CAN POINTS OF BOUNDED ORBITS SURROUND POINTS OF UNBOUNDED ORBITS ?

JIEHUA MAI, ENHUI SHI*, KESONG YAN, AND FANPING ZENG

ABSTRACT. We show a somewhat surprising result: if E is a disk in the plane \mathbb{R}^2 , then there is a homeomorphism $h: \mathbb{R}^2 \to \mathbb{R}^2$ such that, for every $x \in \partial E$, the orbit O(x,h) is bounded, but for every $y \in \operatorname{Int}(E)$, the orbit O(y,h) is doubly divergent. To prove this, we define a class of homeomorphisms on the square $[-1,1]^2$, called normally rising homeomorphisms, and show that a normally rising homeomorphism can have very complex ω -limit sets and α -limit sets, though the homeomorphism itself looks very simple.

1. Introduction

By a dynamical system, we mean a pair (X, f), where the phase space X is a metric space and $f: X \to X$ is a continuous map. For $x, y \in X$, if there is a sequence of positive integers $n_1 < n_2 < \cdots$ such that $f^{n_i}(x) \to y$ then we call y an ω -limit point of x. We denote by $\omega_f(x)$ or $\omega(x, f)$ the set of all ω -limit points of x and call it the ω -limit set of x. The ω -limit sets are important in understanding the long term behavior of a dynamical system and the properties of which have been intensively studied. It is well known that, if X is a compact metric space, then $\omega_f(x)$ is nonempty, closed and strongly f-invariant for any $x \in X$. Bowen [9] gave an intrinsic characterization of abstract ω -limit sets as those having no non-trivial filtrations and used shadowing to study the ω -limit sets of Axiom A diffeomorphisms. Hirsch, Smith, and Zhao [14] showed that the ω -limit set of any precompact orbit is internally chain transitive; the opposite direction is shown for tent maps with periodic critical points by Barwell-Davies-Good [5], and for subshifts of finite type by Barwell-Good-Knight-Raines [6], respectively. Barwell, Good, Oprocha, and Raines [7] showed the equivalence between internal chain transitivity, weak incompressibility, and being an ω -limit set for topologically hyperbolic systems. Good and Meddaugh [11] studied the relations between the collections of all ω -limit sets and those of all internally

²⁰¹⁰ Mathematics Subject Classification. 37E30.

Key words and phrases. ω -limit set, α -limit set, homeomorphism, plane, divergent orbit.

^{*}Corresponding author.

chain transitive sets under various shadowing properties. The notion of ω -limit set is also key in several definitions of attractors and chaos (see e.g. [20, 17]).

For one-dimensional systems, the structures of ω -limit sets have been well characterized. For interval maps $f: I \to I$ and $x \in I$, Blokh, Bruckner, Humke, and Smítal [8] showed that the family of all ω -limit sets of f forms a closed subset of the hyperspace of I endowed with the Hausdorff metric, and Agronsky, Bruckner, Ceder, and Pearson [2] showed that $\omega_f(x)$ is either a finite periodic orbit, or an infinite nowhere-dense set, or the union of periodic nondegenerate subintervals of I. These results were extended to the cases when the phase space is either a circle [22], or a graph [18, 13, 10], or a dendrite [1], or a hereditarily locally connected continua [23], or a quasi-graph [19]. However, when the phase space X has dimension ≥ 2 , only partial results are known. For instance, Agronsky and Ceder [3] showed that every finite union of the nondegenerate Peano continua of the square I^k is an ω -limit set of some continuous map on the square I^k , and Jiménez López and Smítal [15] found the necessary and sufficient conditions for a finite union of Peano continua to be an ω -limit set of a triangular map. The family of all ω -limit sets of the Stein-Ulam spiral map was identified by Barański and Misiurewicz [4, 16].

Let \mathbb{Z} , \mathbb{Z}_+ , and \mathbb{Z}_- be the sets of integers, nonnegative integers, and nonpositive integers, respectively. Let X be a topological space and $f: X \to X$ be a homeomorphism. Then the sets $O(x,f) \equiv \{f^n(x): n \in \mathbb{Z}\}$, $O_+(x,f) \equiv \{f^n(x): n \in \mathbb{Z}_+\}$, and $O_-(x,f) \equiv \{f^{-n}(x): n \in \mathbb{Z}_-\}$ are called the *orbit*, *positive orbit*, and *negative orbit* of x, respectively. For $x,y \in X$, if $y \in \omega_{f^{-1}}(x)$, then we call y an α -limit point of x. We denote by $\alpha_f(x)$ or $\alpha(x,f)$ the set of all α -limit points of x and call it the α -limit set of x.

The aim of the paper is to study the ω -limit sets and α -limit sets of homeomorphisms on the plane \mathbb{R}^2 . This topic has also been discussed by some abtours. For instance, by means of ω -limit sets and α -limit sets, Handel [12] obtained a fixed point theorem for homeomorphisms on the plane. In Section 2, we introduce a class of homeomorphisms on the square J^2 where J = [-1,1], called *normally rising homeomorphisms*. Every normally rising homeomorphism fixes point-wise the top edge and bottom edge of J^2 , and moves up other horizontal line segments. So, a normally rising homeomorphism looks very simple. However, the first main result we obtained shows that the ω -limit set and the α -limit set of a normally rising homeomorphism can be very complex. Actually, any family of

predescribed reasonable sets can always be realised as the limit sets of a normally rising homeomorphism.

For $s \in J$, let $J_s = J \times \{s\}$ and \mathscr{C}_s be the collection of all nonempty connected closed subsets of J_s . A map $\phi: J \to \mathscr{C}_s$ is *increasing* if the abscissae and ordinates of the endpoints of $\phi(r)$ are increasing functions of r and is *endpoint preserving* if $\phi(-1) = (-1, s)$ and $\phi(1) = (1, s)$. If f is a normally rising homeomorphism on J^2 and $s \in J$, then $\omega_{sf}(r) \equiv \omega_f(r, s)$ defines an increasing function ω_{sf} from J to \mathscr{C}_1 . Similarly, we also have an increasing function α_{sf} from J to \mathscr{C}_{-1} .

Let $\mathscr{A} = \mathscr{C}_1$ and $\mathscr{A}' = \mathscr{C}_{-1}$. Then we have

Theorem 1.1. Let \mathbb{N}' and \mathbb{N}'' be two nonempty subsets of \mathbb{N} , and let $\mathscr{V} = \{V_n : n \in \mathbb{N}'\}$ and $\mathscr{W} = \{W_j : j \in \mathbb{N}''\}$ be two families of pairwise disjoint nonempty connected subsets of the semi-open interval (0,1/2]. For each $n \in \mathbb{N}'$ and each $j \in \mathbb{N}''$, let $\mathbf{\omega}_n : J \to \mathscr{A}$ and $\mathbf{\alpha}_j : J \to \mathscr{A}'$ be given increasing and endpoint preserving maps. Then there exists a normally rising homeomorphism $f : J^2 \to J^2$ such that $\mathbf{\omega}_{sf} = \mathbf{\omega}_n$ for any $n \in \mathbb{N}'$ and any $s \in V_n$, and $\mathbf{\alpha}_{tf} = \mathbf{\alpha}_j$ for any $j \in \mathbb{N}''$ and any $t \in W_j$.

Let d be the Euclidean metric on \mathbb{R}^2 . Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be a homeomorphism and $x \in \mathbb{R}^2$. The orbit O(x, f) is said to be *positively divergent* (resp. *negatively divergent*) if $d(f^n(x), (0,0)) \to \infty$ (resp. $d(f^{-n}(x), (0,0)) \to \infty$) as $n \to \infty$. If O(x, f) is both positively divergent and negatively divergent, then we say O(x, f) is *doubly divergent*.

A subset E of \mathbb{R}^2 is a *disk* if it is homeomorphic to the unit closed ball of \mathbb{R}^2 . We use ∂E and $\stackrel{\circ}{E}$ (or, Int(E)) to denote the boundary and interior of E, respectively. By means of Theorem 1.1, we get in Section 3 the following somewhat surprising result.

Theorem 1.2. Let E be a disk in \mathbb{R}^2 . Then there exists a homeomorphism $h: \mathbb{R}^2 \to \mathbb{R}^2$ such that, for any $x \in \partial E$, the orbit O(x,h) is bounded, but for any $y \in \stackrel{\circ}{E}$, the orbit O(y,h) is doubly-divergent.

2. Limit sets of normally rising homeomorphisms on J^2

In this paper, for $r, s \in \mathbb{R}$, we use (r,s) to denote a point in \mathbb{R}^2 . If r < s, we also use (r,s) to denote an open interval in \mathbb{R} . These will not lead to confusion. For

example, if we write $(r,s) \in X$, then (r,s) will be a point; if we write $t \in (r,s)$, then (r,s) will be a set, and hence is an open interval.

We always write J = [-1, 1]. Define the homeomorphism $f_{01}: J \to J$ by , for any $s \in J$,

$$f_{01}(s) = \begin{cases} (s+1)/2, & \text{if } 0 \le s \le 1; \\ s+1/2, & \text{if } -1/2 \le s \le 0; \\ 2s+1, & \text{if } -1 \le s \le -1/2. \end{cases}$$

Define the homeomorphism $f_{02}: J^2 \to J^2$ by, for any $(r,s) \in J^2$,

$$f_{02}(r,s) = (r, f_{01}(s)).$$

For any compact connected manifold M, denote by ∂M the boundary, and by $\stackrel{\circ}{M}$ the interior of M. Specially, we have $\partial J=\{-1,1\}$, and $\stackrel{\circ}{J}=(-1,1)$. Note that ∂J^2 is $\partial (J^2)$, not $(\partial J)^2$.

Definition 2.1. For any $s \in J$, write $J_s = J \times \{s\}$. A homeomorphism $f: J^2 \to J^2$ is said to be *normally rising* if

$$f \mid \partial J^2 = f_{02} \mid \partial J^2$$
, and $f(J_s) = f_{02}(J_s)$ for any $s \in J$.

Define the maps $p, q: \mathbb{R}^2 \to \mathbb{R}$ by p(x) = r and q(x) = s for any $x = (r, s) \in \mathbb{R}^2$, that is, we denote by p(x) and q(x) the abscissa and the ordinate of x, respectively. By the definition, the following lemma is obvious.

Lemma 2.2. Let $f: J^2 \to J^2$ be a normally rising homeomorphism. Then

- (1) $f|_{J-1}\cup J_1$ is the identity map;
- (2) $pf(r_1, s) < pf(r_2, s)$, for any $\{r_1, r_2, s\} \subset J$ with $r_1 < r_2$;
- (3) $\omega_f(x) = \alpha_f(x) = \{x\}$, for any $x \in J \times \partial J$;
- (4) $\omega_f(r,s) = (r,1)$, and $\alpha_f(r,s) = (r,-1)$, for any $(r,s) \in \partial J \times \overset{\circ}{J}$;
- (5) for any $(r,s) \in \overset{\circ}{J}^2 = (-1,1)^2$, $\omega_f(r,s)$ is a nonempty connected closed subset of J_1 , and $\alpha_f(r,s)$ is a nonempty connected closed subset of J_{-1} .

Denote by \mathscr{A} the family of all nonempty connected closed subsets of J_1 , and by \mathscr{A}' the family of all nonempty connected closed subsets of J_{-1} . From Lemma 2.2 we see that

$$\omega_f(x) \in \mathscr{A}$$
, and $\alpha_f(x) \in \mathscr{A}'$, for any $x \in J \times \overset{\circ}{J}$.

Definition 2.3. Let $v_1 = (-1, 1)$, $v_2 = (1, 1)$, $v_3 = (-1, -1)$ and $v_4 = (1, -1)$ be the four vertices of the square J^2 . A map $\omega : J \to \mathscr{A}$ is said to be *increasing* if

$$\min(p \boldsymbol{\omega}(r_1)) \leq \min(p \boldsymbol{\omega}(r_2))$$
 and $\max(p \boldsymbol{\omega}(r_1)) \leq \max(p \boldsymbol{\omega}(r_2))$

for any $\{r_1, r_2\} \in J$ with $r_1 < r_2$. The map ω is said to be *endpoints preserving* if $\omega(-1) = \{v_1\}$ and $\omega(1) = \{v_2\}$.

Similarly , a map $\, lpha \, : J o \mathscr{A}' \,$ is said to be $\,$ increasing $\,$ if

$$\min(p \alpha(r_1)) \leq \min(p \alpha(r_2))$$
 and $\max(p \alpha(r_1)) \leq \max(p \alpha(r_2))$

for any $\{r_1, r_2\} \in J$ with $r_1 < r_2$. The map α is said to be *endpoints preserving* if $\alpha(-1) = \{v_3\}$ and $\alpha(1) = \{v_4\}$.

From Lemma 2.2 we get the following lemma at once.

Lemma 2.4. Let $f: J^2 \to J^2$ be a normally rising homeomorphism. For any given $s \in \stackrel{\circ}{J}$, define maps $\omega_{sf}: J \to \mathscr{A}$ and $\alpha_{sf}: J \to \mathscr{A}'$ by

(2.1)
$$\omega_{sf}(r) = \omega_f(r,s)$$
 and $\alpha_{sf}(r) = \alpha_f(r,s)$, for any $r \in J$.

Then both ω_{sf} and α_{sf} are increasing and endpoints preserving.

Write
$$t_0=0$$
, $I_1=\left(\,0\,,1/2\,
ight], D_1=J\! imes\!\left[\,0\,,1/2\,
ight],$ and $t_n=f_{01}^n(t_0)\,, D_n=f_{02}^{n-1}(D_1)\,,$ for any $n\in\mathbb{Z}$.

Then $D_n = J \times [t_{n-1}, t_n]$, and $D_n \cap D_{n+1} = J_{t_n}$. A main result of this paper is the following theorem, which shows that the ω -limit sets and α -limit sets of homeomorphisms of J^2 may have very complex structure, even if these homeomorphisms are normally rising.

Theorem 2.5. Let \mathbb{N}' and \mathbb{N}'' be two nonempty subsets of \mathbb{N} , and let $\mathscr{V} = \{V_n : n \in \mathbb{N}'\}$ and $\mathscr{W} = \{W_j : j \in \mathbb{N}''\}$ be two families of pairwise disjoint nonempty connected subsets of the semi-open interval I_1 . For each $n \in \mathbb{N}'$ and each $j \in \mathbb{N}''$, let $\mathbf{\omega}_n : J \to \mathscr{A}$ and $\mathbf{\alpha}_j : J \to \mathscr{A}'$ be arbitarily given increasing and endpoint preserving maps. Then there exists a normally rising homeomorphism $f : J^2 \to J^2$ such that $\mathbf{\omega}_{sf} = \mathbf{\omega}_n$ for any $n \in \mathbb{N}'$ and any $s \in V_n$, and $\mathbf{\alpha}_{tf} = \mathbf{\alpha}_j$ for any $j \in \mathbb{N}''$ and any $t \in W_j$, where the definitions of $\mathbf{\omega}_{sf}$ and $\mathbf{\alpha}_{tf}$ are given by (2.1).

Remark 2.6. Before the proof of Theorem 2.5, we make a survey of the differences between ω , ω_f , ω_{sf} and ω_n . Let \mathscr{F} be the family of all normally rising homeomorphisms from J^2 to J^2 . If we consider only the space J^2 and the family \mathscr{F} , then

- (1) ω is a map from $J^2 \times \mathscr{F}$ to the family \mathscr{A} of some subsets of J_1 ;
- (2) ω_f is a map from J^2 to \mathscr{A} , with a given $f \in \mathscr{F}$ as a parameter;
- (3) ω_{sf} is a map from J to \mathscr{A} , with a given $s \in J$ and an $f \in \mathscr{F}$ as parameters;
- (4) ω_n is a map from J to \mathscr{A} , with a given $n \in \mathbb{N}$ as a parameter;
- (5) The definition of ω depends on the definition of ω -limit sets of orbits of maps, and ω_f can be regard as the restriction of ω to $J^2 \times \{f\}$ (really, it should be $\omega_f = \omega \mathbf{i}_f$, that is the composition of an imbedding $\mathbf{i}_f: J^2 \to J^2 \times \mathscr{F}$ and ω). ω_{sf} can be again regard as the restriction of ω_f to J_s (really, it should be $\omega_{sf} = \omega_f \mathbf{i}_s$, that is the composition of an imbedding $\mathbf{i}_s: J \to J^2$ and ω_f). Hence, the definitions of ω , ω_f and ω_{sf} depend on orbits of maps. However, ω_n is only a pure map, of which the definition is directly assigning a set $\omega_n(r) \in \mathscr{A}$ for each $r \in J$, which does not depend on any $f \in \mathscr{F}$.

The differences between α , α_f , α_{sf} and α_n are analogous.

Now we begin the proof. For $k \in \mathbb{N}$, write $\mathbb{N}_k = \{1, 2, \dots, k\}$.

Proof. We may consider only the case that $\mathbb{N}' = \mathbb{N}$ since the case that \mathbb{N}' is a finite subset of \mathbb{N} is similar and is simpler.

If $1/2 \notin \bigcup_{n=1}^{\infty} V_n$, then we can add the one-point-set $\{1/2\}$ to the family \mathscr{V} . If there exist $n \in \mathbb{N}$ and $s \in (0, 1/2)$ such that $[s, 1/2] \subset V_n$, then we can divide V_n into two connected sets $\{1/2\}$ and $V_n - \{1/2\}$. Therefore, we may assume that $\{1/2\} \in \mathscr{V}$, and $V_1 = \{1/2\}$.

For any $n, k \in \mathbb{N}$, write

$$V_{nk} = \begin{cases} V_n, & \text{if } V_n \text{ is a one-point-set} \\ & \text{or a closed interval;} \end{cases}$$

$$V_{nk} = \begin{cases} \left[a, (a+kb)/(k+1) \right], & \text{if } V_n = [a,b) \text{ for some } a < b; \end{cases}$$

$$\left[(ka+b)/(k+1), b \right], & \text{if } V_n = (a,b) \text{ for some } a < b;$$

$$\left[(ka+b)/(k+1), (a+kb)/(k+1) \right], & \text{if } V_n = (a,b) \text{ for some } a < b.$$

Then $V_{n1} \subset V_{n2} \subset V_{n3} \subset \cdots \subset V_n$, $\bigcup_{k=1}^{\infty} V_{nk} = V_n$, and for every fixed $k \in \mathbb{N}$, $\{V_{nk} : n \in \mathbb{N}\}$ is a family of pairwise disjoint nonempty connected closed subsets of I_1 .

For each $n \in \mathbb{N}$, since $\omega_n : J \to \mathscr{A}$ is increasing and endpoint preserving, there exist increasing functions $\xi_{n1} : J \to J$ and $\xi_{n2} : J \to J$ such that, for any $r \in J$, it holds that

(2.2)
$$\xi_{n1}(r) \leq \xi_{n2}(r)$$
, $\omega_n(r) = [\xi_{n1}(r), \xi_{n2}(r)] \times \{1\}$,

and $\xi_{n1}(-1)=\xi_{n2}(-1)=-1$, $\xi_{n1}(1)=\xi_{n2}(1)=1$. For j=1,2, let Y_{nj} be the set of all discontinuous points of ξ_{nj} . Since the set of discontinuous points of an increasing function is countable, there exists a countable dense subset $R=\{r_{-1},r_0,r_1,r_2,r_3,\cdots\}$ of J such that $r_{-1}=-1$, $r_0=1$, and $\bigcup_{n=1}^{\infty}(Y_{n1}\cup Y_{n2})\subset R$.

For each $k \in \mathbb{N}$, write

$$R_k = \{r_{-1}, r_0, r_1, r_2, \cdots, r_k\}, \text{ and } V = \bigcup_{n=1}^{\infty} V_n.$$

Then we have

$$(2.3) \qquad \bigcup_{k=1}^{\infty} \left(R_k \times (V_{1k} \cup V_{2k} \cup \cdots \cup V_{kk}) \right) = R \times V \subset D_1 - J_0.$$

For any $j, m \in \mathbb{Z}$ with $j \leq m$, write

$$D_j^m = \bigcup_{i=j}^m D_i$$
, $D_j^\infty = \bigcup_{i=j}^\infty D_i$, and $D_{-\infty}^m = \bigcup_{i=-\infty}^m D_i$.

Then $D_j^m = J \times [t_{j-1}, t_m]$, $D_j^\infty = J \times [t_{j-1}, 1)$, $D_{-\infty}^m = J \times (-1, t_m]$, and the closure $\overline{D_j^\infty} = D_j^\infty \cup J_1$, $\overline{D_{-\infty}^m} = D_{-\infty}^m \cup J_{-1}$. (See Figure 2.1).

In order to construct the homeomorphism $f: J^2 \to J^2$ mentioned in Theorem 2.5, we

First, put
$$f_0 = f | D_0 = f_{02} | D_0 : D_0 \rightarrow D_1$$
.

Secondly, assume that, for some $k \in \mathbb{N}$, we have defined a homeomorphism

(2.4)
$$f_{2.4} = f | D_0^{k^2 - 1} : D_0^{k^2 - 1} \to D_1^{k^2},$$

which satisfy the following conditions: (For avoiding that there are overmany subscripts, in the already explicit domain $D_0^{k^2-1}$, we will use f to replace $f_{2.4}$, although the entire $f:J_2\to J_2$ has not yet been defined. Similarly here in after.)

(C.1.k)
$$f(J_s) = f_{02}(J_s)$$
, for any $J_s \subset D_0^{k^2-1}$;

(C.2.k)
$$|pf(r,s)-r| < 2/(2m+3)$$
, for any $m \in \mathbb{N}_k$ and any $(r,s) \in D_{(m-1)^2}^{m^2-1}$;

(C.3.k)
$$|pf(r,s)-r| < 2/(2k+5)$$
, for any $(r,s) \in D_{k^2-1} \cap D_{k^2} = J_{t_{k^2-1}}$.

We will extend the homeomorphism $f_{2.4}$ to a homeomorphism

(2.5)
$$f_{2.5} = f \mid D_0^{(k+1)^2 - 1} : D_0^{(k+1)^2 - 1} \to D_1^{(k+1)^2}$$

as follows:

Step 1. For any $n \in \mathbb{N}_k$ and any $(r,s) \in R_k \times V_{nk}$, we define $f(f^{i-1}f^{k^2-1}(r,s))$ = $f^i(f^{k^2-1}(r,s))$ for $i = 1, \dots, 2k+1$ in the natural order by putting the ordinate

$$(2.6) q(f(f^{i-1}f^{k^2-1}(r,s))) = q(f^i(f^{k^2-1}(r,s))) = q(f_{02}^{k^2+i-1}(r,s)),$$

and putting the abscissa

(2.7)
$$p(f(f^{i-1}f^{k^2-1}(r,s))) = p(f^{i}(f^{k^2-1}(r,s)))$$
$$= p(f^{k^2-1}(r,s)) + i(\xi_{n\lambda_k}(r) - p(f^{k^2-1}(r,s)))/(2k+7),$$

where $\lambda_k = 1$ if k is odd, and $\lambda_k = 2$ if k is even. Note that, for any $n \in \mathbb{N}_k$ and any $(r,s), (r',s) \in R_k \times V_{nk}$ with r < r', since ω_n is increasing, from (2.7) we get

$$p(f^{i}(f^{k^{2}-1}(r,s))) < p(f^{i}(f^{k^{2}-1}(r',s)))$$
 for $i = 1, \dots, 2k+1$.

Step 2. In Step 1, for $i=1,\cdots,2k+1$, the set $f^{i-1}(f^{k^2-1}(R_k \times \bigcup_{n=1}^k V_{nk}))$ $\subset D_{k^2+i-1}-J_{t_{k^2+i-2}}$ has been really defined. Thus we can define

(2.8)
$$X_k = \bigcup_{i=1}^{2k+1} f^{i-1} \left(f^{k^2-1} \left(R_k \times \bigcup_{n=1}^k V_{nk} \right) \right).$$

Note that $X_k \subset \bigcup_{i=1}^{2k+1} \left(D_{k^2+i-1} - J_{t_{k^2+i-2}}\right) = D_{k^2}^{k^2+2k} - J_{t_{k^2-1}}$. Write $S_k = q(X_k)$. Then $S_k = \{s \in J: J_s \cap X_k \neq \emptyset\}$. Noting that R_k contains just k+2 points, $R_k \times \bigcup_{n=1}^k V_{nk}$ contains just k(k+2) connected components, and every connected component of $R_k \times \bigcup_{n=1}^k V_{nk}$ is a point or a vertical line segment in $D_1 - J_0$, from (2.6), (2.7), (2.8) and the conditions (C.1.k) we see that X_k with S_k has the following properties:

(A) X_k contains just k(k+2)(2k+1) connected components, S_k contains just k(2k+1) connected components, and every connected component of X_k is a point or an arc, every connected component of S_k is a point or a closed interval;

- (B) For any $s \in S_k$, $J_s \cap X_k$ contains just k+2 points. Specially, since $\{r_{-1}, r_0\} = \{-1, 1\} \subset R_k$, (-1, s) and (1, s) are two points in $J_s \cap X_k$;
- (C) If L is a connected component of S_k and is a closed interval, then $(J \times L) \cap X_k$ is the union of just k+2 arcs, of which each arc is a connected component of X_k . Specially, $\{-1\} \times L$ and $\{1\} \times L$ are two connected components of X_k . Moreover, for any $s \in L$ and any connected component A of X_k in $(J \times L) \cap X_k$, $A \cap (J \times \{s\})$ contains just one point.

In Step 1, we actually have given the definition of $f|X_k$, hence we actually have obtained the map

$$(2.9) f_{2.9} = f | D_0^{k^2 - 1} \cup X_k : D_0^{k^2 - 1} \cup X_k \to D_1^{(k+1)^2}.$$

From (2.6) and (2.7) we see that the map $f_{2.9}$ is a continuous injection. From the properties of X mentioned above we see that the map $f_{2.9}$ can be uniquely extended to a continuous injection

$$(2.10) f_{2.10} = f \mid D_0^{k^2 - 1} \cup (J \times S_k) : D_0^{k^2 - 1} \cup (J \times S_k) \to D_1^{(k+1)^2}$$

such that, for any $s \in S_k$ and any connected component L of $J_s - X_k$, $f \mid L$ is linear. Such an injection $f_{2.10}$ will be called the *level linear extension* of $f_{2.9}$. Obviously, $f_{2.10}$ can also be uniquely extended to a homeomorphism

$$f_{2.5} = f \mid D_0^{(k+1)^2 - 1} : D_0^{(k+1)^2 - 1} \rightarrow D_1^{(k+1)^2}$$

such that, for any $r \in J$ and any connected component L of $(\{r\} \times J) \cap D_{k^2}^{(k+1)^2-1} - (J \times S_k)$, $f \mid L$ is linear. Such a homeomorphism $f_{2.5}$ will be called the *vertical linear extension* of the injection $f_{2.10}$.

Since the level linear extension from $f_{2.9}$ to $f_{2.10}$ is before the vertical linear extension from $f_{2.10}$ to $f_{2.5}$, by (2.6) and (C.1.k) we see that, for the homeomorphism $f_{2.5}$, the condition (C.1.k+1) holds.

Since ω_n is endpoint preserving, in (2.7), if $r \in \partial J$ then $p\left(f^{k^2-1}(r,s)\right) = \xi_{n\lambda_k}(r) = r$. If $r \in \overset{\circ}{J}$, then $p\left(f^{k^2-1}(r,s)\right) \in \overset{\circ}{J}$, which with $\xi_{n\lambda_k}(r) \in J$ implies $|\xi_{n\lambda_k}(r) - p\left(f^{k^2-1}(r,s)\right)| < 2$. Thus, no matter whether $r \in \partial J$ or $r \in \overset{\circ}{J}$, we have

$$\left| \xi_{n\lambda_k}(r) - p\left(f^{k^2-1}(r,s)\right) \right| / (2k+7) < 2/(2k+7) = 2/(2(k+1)+5),$$

which with (2.7) and (2.8) implies

$$(2.11) |pf(x) - p(x)| < 2/(2(k+1)+5), for any x \in X_k.$$

Clearly, after the level linear extension, for any $x \in J \times S_k$, (2.11) still holds. Specially, noting $t_{(k+1)^2-1} \in S_k$, we have $J_{t_{(k+1)^2-1}} \subset J \times S_k$. Thus, for the homeomorphism $f_{2.5}$, the condition (C.3.k+1) holds.

In addition, after the vertical linear extension, for any $x \in D_{k^2}^{(k+1)^2-1}$, by (C.3.k) and (2.11) (for all $x \in J \times S_k$) we obtain

$$|pf(x)-p(x)| < \max \{2/(2k+5), 2/(2(k+1)+5)\} = 2/(2(k+1)+3).$$

This with (C.2.k) implies that, for the homeomorphism (2.5), the condition (C.2.k+1) also holds.

Therefore, by induction, we obtain a homeomorphism

$$f_{2.12} = f \mid D_0^{\infty} : D_0^{\infty} \to D_1^{\infty},$$

which satisfies the conditions (C.1.k), (C.2.k) and (C.3.k) for all $k \in \mathbb{N}$, and from these conditions we can directly extend the homeomorphism $f_{2.12}$ to a homeomorphism

$$(2.13) f_{2.13} = f \mid \overline{D_0^{\infty}} : \overline{D_0^{\infty}} \to \overline{D_1^{\infty}}$$

by putting f(x) = x for any $x \in J_1$.

As mentioned above, in the domain $\overline{D_0^\infty}$, we will replace $f_{2.13}$ by f, even if the definition of the entire $f:J^2\to J^2$ has not yet been given. Specially, for any $x\in\overline{D_0^\infty}$, we can write $\omega(x,f)$ for $\omega(x,f_{2.13})$, since $\omega(x,f)=\omega(x,f_{2.13})$, no matter how $f\mid D_{-\infty}^{-1}:D_{-\infty}^{-1}\to D_{-\infty}^{0}$ is defined.

Claim 2.5.1. for any $n \in \mathbb{N}$ and any given $s \in V_n$, it holds that $\omega_{sf} = \omega_n$.

Proof of Claim 2.5.1. Consider any given $r \in R$. Take an integer $j \ge n$ such that $r \in R_j$ and $s \in V_{nj}$. Then $(r,s) \in R_k \times V_{nk}$ for any integer $k \ge j$. By (2.6) and (2.7) we can easily verify that $\omega_f(r,s) = \left[\xi_{n1}(r), \xi_{n2}(r)\right] \times \{1\}$. This with (2.1) and (2.2) implies $\omega_{sf}(r) = \omega_n(r)$. Thus we have $\omega_{sf}(r) = \omega_n(r)$.

Further, consider any given $t \in J - R$. Since R contains all discontinuous points of ξ_{n1} and ξ_{n2} , it follows that t is a continuous point both of ξ_{n1} and of ξ_{n2} . Since R

is a dense subset of J, $\partial J \subset R$, and since ξ_{n1} and ξ_{n2} are increasing, there exist $t_i \in (t, t+1/i] \cap R$ and $\tau_i \in [t-1/i, t) \cap R$ for each $i \in \mathbb{N}$ such that

$$(2.14) \xi_{n1}(t) - 1/i < \xi_{n1}(\tau_i) \le \xi_{n1}(t) \le \xi_{n1}(t_i) < \xi_{n1}(t) + 1/i$$

and

$$(2.15) \xi_{n2}(t) - 1/i < \xi_{n2}(\tau_i) \le \xi_{n2}(t) \le \xi_{n2}(t_i) < \xi_{n2}(t) + 1/i.$$

On the other hand, from Lemma 2.4 we know that there exist increasing functions $\psi_{n1}: J \to J$ and $\psi_{n2}: J \to J$ such that, for any $r \in J$, it holds that

(2.16)
$$\psi_{n1}(r) \leq \psi_{n2}(r)$$
 and $\omega_{sf}(r) = [\psi_{n1}(r), \psi_{n2}(r)] \times \{1\}$.

Noting $\omega_{sf}|R = \omega_n|R$, from (2.16) and (2.2) we get, for any $i \in \mathbb{N}$,

$$\psi_{n1}(\tau_i) = \xi_{n1}(\tau_i), \quad \psi_{n1}(t_i) = \xi_{n1}(t_i), \quad \psi_{n2}(\tau_i) = \xi_{n2}(\tau_i), \quad \psi_{n2}(t_i) = \xi_{n2}(t_i),$$

which with $\psi_{n1}(\tau_i) \leq \psi_{n1}(t) \leq \psi_{n1}(t_i)$, $\psi_{n2}(\tau_i) \leq \psi_{n2}(t) \leq \psi_{n2}(t_i)$ and (2.14), (2.15) imply $\psi_{n1}(t) = \xi_{n1}(t)$ and $\psi_{n2}(t) = \xi_{n2}(t)$. Thus we have $\omega_{sf}(t) = \omega_n(t)$ and hence $\omega_{sf} = \omega_n$. Claim 2.5.1 is proved.

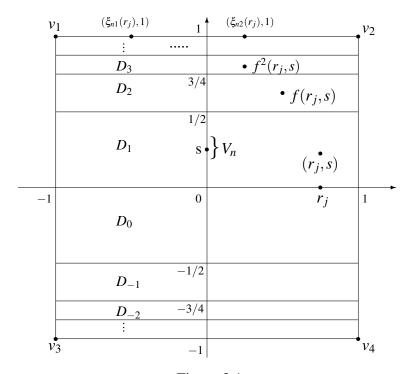


Figure 2.1

Similarly, we can construct a homeomorphism

$$\varphi: \overline{D_{-\infty}^1} \to \overline{D_{-\infty}^0}$$

such that

(1)
$$\varphi \mid D_1 \cup J_{-1} = f_{02}^{-1} \mid D_1 \cup J_{-1} : D_1 \cup J_{-1} \to D_0 \cup J_{-1}$$
;

(2)
$$\varphi(J_s) = f_{02}^{-1}(J_s)$$
, for any $s \in [-1, 1/2]$;

(3)
$$\omega_{\varphi}(r,s) = \alpha_j(r)$$
, for any $r \in J$, any $j \in \mathbb{N}''$, and any $s \in W_j$.

Define $f: J^2 \to J^2$ by

$$f \mid \overline{D_0^{\infty}} = f_{2.13} \; , \qquad \text{and} \qquad f \mid \overline{D_{-\infty}^{-1}} = \varphi^{-1} \mid \overline{D_{-\infty}^{-1}} \; .$$

Then f is a homeomorphism which satisfies the conditions mentioned in Theorem 2.5, and the proof is complete.

3. Bounded and unbounded orbits of homeomorphisms on \mathbb{R}^2

In this section, we will use Theorem 2.5 to construct a homeomorphism on the plane which illustrates an interesting phenomenon: points of bounded orbits can surround points of divergent orbits.

Let $\Psi:J^2\to J^2$ be the *level reflect* and let $\Psi_{\nu}:J^2\to J^2$ be the *vertical reflect* defined by

(3.1)
$$\Psi(r,s) = (-r,s)$$
 and $\Psi_{\nu}(r,s) = (r,-s)$ for any $(r,s) \in J^2$.

Lemma 3.1. Let K = [1/3, 1/2], and let the rectangle $F = [-1/2, 1/2] \times K$. Write $L_1 = \{-1/2\} \times \mathring{K}$, and $L_2 = \partial F - L_1$. Let u_1, \dots, u_6 be six points in $J \times \partial J$ with

$$u_1 = (-1/2, 1), u_2 = (0, 1), u_3 = (1/2, 1), \text{ and } u_{i+3} = \Psi_v(u_i) \text{ for } i \in \mathbb{N}_3$$

(see Fig. 3.1 below) . Then there exists a normally rising homeomorphism $f:J^2\to J^2$ such that

(1)
$$\omega(x,f) = \{u_1\}$$
 and $\alpha(x,f) = \{u_4\}$ for any $x \in L_1$,

(2)
$$\omega(y,f) = \{u_2\}$$
 and $\alpha(y,f) = \{u_5\}$ for any $y \in \stackrel{\circ}{F}$, and

(3)
$$\omega(z,f) = \{u_3\}$$
 and $\alpha(z,f) = \{u_6\}$ for any $z \in L_2$.

Proof. Let $\mathscr{V} = \{V_1, V_2, V_3\}$ with $V_1 = \{1/3\}$, $V_2 = \overset{\circ}{K}$, $V_3 = \{1/2\}$. Let $\{\omega_i : J \to \mathscr{A}\}_{i=1}^3$ and $\{\alpha_i : J \to \mathscr{A}'\}_{i=1}^3$ be endpoint preserving and increasing maps, which satisfy

- (a) $\omega_1(r) = \omega_3(r) = \{u_3\}$, for any $r \in [-1/2, 1/2]$;
- (b) $\omega_2(-1/2) = \{u_1\}$, $\omega_2(1/2) = \{u_3\}$, and $\omega_2(r) = \{u_2\}$ for any $r \in (-1/2, 1/2)$;
 - (c) $\alpha_1(r) = \alpha_3(r) = \{u_6\}$, for any $r \in [-1/2, 1/2]$;
- (d) $\alpha_2(-1/2) = \{u_4\}$, $\alpha_2(1/2) = \{u_6\}$, and $\alpha_2(r) = \{u_5\}$ for any $r \in (-1/2, 1/2)$.

Then by Theorem 2.5, there exists a normally rising homeomorphism $f:J^2\to J^2$ such that $\omega_{sf}=\omega_i$ and $\alpha_{sf}=\alpha_i$ for any $i\in\mathbb{N}_3$ and any $s\in V_i$. Such an f will satisfies the requirements. The proof is complete.

Let X and Y be topological spaces, and $\beta: X \to X$ and $\gamma: Y \to Y$ be continuos maps. If there exists a continuos surjection (resp. a homeomorphism) $\eta: X \to Y$ such that $\eta\beta = \gamma\eta$, then β and γ are said to be *topologically semi-conjugate* (resp. *topologically conjugate*), and η is called a *topological semi-conjugacy* (resp. a *topological conjugacy*) from β to γ . The following lemma is well known, however, for convenience, we still give a short proof.

Lemma 3.2. Let $\beta: X \to X$ and $\gamma: Y \to Y$ with a topological semi-conjugacy $\eta: X \to Y$ be as above. If both X and Y are compact metric spaces, then

- (1) For any $x \in X$, the ω -limit set $\omega(\eta(x), \gamma) = \eta(\omega(x, \beta))$;
- (2) If both β and γ are homeomorphisms, then, for any $x \in X$, the α -limit set $\alpha(\eta(x), \gamma) = \eta(\alpha(x, \beta))$.

Proof. (1) For any given $x \in X$, let $y = \eta(x)$. For any $n \in \mathbb{N}$, write $x_n = \beta^n(x)$, and $y_n = \gamma^n(y)$. If some point $w \in \omega(x, \beta)$, then there is a sequence $n_1 < n_2 < \cdots$ in \mathbb{N} such that $\lim_{i \to \infty} x_{n_i} = w$. By the continuity of η , we have $\lim_{i \to \infty} y_{n_i} = \eta(w)$, which means $\eta(w) \in \omega(y, \gamma)$, and hence $\eta(\omega(x, \beta)) \subset \omega(\eta(x), \gamma)$. Conversely, if some point $u \in \omega(y, \gamma)$, then there is a sequence $n_1 < n_2 < \cdots$ in \mathbb{N} such that $\lim_{i \to \infty} y_{n_i} = u$. Since X is compact, there is a point $w \in X$ and a subsequence $m_1 < m_2 < \cdots$ of the sequence $n_1 < n_2 < \cdots$ such that $\lim_{i \to \infty} x_{m_i} = w$, which means

 $w \in \omega(x,\beta)$ and leads to $\lim_{i\to\infty} y_{m_i} = \eta(w) = u$. Thus we have $\omega(\eta(x),\gamma) \subset \eta(\omega(x,\beta))$.

(2) If both β and γ are homeomorphisms, then η is also a topological semi-conjugacy from β^{-1} to γ^{-1} , and from the conclusion (1) we get

$$\alpha(\eta(x),\gamma) = \omega(\eta(x),\gamma^{-1}) = \eta(\omega(x,\beta^{-1})) = \eta(\alpha(x,\beta)).$$

The following theorem is well known, which is an equivalent form of the Schönflies theorem (see e.g. [21, p.72]).

Theorem 3.3. For any disks E and G in \mathbb{R}^2 , there exists a homeomorphism $\zeta : \mathbb{R}^2 \to \mathbb{R}^2$ such that $\zeta(G) = E$.

Let d be the Euclidean metric on \mathbb{R}^2 . For any homeomorphism $h: \mathbb{R}^2 \to \mathbb{R}^2$ and any $x \in \mathbb{R}^2$, the orbit O(x,h) is said to be *positively bounded* (resp. *negatively bounded*) if $O_+(x,h)$ (resp. $O_-(x,h)$) is bounded. If O(x,h) is not positively bounded (resp. not negatively bounded), then O(x,h) is said to be *positively unbounded* (resp. *negatively unbounded*).

The following lemma is clear.

Lemma 3.4. Let $h: \mathbb{R}^2 \to \mathbb{R}^2$ be a homeomorphism, and $x \in \mathbb{R}^2$. Then

- (1) O(x,h) is positively divergent if and only if $\omega(x,h) = \emptyset$;
- (2) If O(x,h) is positively unbounded, then $\omega(x,h) \neq \emptyset$ if and only if $\omega(x,h)$ is an unbounded set;
 - (3) If $\omega(x,h)$ is a nonempty bounded set, then O(x,h) is positively bounded.

In the negative direction of the orbit O(x,h), we also have similar conclusions.

Theorem 3.5. Let E be a disk in \mathbb{R}^2 . Then there exists a homeomorphism $h: \mathbb{R}^2 \to \mathbb{R}^2$ such that, for any $x \in \partial E$, the orbit O(x,h) is bounded, but for any $y \in \stackrel{\circ}{E}$, the orbit O(y,h) is doubly-divergent.

Proof. Continue to use the all notations in Lemma 3.1. Let v_1, \dots, v_4 and w_1, \dots, w_8 be points in $J \times \partial J$ with (see Fig. 3.1)

$$v_1 = (-1, 1),$$
 $v_2 = (1, 1),$ $v_3 = (-1, -1),$ $v_4 = (1, -1),$ $w_1 = (-3/4, 1),$ $w_2 = (-1/4, 1),$ $w_3 = (1/4, 1),$ $w_4 = (3/4, 1),$

and $w_{i+4} = \Psi_{\nu}(w_i)$ for $i \in \mathbb{N}_4$. Let x_1, \dots, x_6 be points in \mathring{J}^2 with

$$x_1 = (-1/2, 3/4), \qquad x_2 = (0, 3/4), \qquad x_3 = (1/2, 3/4)$$

and $x_{i+3} = \Psi_v(x_i)$ for $i \in \mathbb{N}_3$. For any points y_1, y_2, \dots, y_n in \mathbb{R}^2 with $n \ge 2$, denote by $[y_1, y_2, \dots, y_n]$ or by $[y_1 y_2 \dots y_n]$ the smallest convex set containing y_1, y_2, \dots, y_n . Clearly, there is a continuous map $\xi: J^2 \to J^2$ satisfying the following conditions:

- (a) $\xi | (J \times [-1/2, 1/2]) \cup (\{-1, 0, 1\} \times J)$ is the identity map;
- (b) $\xi(u_3) = x_3$, $\xi(w_3) = \xi(w_4) = u_3$, and $\xi[u_2w_3]$, $\xi[w_3u_3]$, $\xi[u_3w_4]$ and $\xi[w_4v_2]$ are linear;
- (c) $\xi \Psi = \Psi \xi$, and $\xi \Psi_{\nu} = \Psi_{\nu} \xi$, where $\Psi : J^2 \to J^2$ is the level reflect, and $\Psi_{\nu} : J^2 \to J^2$ is the vertical reflect, defined as in (3.1).
 - (d) $\xi \mid \mathring{J}^2$ is an injection, and $\xi(\mathring{J}^2) = \mathring{J}^2 [u_1x_1] [u_3x_3] [u_4x_4] [u_6x_6]$.

Let $f:J^2\to J^2$ be the homeomorphism given in Lemma 3.1 . Define a map $g:J^2\to J^2$ by $g=\xi\,f\,\xi^{-1}$. Note that, if $x\in[u_1x_1]\cup[u_3x_3]\cup[u_4x_4]\cup[u_6x_6]-\{x_1,x_3,x_4,x_6\}$, then $\xi^{-1}(x)$ contains two points, but $\xi\,f\,\xi^{-1}(x)$ still contains only one point. Thus g is well defined. It is easy to see that g is a bijection, and g is continuous. Thus $g:J^2\to J^2$ is an orientation preserving homeomorphism. Moreover, from $g=\xi\,f\,\xi^{-1}$ we obtain $g\xi=\xi\,f$, this means that f and g are topologically semi-conjugate, and ξ is a topological semi-conjugacy from f to g. By Lemmas 3.1 and 3.2 we get

Claim 3.4.1. (1) $\omega(x,g) = \{x_1\}$ and $\alpha(x,g) = \{x_4\}$ for any $x \in L_1$,

- (2) $\omega(y,g) = \{u_2\}$ and $\alpha(y,g) = \{u_5\}$ for any $y \in \stackrel{\circ}{F}$, and
- (3) $\omega(z,g) = \{x_3\}$ and $\alpha(z,g) = \{x_6\}$ for any $z \in L_2$.

Define a homeomorphism $\psi: \mathring{J}^2 \to \mathbb{R}^2$ by $\psi(r,s) = \left(\operatorname{tg}(\pi r/2), \operatorname{tg}(\pi s/2)\right)$, for any $(r,s) \in \mathring{J}^2$. Write $G = \psi(F)$. Then $G = [-1,1] \times [\sqrt{3}/3,1]$ is also a rectangle, and $\psi(L_1) = \{-1\} \times (\sqrt{3}/3,1)$, $\psi(L_2) = \partial G - \psi(L_1)$. By Theorem 3.3, there exists a homeomorphism $\zeta: \mathbb{R}^2 \to \mathbb{R}^2$ such that $\zeta(G) = E$. Let $h = \zeta \psi g \psi^{-1} \zeta^{-1}: \mathbb{R}^2 \to \mathbb{R}^2$. Then h is also an orientation preserving homeomorphism, which is topologically conjugate to g, and $\zeta \psi$ is a topological conjugacy from g to h. By Claim 3.4.1 and Lemma 3.2, we have

Claim 3.4.2. (1) $\omega(x,h) = \{ \zeta \psi(x_1) \}$, and $\alpha(x,h) = \{ \zeta \psi(x_4) \}$, for any $x \in \zeta \psi(L_1)$;

- (2) $\omega(y,h) = \alpha(y,h) = \emptyset$, for any $y \in \zeta \psi(\stackrel{\circ}{F})$;
- (3) $\omega(z,h) = \{\zeta \psi(x_3)\}$, and $\alpha(z,h) = \{\zeta \psi(x_6)\}$, for any $z \in \zeta \psi(L_2)$.

Noting that $\stackrel{\circ}{E} = \zeta \psi(\stackrel{\circ}{F})$ and $\partial E = \zeta \psi(\partial F) = \zeta \psi(L_1) \cup \zeta \psi(L_2)$, from Claim 3.4.2 and Lemma 3.4 we see that the homeomorphism h satisfies the requirement. The proof is complete.

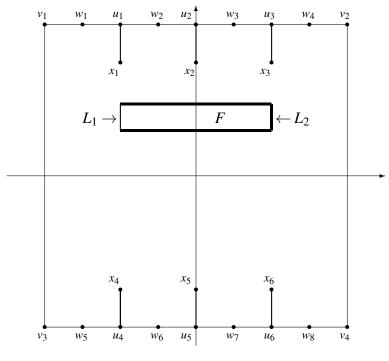


Figure 3.1

Acknowledgements. Jiehua Mai and Fanping Zeng are supported by NNSF of China (Grant No. 12261006) and Project of Guangxi First Class Disciplines of Statistics (No. GJKY-2022-01); Enhui Shi is supported by NNSF of China (Grant No. 12271388); Kesong Yan is supported by NNSF of China (Grant No. 12171175).

REFERENCES

- [1] G. Acosta, P. Eslami, L.G. Oversteegen, *On open maps between dendrites*, Houston J. Math. 33 (2007), 753–770.
- [2] S.J. Agronsky, A.M. Bruckner, J.G. Ceder, T.L. Pearson, *The structure of ω-limit sets for continuous functions*, Real Anal. Exchange 15 (1989/90), 483–510.

- [3] S. J. Agronsky, J. G. Ceder, Each Peano subspace of E^k is an ω -limit set, Real Anal. Exchange 17 (1991/92), 371–378.
- [4] K. Barański, M. Misiurewicz, *Omega-limit sets for the Stein-Ulam spiral map*, Topology Proc. 36 (2010), 145–172.
- [5] A. D. Barwell, G. Davies, C. Good, On the ω -limit sets of tent maps, Fund. Math. 217 (2012), 35–54.
- [6] A. Barwell, C. Good, R. Knight, B. E. Raines, *A characterization of ω-limit sets in shift spaces*, Ergodic Theory Dynam. Systems 30 (2010), 21–31.
- [7] A. D. Barwell, C. Good, P. Oprocha, B. E. Raines, Characterizations of ω -limit sets in topologically hyperbolic systems, Discrete Contin. Dyn. Syst. 33 (2013), 1819–1833.
- [8] A. Blokh, A. M. Bruckner, P. D. Humke, J. Smítal, *The space of ω-limit sets of a continuous map of the interval*, Trans. Amer. Math. Soc. 348 (1996), 1357–1372.
- [9] R. Bowen, ω-limit sets for axiom A diffeomorphisms, J. Differential Equations 18 (1975), 333–339.
- [10] M. Foryś-Krawiec, J. Hantáková, P. Oprocha, *On the structure of α-limit sets of backward trajectories for graph maps*, Discrete Contin. Dyn. Syst. 42 (2022), 1435–1463.
- [11] C. Good, J. Meddaugh, *Orbital shadowing, internal chain transitivity and ω-limit sets*, Ergodic Theory Dynam. Systems 38 (2018), 143–154.
- [12] M. Handel, *A fixed-point theorem for planar homeomorphisms*, Topology 38 (1999), 235–264.
- [13] R. Hric, M. Málek, *Omega limit sets and distributional chaos on graphs*, Topology Appl. 153 (2006), 2469–2475.
- [14] M. W. Hirsch, H. L. Smith, X. Q. Zhao, *Chain transitivity, attractivity, and strong repellors for semidynamical systems*, J. Dynam. Differential Equations 13 (2001), 107–131.
- [15] L. Jiménez López, J. Smítal, ω -limit sets for triangular mappings, Fund. Math. 167 (2001), 1–15.
- [16] B. Kitchens, M. Misiurewicz, *Omega-limit sets for spiral maps*, Discrete Contin. Dyn. Syst. 27 (2010), 787–798.
- [17] S. H. Li, ω -chaos and topological entropy, Trans. Amer. Math. Soc. 339 (1993), 243–249.
- [18] J. H. Mai, S. Shao, Spaces of ω -limit sets of graph maps, Fund. Math. 196 (2007), 91–100.
- [19] J. H. Mai, E. H. Shi, Structures of quasi-graphs and ω-limit sets of quasi-graph maps, Trans. Amer. Math. Soc. 369 (2017), 139–165.
- [20] J. Milnor, *On the concept of attractor*, Comm. Math. Phys. 99 (1985), 177–195.

- [21] E. E. Moise, *Geometric Topology in Dimensions* 2 and 3, Springer-Verlag, New York, 1977.
- [22] D. Pokluda, *Characterization of ω-limit sets of continuous maps of the circle*, Comment. Math. Univ. Carolin. 43 (2002), 575–581.
- [23] V. Špitalský, *Omega-limit sets in hereditarily locally connected continua*, Topology Appl. 155 (2008), 1237–1255.

School of Mathematics and Quantitative Economics, Guangxi University of Finance and Economics, Nanning, Guangxi, 530003, P. R. China & Institute of Mathematics, Shantou University, Shantou, Guangdong, 515063, P. R. China

E-mail address: jiehuamai@163.com; jhmai@stu.edu.cn

SCHOOL OF MATHEMATICS AND SCIENCES, SOOCHOW UNIVERSITY, SUZHOU, JIANGSU 215006, CHINA

E-mail address: ehshi@suda.edu.cn

SCHOOL OF MATHEMATICS AND STATISTICS, HAINAN NORMAL UNIVERSITY, HAIKOU, HAINAN, 571158, P. R. CHINA

E-mail address: ksyan@mail.ustc.edu.cn

SCHOOL OF MATHEMATICS AND QUANTITATIVE ECONOMICS, GUANGXI UNIVERSITY OF FINANCE AND ECONOMICS, NANNING, GUANGXI, 530003, P. R. CHINA

E-mail address: fpzeng@gxu.edu.cn