)µ̂(k)µ̂(l)− µ̂(Ajk + l)µ̂(k)µ̂(l),

we have

lim
m→∞

1

|Fm|
∑
j∈Fm

|µ̂(Ajk + l)− µ̂(k)µ̂(l)|2

= lim
m→∞

1

|Fm|
∑
j∈Fm

[|µ̂(Ajk + l)|2 + |µ̂(k)|2|µ̂(l)|2

− µ̂(Ajk + l)µ̂(k)µ̂(l)− µ̂(Ajk + l)µ̂(k)µ̂(l)]

(4.6)–(4.7)
======== |µ̂(k)|2|µ̂(l)|2 + |µ̂(k)|2|µ̂(l)|2 − |µ̂(k)|2|µ̂(l)|2 − |µ̂(k)|2|µ̂(l)|2 = 0.

This proves the necessity.
Conversely, suppose that (4.2) holds for all k, l ∈ Zn×1.
Note that TA × TA = Tdiag(A,A) on Tn × Tn = T2n. In order to prove that

µ×µ is an ergodic TA×TA-invariant measure on Tn×Tn, by part (1) it suffices
to show that

lim
m→∞

1

|Fm|
∑
j∈Fm

µ̂× µ

([
A

A

]j [
k′

k′′

]
+

[
l′

l′′

])
= µ̂× µ

([
k′

k′′

])
µ̂× µ

([
l′

l′′

])

for all k′, k′′, l′, l′′ ∈ Zn×1. Note that

µ̂× µ

([
u
v

])
= µ̂(u)µ̂(v)

for all u, v ∈ Zn×1. Thus it suffices to show

lim
m→∞

1

|Fm|
∑
j∈Fm

µ̂(Ajk′ + l′)µ̂(Ajk′′ + l′′) = µ̂(k′)µ̂(k′′)µ̂(l′)µ̂(l′′)

for all k′, k′′, l′, l′′ ∈ Zn×1.
Note that

|µ̂(Ajk′ + l′)µ̂(Ajk′′ + l′′)− µ̂(k′)µ̂(k′′)µ̂(l′)µ̂(l′′)|
≤ |µ̂(Ajk′ + l′)[µ̂(Ajk′′ + l′′)− µ̂(k′′)µ̂(l′′)]|

+ |[µ̂(Ajk′ + l′)− µ̂(k′)µ̂(l′)]µ̂(k′′)µ̂(l′′)|
≤ |µ̂(Ajk′′ + l′′)− µ̂(k′′)(l′′)|+ |µ̂(Ajk′ + l′)− µ̂(k′)µ̂(l′)|
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for all k′, k′′, l′, l′′ ∈ Zn×1, whence

lim
m→∞

1

|Fm|
∑
j∈Fm

|µ̂(Ajk′ + l′)µ̂(Ajk′′ + l′′)− µ̂(k′)µ̂(k′′)µ̂(l′)µ̂(l′′)|2

≤ lim
m→∞

1

|Fm|
∑
j∈Fm

[|µ̂(Ajk′′ + l′′)− µ̂(k′′)µ̂(l′′)|

+ |µ̂(Ajk′ + l′)− µ̂(k′)µ̂(l′)|]2

≤ 2 lim
m→∞

1

|Fm|
∑
j∈Fm

[|µ̂(Ajk′′ + l′′)− µ̂(k′′)µ̂(l′′)|2

+ |µ̂(Ajk′ + l′)− µ̂(k′)µ̂(l′)|2]
(4.2)
==== 0,

where in the second inequality we use (a+ b)2 ≤ 2(a2+ b2) for all real numbers
a, b. This proves the sufficiency.

(3) Suppose µ is strongly mixing, which means that limj→∞ µ(T−j
A E∩F ) =

µ(E)µ(F ) for all Borel subsets E,F of Tn. Then

lim
j→∞

∫
Tn

1E(T
j
Az)1F (z)dµ(z) =

∫
Tn

1Edµ

∫
Tn

1Fdµ

for all Borel subsets E,F of Tn. Since the linear combinations of characteristic
functions are dense in L2(Tn, µ), we have

lim
j→∞

∫
Tn

f(T j
Az)g(z)dµ(z) =

∫
Tn

fdµ

∫
Tn

g dµ

for all f, g ∈ C(Tn). In particular, taking f(z) = zk and g(z) = zl, we obtain
(4.3) for all k, l in Zn×1. This proves the necessity.

On the other hand, suppose a measure µ on Tn satisfies (4.3) for all k, l ∈
Zn×1. Let l = 0 and replace k by Ak. Then

µ̂(Ak) = lim
j→∞

µ̂(Aj+1k) = lim
j→∞

µ̂(Ajk) = µ̂(k)

for all k ∈ Zn×1. Hence µ is ×A-invariant in view of Lemma 4.1. From (4.3)
we have

lim
j→∞

∫
Tn

f(T j
Az)g(z)dµ(z) =

∫
Tn

fdµ

∫
Tn

gdµ

when f(z) = zk and g(z) = zl for k, l in Zn×1. Since the linear combinations
of zk for k ∈ Zn×1 are dense in L2(Tn, µ), the above is also true for all f, g ∈
L2(Tn, µ). In particular it holds for f = 1E and g = 1F for any Borel subsets
E,F of Tn, that is,

lim
j→∞

µ(T−j
A E ∩ F ) = µ(E)µ(F ).
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5 Measure Rigidity on Tn

In this section we prove Theorem 1.6 and Corollary 1.1. For this we need the
following Lemma [4, Lemma 5.1].

Lemma 5.1. Let T : X → X be a continuous map on a compact metrizable
space X. Then a weakly mixing T -invariant measure µ on X with an atom is
always a Dirac measure, i.e. supp(µ) is a singleton.

Note that a measure µ on Tn is the Lebesgue measure iff µ̂(k) = 0 for all
nonzero k ∈ Zn×1.

Proof of Theorem 1.6. (1) Suppose µ is an ergodic ×A-invariant measure on
Tn and there exist an n-tuple (B1, B2, . . . , Bn) of matrices in Mn(Z) which is
strongly independent over Q and a Følner sequence Σ = {Fm}∞m=1 in N such
that µ is ×(Aj + Bi)-invariant for every 1 ≤ i ≤ n and j in some E ⊆ N with
DΣ(E) = 1. Passing to a subsequence of Σ if necessary, we may assume that

limm→∞
|Fm∩E|
|Fm| = 1. By Lemma 4.1, we have µ̂(Ajk + Bik) = µ̂(k) for all

j ∈ E, 1 ≤ i ≤ n and k ∈ Zn×1.
Assume that µ is not the Lebesgue measure. Then there exists a nonzero

k ∈ Zn×1 such that µ̂(k) ̸= 0.
Since µ is an ergodic ×A-invariant measure, by Theorem 4.1 (1), we have

limm→∞
1

|Fm|
∑

j∈Fm
µ̂(Ajk + Bik) = µ̂(k)µ̂(Bik) for every 1 ≤ i ≤ n. Note

that

1

|Fm|
∑
j∈Fm

µ̂(Ajk +Bik)

=
1

|Fm|
∑

j∈Fm∩E
µ̂(Ajk +Bik) +

1

|Fm|
∑

j∈Fm\E

µ̂(Ajk +Bik)

=
|Fm ∩ E|
|Fm|

µ̂(k) +
1

|Fm|
∑

j∈Fm\E

µ̂(Ajk +Bik) → µ̂(k)

as m → ∞. Hence µ̂(k) = µ̂(k)µ̂(Bik) which implies µ̂(Bik) = 1 for every
1 ≤ i ≤ n. From Lemma 4.3 we get that µ is finitely supported.

(2) Suppose µ is a weakly mixing ×A-invariant measure on Tn and there
exist an n-tuple (B1, B2, . . . , Bn) of matrices in Mn(Z) which is strongly inde-
pendent over Q and a Følner sequence Σ = {Fm}∞m=1 such that µ is ×(Aj+Bi)-
invariant for every 1 ≤ i ≤ n and j in some E ⊆ N with DΣ(E) > 0. By
Lemma 4.1, we have µ̂(Ajk + Bik) = µ̂(k) for all j ∈ E, 1 ≤ i ≤ n and
k ∈ Zn×1.

Assume that µ is not the Lebesgue measure. Then there exists a nonzero
k ∈ Zn×1 such that µ̂(k) ̸= 0.
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Let 1 ≤ i ≤ n. Since µ is a weakly mixing ×A-invariant measure, by
Theorem 4.1 (2), we have limm→∞

1
|Fm|

∑
j∈Fm

|µ̂(Ajk+Bik)− µ̂(k)µ̂(Bik)|2 =
0. Therefore,

0 = lim sup
m→∞

1

|Fm|
∑
j∈Fm

|µ̂(Ajk +Bik)− µ̂(k)µ̂(Bik)|2

≥ lim sup
m→∞

1

|Fm|
∑

j∈Fm∩E
|µ̂(Ajk +Bik)− µ̂(k)µ̂(Bik)|2

= lim sup
m→∞

1

|Fm|
∑

j∈Fm∩E
|µ̂(k)− µ̂(k)µ̂(Bik)|2

= |µ̂(k)− µ̂(k)µ̂(Bik)|2DΣ(E).

Hence µ̂(k)− µ̂(k)µ̂(Bik) = 0, which implies that µ̂(Bik) = 1. From Lemma 4.3
we get that µ is finitely supported.

(3) Suppose µ is a strongly mixing ×A-invariant measure on Tn and there
exist an n-tuple (B1, B2, . . . , Bn) of matrices in Mn(Z) which is strongly inde-
pendent over Q and an infinite set E ⊆ N such that µ is ×(Aj + Bi)-invariant
for every 1 ≤ i ≤ n and j in E.

Assume that µ is not the Lebesgue measure. Then there exists a nonzero
k ∈ Zn×1 such that µ̂(k) ̸= 0.

Let 1 ≤ i ≤ n. Since µ is a strongly mixing ×A-invariant measure, by
Theorem 4.1 (3), we have

lim
j→∞

µ̂(Ajk +Bik) = µ̂(k)µ̂(Bik).

Owing to µ being ×(Aj + Bi)-invariant for all j ∈ E, by Lemma 4.1 one has
µ̂(Ajk + Bik) = µ̂(k) for all j ∈ E. Consequently, µ̂(k) = µ̂(k)µ̂(Bik), which
implies µ̂(Bik) = 1. From Lemma 4.3 we get that µ is finitely supported.

Suppose µ is a measure on Tn satisfying (2) or (3) of Theorem 1.6. If µ is
not a Lebesgue measure, then µ is finitely supported. According to Lemma 5.1,
we conclude that µ is a Dirac measure on Tn.

Proof of Corollary 1.1. Take a nonzero B in Mn(Z) with PB(t) irreducible in
Q[t] (see Remark 3.1). Then B is strongly independent over Q by Theorem 1.4.
The multiplicative semigroup S generated by {B,Bj + Bi}0≤i≤n−1,j≥1, where
we put B0 = In, is what we need.
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