CAN POINTS OF BOUNDED ORBITS SURROUND POINTS OF
UNBOUNDED ORBITS ?
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ABSTRACT. We show a somewhat surprising result: if E is a disk in the plane R, then
there is a homeomorphism % : R> — R? such that, for every x € JE, the orbit O(x,h) is
bounded, but for every y € Int(E), the orbit O(y, k) is doubly divergent. To prove this, we
define a class of homeomorphisms on the square [—1, 1}2, called normally rising home-
omorphisms, and show that a normally rising homeomorphism can have very complex

o-limit sets and a-limt sets, though the homeomorphism itself looks very simple.

1. INTRODUCTION

By a dynamical system, we mean a pair (X, f), where the phase space X is a metric
space and f : X — X is a continuous map. For x,y € X, if there is a sequence of positive
integers n; < ny < --- such that f"(x) — y then we call y an @-/imit point of x. We de-
note by @wy(x) or @(x, f) the set of all ®-limit points of x and call it the -limit set of x.
The w-limit sets are important in understanding the long term behavior of a dynamical
system and the properties of which have been intensively studied. It is well known that, if
X is a compact metric space, then @s(x) is nonempty, closed and strongly f-invariant for
any x € X. Bowen [9] gave an intrinsic characterization of abstract -limit sets as those
having no non-trivial filtrations and used shadowing to study the ®-limit sets of Axiom
A diffeomorphisms. Hirsch, Smith, and Zhao [14] showed that the @w-limit set of any pre-
compact orbit is internally chain transitive; the opposite direction is shown for tent maps
with periodic critical points by Barwell-Davies-Good [5], and for subshifts of finite type
by Barwell-Good-Knight-Raines [6], respectively. Barwell, Good, Oprocha, and Raines
[7] showed the equivalence between internal chain transitivity, weak incompressibility,
and being an w-limit set for topologically hyperbolic systems. Good and Meddaugh [11]

studied the relations between the collections of all @-limit sets and those of all internally
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chain transitive sets under various shadowing properties. The notion of @-limit set is also

key in several definitions of attractors and chaos (see e.g. [20, 17]).

For one-dimensional systems, the structures of @-limit sets have been well character-
ized. For interval maps f : I — I and x € I, Blokh, Bruckner, Humke, and Smital [8]
showed that the family of all @-limit sets of f forms a closed subset of the hyperspace
of I endowed with the Hausdorff metric, and Agronsky, Bruckner, Ceder, and Pearson [2]
showed that @y (x) is either a finite periodic orbit, or an infinite nowhere-dense set, or the
union of periodic nondegenerate subintervals of /. These results were extended to the cas-
es when the phase space is either a circle [22], or a graph [18, 13, 10], or a dendrite [1], or
a hereditarily locally connected continua [23], or a quasi-graph [19]. However, when the
phase space X has dimension > 2, only partial results are known. For instance, Agronsky
and Ceder [3] showed that every finite union of the nondegenerate Peano continua of the
square ¥ is an @-limit set of some continuous map on the square ¥, and Jiménez Lépez
and Smital [15] found the necessary and sufficient conditions for a finite union of Peano
continua to be an w-limit set of a triangular map. The family of all w-limit sets of the

Stein-Ulam spiral map was identified by Baranski and Misiurewicz [4, 16].

Let Z, Z., and Z_ be the sets of integers, nonnegative integers, and nonpositive in-
tegers, respectively. Let X be a topological space and f : X — X be a homeomorphism.
Then the sets O(x, f) = {f"(x) :n € Z}, O+ (x,f) ={f"(x) :n € Z1}, and O_(x, f) =
{f"(x) : n € Z_} are called the orbit, positive orbit, and negative orbit of x, respectively.
For x,y € X, if y € ®;1(x), then we call y an a-limit point of x. We denote by a(x) or

o(x, f) the set of all a¢-limit points of x and call it the o-limit set of x.

The aim of the paper is to study the @-limit sets and o-limit sets of homeomorphisms
on the plane R%. This topic has also been discussed by some ahtours. For instance, by
means of w-limit sets and a-limit sets, Handel [12] obtained a fixed point theorem for
homeomorphisms on the plane. In Section 2, we introduce a class of homeomorphisms on
the square J> where J = [—1, 1], called normally rising homeomorphisms. Every normally
rising homeomorphism fixes point-wise the top edge and bottom edge of J2, and moves up
other horizontal line segments. So, a normally rising homeomorphism looks very simple.
However, the first main result we obtained shows that the w-limit set and the o-limit

set of a normally rising homeomorphism can be very complex. Actually, any family of
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predescribed reasonable sets can always be realised as the limit sets of a normally rising

homeomorphism.

For s € J, let J; = J x {s} and % be the collection of all nonempty connected closed
subsets of J;. A map ¢ : J — % is increasing if the abscissae and ordinates of the end-
points of ¢ (r) are increasing functions of r and is endpoint preserving if (—1) = (—1,s)
and ¢(1) = (1,s). If f is a normally rising homeomorphism on J? and s € J, then @,z (r) =
o¢(r,s) defines an increasing function @y from J to 47. Similarly, we also have an in-

creasing function o from J to ¢_;.
Let & =€) and &/’ = €_,. Then we have

Theorem 1.1. Let N’ and N" be two nonempty subsets of N, and let ¥V = {V, :
neN'}and W ={W;:jeN"} be two families of pairwise disjoint nonempty
connected subsets of the semi-open interval (0,1/2]. For each n € N’ and each
JjeEN" et W,:J— & and Oj:J — o' be given increasing and endpoint
preserving maps. Then there exists a normally rising homeomorphism f : J> — J?
such that Ogp = @, for any n€ N’ and any s€V,, and O = O for any
jeN" and any t e W;.

Let d be the Euclidean metric on R?. Let f : R? — R? be a homeomorphism and
x € R2. The orbit O(x, f) is said to be positively divergent (resp. negatively divergent)
if d(f"(x),(0,0)) — oo (resp. d(f"(x),(0,0)) — o) as n — oo. If O(x, f) is both positive-
ly divergent and negatively divergent, then we say O(x, f) is doubly divergent.

A subset E of R? is a disk if it is homeomorphic to the unit closed ball of R?. We use
JE and E (or, Int(E)) to denote the boundary and interior of E, respectively. By means of

Theorem 1.1, we get in Section 3 the following somewhat surprising result.

Theorem 1.2. Let E be a disk in R?. Then there exists a homeomorphism h:R? — R?
such that, for any x € JE, the orbit O(x,h) is bounded, but for any Yy 61%, the
orbit O(y,h) is doubly -divergent.

2. LIMIT SETS OF NORMALLY RISING HOMEOMORPHISMS ON J?

In this paper, for r,s € R, we use (r,s) to denote a point in R2. If r<s, we

also use (r,s) to denote an open interval in R. These will not lead to confusion. For
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example, if we write (r,s) € X, then (r,s) will be a point; if we write 7 € (r,s), then

(r,s) will be a set, and hence is an open interval .

We always write J = [—1,1]. Define the homeomorphism fy; : J — J by, for

any s € J,
(s+1)/2, if 0<s<1;
for(s) = ¢ s+1/2, if —1/2<s5<0;
2s+1, if —1<s<-—1/2.

Define the homeomorphism fy, : J> — J? by, forany (r,s) € J?,

foz(l’,s) = (r,f01(s)).

For any compact connected manifold M, denote by dM the boundary, and by ]\2 the
interior of M. Specially, we have dJ = {—1,1}, and J= (—1,1). Note that 9J?
is d(J?), not (dJ)2.

Definition 2.1. Forany s € J, write J; = J x {s} . A homeomorphism f:J? — J?

is said to be normally rising if
f191% = foo| 97, and  f(Jy) = foo(Js) for any s € J.

Define the maps p, g : R? — R by p(x) = r and ¢(x) = s forany x = (r,s) € R?,
that is, we denote by p(x) and g(x) the abscissa and the ordinate of x, respectively .

By the definition, the following lemma is obvious.

Lemma 2.2. Let f:J?> — J? be a normally rising homeomorphism. Then
(1) f|J-1UJy is the identity map ;
(2) pf(ri,s) < pf(ra,s), forany {ri,ra,s} CJ with rj <ry;
(3) or(x) = ar(x) = {x}, forany x € Jx dJ;
(4) or(r,s)=(r,1), and as(r,s)=(r,—1), forany (r,s) € dJx JO
(5) forany (rs) € J2= (=1,1)%, @y(r,s) is a nonempty connected closed subset

of J1, and o (r,s) is a nonempty connected closed subset of J_j .

Denote by &7 the family of all nonempty connected closed subsets of J; , and by <7’
the family of all nonempty connected closed subsets of J_; . From Lemma 2.2 we see
that

of(x) € &, and as(x) € &, for any xeJIxJ .
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Definition 2.3. Let v = (—1,1), vo=(1,1), v3=(—1,—1) and vs=(1,—1) be

the four vertices of the square J>. Amap @ :J — </ issaid to be increasing if
min (p @(r1)) < min(p @(r2)) and max(p @(r1)) < max(p O(r2))

for any {r;,rn} €J with r; <r,. The map @ is said to be endpoints preserving if
O(—1)={v;} and O(1) = {»,}.

Similarly, amap & :J — &/ is said to be increasing if
min(p O(r1)) < min(p Q(r;)) and max(p Q(r1)) < max(p 0(r2))

for any {r;,n} €J with ri <r,. The map O is said to be endpoints preserving if
o(—1)={v3} and 0(1)={v4}.

From Lemma 2.2 we get the following lemma at once.

Lemma 2.4. Let f : J> — J? be a normally rising homeomorphism. For any given

SGJO, define maps @ :J — o/ and Osp :J — o' by
(2.1) ¢ (r) = wp(r,s) and  o(r) = ar(rs), for any relJ.
Then both @y and Olsp are increasing and endpoints preserving .
Write f0=0, I, =(0,1/2], Di=Jx[0,1/2], and
th = fo1(to), Dp= fg‘z_l(Dl), for any n € Z.

Then D, = J X [ty—1,t;,] , and D, N D,y; = J;, . A main result of this paper is
the following theorem, which shows that the ®-limit sets and «-limit sets of homeo-
morphisms of J2 may have very complex structure, even if these homeomorphisms are

normally rising.

Theorem 2.5. Let N’ and N" be two nonempty subsets of N, and let ¥V = {V, :
neN'}and W ={W;:jeN"} be two families of pairwise disjoint nonempty
connected subsets of the semi-open interval I, . For each n € N' and each jeN",
let W,:J— o and O :J — " be arbitarily given increasing and endpoint
preserving maps. Then there exists a normally rising homeomorphism f : J> — J?
such that OWgp = @, for any ne€ N’ and any s€V,, and O = O for any
j€N" and any t € Wj, where the definitions of sr and O s are given by (2.1).
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Remark 2.6. Before the proof of Theorem 2.5, we make a survey of the differences
between ® , @y, Wy and @, . Let .# be the family of all normally rising home-
omorphisms from J? to J2. If we consider only the space J? and the family .% ,
then

(1) ® is amap from J 2% .Z tothe family 7 of some subsets of J; ;

(2) wy is a map from J 2 to &/ ,withagiven f € .# asa parameter ;

(3) @Wyr isamap from J to o/, witha given s€J andan f € .# as parameters ;

(4) @, isamap from J to </, with agiven n € N as a parameter ;

(5) The definition of @ depends on the definition of ®-limit sets of orbits of maps,
and @y can be regard as the restriction of ® to J 2x {f} (really, it should be Wr = Wiy,
that is the composition of an imbedding iy :J 25 J?x.Z and ). O r can be again
regard as the restriction of @y to Jy (really, it should be @ = wriy , that is the
composition of an imbedding iy :J —J 2 and oy ) . Hence, the definitions of @ , @y
and ;s depend on orbits of maps . However, @, is only a pure map , of which the
definition is directly assigning a set @,(r) € &/ foreach r € J, which does not depend
onany f€ .7 .

The differences between a , o, Oy and O, are analogous.

Now we begin the proof. For k € N, write Ny = {1,2,--- ,k}.

Proof. We may consider only the case that N’ = N since the case that N’ is a finite

subset of N is similar and is simpler.

If 1/2 ¢ U,~;V., then we can add the one-point-set {1/2} to the family » . If
there exist n € N and s € (0,1/2) such that [s,1/2] C V,, then we can divide

V, into two connected sets {1/2} and V, — {1/2} . Therefore, we may assume that
{1/2} € ¥, and V| = {1/2}.

Forany n, k € N, write

.
Vi, if V,, is a one-point-set

or a closed interval ;
Vi = < [a,(a+kb)/(k+1)], if V, = [a,b) forsome a < b;

[(ka+Db)/(k+1),b], if V, = (a,b] forsome a < b;

| [(ka+Db)/(k+1), (a+kb)/(k+1)], if V, = (a,b) forsome a < b.
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Then V,y C Vo C Vs C - C Vi, Ug=1Vak = Vi, and for every fixed k € N,
{Vux : n € N} is a family of pairwise disjoint nonempty connected closed subsets of

I .

For each n € N, since @, : J — &/ is increasing and endpoint preserving , there
exist increasing functions &,; : J — J and &,p : J — J such that, forany reJ, it
holds that

(2-2) énl(r) < énZ(r) ’ (A)n(l’> = [énl(r) ’ ‘SnZ(r)} X {1}7

and E,1(—1) =&pn(—1)=—-1, &(1) =&p(1) =1. For j =1,2, let ¥,; bethe
set of all discontinuous points of &, ;. Since the set of discontinuous points of an increas-
ing function is countable , there exists a countable dense subset R = {r_y,rg,ri,r2, 13, -

of J suchthat r_y=—1, rp=1, and U,_; (Y1 UYn) CR.

Foreach k € N, write
Rk: {r_17r07r1’r2’...’rk}, and V:U;ozlvn

Then we have

(2.3) U (Rex (VigU Vg U---UVig)) = RxV C Dy —Jy .
k=1

For any j,m € Z with j < m, write

D" = Umn,Di, D

. =) m — m

J

Then DY = J X [tj_1,tm], DY = Jx [tj-1,1), D"y = Jx(—1,tu], and the

closure D_;" = DYUJi, D", = D", UJ_| . (SeeFigure 2.1).
In order to construct the homeomorphism f : J 2 _5 J2 mentioned in Theorem 2.5, we
First, put fo = f|Do = foo|Do : Do — Dy .
Secondly , assume that, for some k € N, we have defined a homeomorphism
_ =1 . pk—1 K2

which satisfy the following conditions : ( For avoiding that there are overmany subscripts,
in the already explicit domain D(])‘L I we will use f toreplace f> 4 , although the entire

f:J2 — J> has not yet been defined . Similarly here in after. )

(C.1k) f(J) = foa(Jy), for any J, C DE';



8 J. Mai, E. Shi, K. Yan, and F. Zeng

2_
(C2k) | pf(rs)—r| <2/(2m+3), forany m € Ny andany (rs) € D"~

(C3.k) |[pf(rs)—r| <2/(2k+5), forany (rs) € D N Dp =, .

We will extend the homeomorphism f> 4 to a homeomorphism

k+1)2—1 (k+1)2—1 (k+1)2

2.5) frs = f|D§ . D} — D

as follows :

Step 1. Forany n € Ny and any (r,s) € R X V., we define f(fi_]sz_l (r,s))
= f"(sz_1 (r,s)) for i =1,---,2k+1 in the natural order by putting the ordinate

26)  q(f(F N r9)) = a(F () = a(FET (),

and putting the abscissa
27) p(F(FTFT9)) = p (£ 09))
= p(f719) + i (r) = p(F57 N (n9))) / (2k+7),

where Ay =1 if k isodd, and A, = 2 if k is even . Note that, forany n € N; and

any (r,s), (r',s) € Ry X Vi with r <r’, since @, is increasing, from (2.7) we get

p(fi(sz_](r,s))) < P(fi(sz_l(r',s))) fori=1,---,2k+1.

Step2. InStep 1, for i =1,---,2k+1, the set fi~' (X1 (R x UK_ Vi)

C Dy2yiy = Ji,,, , hasbeenreally defined. Thus we can define

2

2k+1

k
2.8) X = U FE (Rex U Vi)

i=1 n=1

Note that X; C U (Dpyiy — Jrn. ) = D’,j“k — Ji, . Write S, = q(X;) .

K2ti-2
Then Sy = {se€J: JNXy # 0} . Noting that R, contains just k-+2 points,
Ry x U ,’f _1Vux contains just k (k+2) connected components, and every connected
component of R; x | ,’l‘ _1Vuk 1s a point or a vertical line segment in Dy — Jy, from
(2.6), (2.7), (2.8) and the conditions (C.1.k) we see that X; with S; has the following

properties :

(A) X contains just k(k+2)(2k+1) connected components, S; contains just
k(2k+1) connected components , and every connected component of X is a point or

an arc, every connected component of S is a point or a closed interval ;
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(B) Forany s € Sy, JyN X contains just k+2 points. Specially, since {r_y,ro} =
{—=1,1} C Ry, (—1,s) and (1,s) are two pointsin J; N X ;

(C) If L is aconnected component of S; and is a closed interval , then (J x L) N X;
is the union of just k42 arcs, of which each arc is a connected component of X .
Specially, {—1} xL and {1} x L are two connected components of X; . Moreover,
for any s € L and any connected component A of X in (JXL)NX,, AN (Jx{s})

contains just one point.

In Step 1, we actually have given the definition of f|Xj , hence we actually have

obtained the map

2 2 k+1)2
(2.9) fro = fIDETUX - DE'ux, —» DY

From (2.6) and (2.7) we see that the map f>9 is a continuous injection. From the
properties of X mentioned above we see that the map f>9 can be uniquely extended to a

continuous injection

2
(2.10) fo = f|D(I)<2_1 U (JxSk) : D(f” U (I xS) — Dl(kH)

such that, forany s € Sy and any connected component L of J; — X;, f|L islinear.
Such an injection f> 19 will be called the level linear extension of f>9 . Obviously,

/f>.10 can also be uniquely extended to a homeomorphism

k+1)2—1 (k+1)2—1 (k+1)2

fos = £1D§ : Dy — D,

2
such that, for any r € J and any connected component L of ({r} xJ ) N Dlgfl) e

(JxS8;), f|L islinear. Such a homeomorphism f, s will be called the vertical linear

extension of the injection f> () .

Since the level linear extension from f> ¢ to f> 1o is before the vertical linear extension
from f> 19 to fo5, by (2.6) and (C.1.k) we see that, for the homeomorphism f> 5, the
condition (C.1.k+ 1) holds.

Since @, is endpoint preserving , in (2.7), if r € dJ then p(sz_l(r,s)) =
Eun(r) = 1. If reJ . then p(szfl(r,s)) €], which with &, (r) € J implies

|§n;Lk(r) —p (szfl(r,s))| < 2. Thus, no matter whether r € dJ or r €J, we have

1Ean () = P (fX71r9) |/ (2k+7) < 2/(k+7) = 2/ (2(k+1)+5),
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which with (2.7) and (2.8) implies
(2.11) Ipf(x)—px)| < 2/(2(k+1)+5), for any x € X; .

Clearly, after the level linear extension, for any x € J xS, , (2.11) still holds .

Specially, noting Ter1)2—1 € Sy, we have J; C J x S;. Thus, for the homeo-

(k+1)2—1

morphism f> 5, the condition (C.3.k+ 1) holds.

(k+1)%—

In addition , after the vertical linear extension , for any x € D, , by (C.3.k)

and (2.11) (forall x € J xS, ) we obtain
|pf(x)—p(x)| < max{2/(2k+5),2/(2(k+1)+5)} = 2/(2(k+1)+3).

This with (C.2.k) implies that, for the homeomorphism (2.5), the condition (C.2.k+
1) also holds .

Therefore , by induction, we obtain a homeomorphism
(212) f2.12 = f|D8o : Dao — DTO,

which satisfies the conditions (C.1.k), (C.2.k) and (C.3.k) forall k € N, and from
these conditions we can directly extend the homeomorphism f> 12 to a homeomorphism

(2.13) fz = fIDg : Dy — Dy
by putting f(x) = x forany x € J; .

As mentioned above, in the domain D_S" , we will replace f>13 by f, even if the
definition of the entire f:J% — J? has not yet been given. Specially, for any x € DS,
we can write @(x, f) for @(x,f>13), since @(x,f) = o(x,f>13), no matter how
fIDpzL : b=l — DO is defined.

(o)

Claim 2.5.1. for any n € N and any given s €V, , itholds that @, = @, .

Proof of Claim 2.5.1. Consider any given r € R . Take an integer j > n such that
re€Rj and s € V,;. Then (r,s) € Ry x Vy forany integer k > j. By (2.6) and (2.7)
we can easily verify that @¢(r,s) = [&,1(r), En(r)] x {1} . This with (2.1) and (2.2)
implies W¢(r) = @,(r). Thus we have W r|R = ®,|R.

Further, consider any given ¢ € J—R . Since R contains all discontinuous points of

& and &, , it follows that ¢ is a continuous point both of &,; and of &,, . Since R
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is a dense subset of J, dJ C R, andsince &, and &, are increasing , there exist

tie(t,t+1/i]NR and 7 € [r—1/i,1)NR foreach i € N such that
(2.14) Ent(1) = 1/i < Eu(T) < Eui(r) < Eu(t) < Emlt)+1/i
and

(2.15) Ena(t) —1/i < &ma(7) < Ema(t) < (i) < Em(t)+1/i.

On the other hand , from Lemma 2.4 we know that there exist increasing functions

W, o J — J and y,p : J — J suchthat, for any r € J, itholds that
(2.16) Y (r) < Win(r)  and  @u(r) = (W (r), Wina(r)] x {1}
Noting @,r|R = @,|R, from (2.16) and (2.2) we get, for any i€ N,

V(%) = S (%), Wui(t) = Em(t), Wna(m) = E2(), Wa(t)) = Ena(ti)

which with Wnl(fi) < Wnl(l) < Wnl(li) > WnZ(Ti) < WnZ(t) < WnZ(li) and (2.14),
(2.15) imply yy,i(t) = Eni(r) and yuo(r) = &,2(r) . Thus we have Wy (1) = W, (1)
and hence @,y = @, . Claim 2.5.1 is proved.

Vi (5n|(r_/'.)=1) 1 (é,,z‘(r,-),l) ™
D; . fz(r,,s)
3/4
D o
2 f(rj,s)
1/2
Dl S‘}V}’l .
(rj,5)
-1 0 i
Dy
—1/2
D /
D_2 73/4
V3 1 V4

Figure 2.1
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Similarly , we can construct a homeomorphism
2.17) ¢: D' — DI
such that

() @ |D1UJ_y = f,' |DiUJ_y : DyUJ_1 — DyUJ_ ;

2) o) = fo_zl(Js), forany s € [—1,1/2] ;

(3) wy(r,s) = 0j(r), forany reJ, any j € N”, and any s € W; .
Define f:J?>— J? by

FIDS = frs, and f!D_:L:(p*WD_:L.

Then f is a homeomorphism which satisfies the conditions mentioned in Theorem 2.5 ,

and the proof is complete. U

3. BOUNDED AND UNBOUNDED ORBITS OF HOMEOMORPHISMS ON R?

In this section, we will use Theorem 2.5 to construct a homeomorphism on the plane
which illustrates an interesting phenomenon: points of bounded orbits can surround points

of divergent orbits.

Let W:J? — J? be the level reflect and let W, :J? — J? be the vertical reflect
defined by

(3.1) W(r,s) = (—rs) and W.(rs) = (r,—s) for any (r,s) € J>.

Lemma 3.1. Ler K = [1/3,1/2], and let the rectangle F = [—1/2,1/2] x K . Write
Ly ={-1/2}x K, and Ly = OF — L, . Let up, -+, ug be six points in J x 9dJ
with

up=(—1/2,1), up=(0,1), u3=(1/2,1), and u;13=Y,(u;) for i € N3

( see Fig. 3.1 below) . Then there exists a normally rising homeomorphism f:J* — J?
such that

(1) o, f)={u} and a(x,f) = {us} forany xe€Ly,

(2) o(.f) = {u} and aly.f) = {us} forany yeF, and

(3) o(z,f) ={us} and o(z,f) = {ug} forany z€L,.
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Proof. Let ¥ = {Vi ,V»,V3} with Vi = {1/3}, Va=K, V3={1/2}. Let {®;:J —
o/} and {Q;:J— o'} | be endpoint preserving and increasing maps, which
satisfy

(a) @i(r) = W3(r) = {us}, forany r € [—1/2,1/2];

(b) Wy(—1/2) = {u1}, @02(1/2) = {u3}, and @Wy(r) = {up} forany r €
(—1/2,1/2);

() O(r) = Q3(r) = {ug}, forany r € [—1/2,1/2];

(d) 0(—1/2) = {wa}, 0(1/2) = {ue¢}, and 0(r) = {us} forany r €
(—=1/2,1/2).
Then by Theorem 2.5, there exists a normally rising homeomorphism f :J? — J? such

that Wy = @; and Oy = O; forany i € N3 and any s €V;. Suchan f will satisfies

the requirements. The proof is complete . 0

Let X and Y be topological spaces, and f:X — X and y:Y — Y be continuos
maps . If there exists a continuos surjection (resp. a homeomorphism) 11 : X — Y such
that M3 = yn, then B and 7y are said to be topologically semi-conjugate (resp.
topologically conjugate) , and mn is called a topological semi-conjugacy ( resp. a topo-
logical conjugacy) from B to 7y . The following lemma is well known, however, for

convenience, we still give a short proof .

Lemma 3.2. Let B:X — X and y:Y — Y with a topological semi-conjugacy M :

X — Y beasabove . If both X and Y are compact metric spaces , then
(1) For any x € X, the o-limitset ®(n(x),y) = n(o(x,p));

(2) If both B and y are homeomorphisms, then, for any x € X, the o-limit set

a(n(x),y) = n(a(x, p)).

Proof. (1) Forany given x € X, let y = n(x). Forany n € N, write x, = B"(x),
and y, = y"(y) . If some point w € w(x, B), then there is a sequence n; <np <--- in
N such that lim; ;. x,, = w. By the continuity of 1, we have lim; ;. y, = N(w),

which means 1(w) € @(y,y), and hence n(@(x,B)) C ®(n(x),y) . Conversely,

if some point u € w(y,y), then there is a sequence n; <np < --- in N such that
lim; ;e y,, = u . Since X is compact, thereis a point w € X and a subsequence

my <mp < --- of the sequence n; <np <--- suchthat lim;_,. x,, = w, which means
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w € o(x, ) and leads to lim; e ym, = N(w) = u. Thus we have @(n(x),y) C
n(o(x,B)) .

(2) If both B and 7y are homeomorphisms, then 7 is also a topological semi-

conjugacy from B! to y~!, and from the conclusion (1) we get
a(n),7) = o(nkx),r") = n(ek, ") = n(alx,B)) . O

The following theorem is well known, which is an equivalent form of the Schonflies

theorem ( see e.g. [21, p.72]).

Theorem 3.3. For any disks E and G in R?, there exists a homeomorphism { :R? —
R? such that {(G) = E.

Let d be the Euclidean metric on R?. For any homeomorphism /: R? — R? and any
x € R2, the orbit O(x,h) is said to be positively bounded (resp. negatively bounded) if
O4(x,h) (resp. O_(x,h)) is bounded. If O(x,h) is not positively bounded (resp. not
negatively bounded ), then O(x,h) issaidto be positively unbounded (resp. negatively
unbounded) .

The following lemma is clear .

Lemma 3.4. Let h:R? — R? be a homeomorphism, and x € R?. Then

(1) O(x,h) is positively divergent if and only if ®(x,h) = 0;

(2) If O(x,h) is positively unbounded, then (x,h) # O if and only if ®(x,h)
is an unbounded set ;

(3) If o(x,h) is a nonempty bounded set, then O(x,h) is positively bounded.
In the negative direction of the orbit O(x,h), we also have similar conclusions .

Theorem 3.5. Let E be a disk in R?. Then there exists a homeomorphism h:R?* — R?
such that, for any x € dE, the orbit O(x,h) is bounded, but for any y EE), the
orbit O(y,h) is doubly -divergent.

Proof. Continue to use the all notations in Lemma 3.1. Let v{,---,v4 and wy,---, wg

be points in J x dJ with (see Fig.3.1)
vl:(—171>7 sz(l,l), V3:<_1>_1)7 V4:(1,—1),

wi = (=3/4,1), wa=(=1/4,1), w3=(1/4,1), ws=(3/4,1),
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and w;yq =¥, (w;) for i € Ny. Let x;, -+, x¢ be points in Jc>2 with
xp = (-1/2,3/4), x =(0,3/4), x3=(1/2,3/4)
and x;,3 =¥, (x;) for i € N3.Forany points y;, y2, ---, y, in R? with n >
2, denote by [yi,y2, ++,yn] orby [yiy2:--y,]| the smallest convex set containing

Y1,¥2, -, ¥a . Clearly, thereisacontinuous map &:J? — J? satisfying the following

conditions :
(@ &|(Ix[-1/2,1/2]) U ({—1,0,1} x J) is the identity map ;

() &(uz) =x3, &(ws) =G&(ws) =u3, and §|[uaws], &l[wsuz], &|[uzws]

and &|[wqvp]| arelinear ;

() EW =WE, and EW, = W, &, where W:J2 — J? is the level reflect, and

¥, :J2 — J? is the vertical reflect, defined as in (3.1).

@ & J? isan injection, and 5(]02) —J2 - [urxy | — [uzx3] — [uaxa] — [uexe| -

Let f:J%— J?> be the homeomorphism given in Lemma 3.1 . Define a map g :
J2 = J* by g = EfE!. Note that, if x € [ux;] U [uzx3] U [uaxs] U [ugxg] —
{x1,x3,%4,%x¢} , then £ ~!(x) contains two points, but £ f& ~!(x) still contains only
one point. Thus g is well defined. It is easy to see that g is a bijection, and g is
continuous . Thus g:J? — J? is an orientation preserving homeomorphism . Moreover,
from g = & fE ! weobtain g€ = & f, this means that f and g are topologically
semi-conjugate, and & is a topological semi-conjugacy from f to g. By Lemmas 3.1

and 3.2 we get

Claim34.1. (1) o(x,g) = {x1} and o(x,g) = {x4} forany xeL;,
) o(yg) ={w} and alyg)={us} forany yer, and
(3) o(z,g) = {x3} and o(z,g) = {x¢} forany zelL,.

Define a homeomorphism y :J2 — R? by w(rs) = (tg(mr/2) , tg(7ms/2)),
for any (r,s) €J?. Write G = w(F) . Then G = [—1,1]x[v/3/3,1] is also a
rectangle, and w(L{) = {—1} x (v/3/3,1), w(L;) = G — w(L;) . By Theorem
3.3, there exists a homeomorphism ¢ :R? — R? such that {(G) = E . Let h =
Cygy ¢! :R? = R?. Then A is also an orientation preserving homeomorphism,
which is topologically conjugate to g, and {y is a topological conjugacy from g to

h. By Claim 3.4.1 and Lemma 3.2, we have
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Claim 3.4.2. (1) o(x,h) = {Sy(x1)}, and o(x,h) = {{y(x4)}, for any x €

Cy(Ly);
(2) o(y,h) = a(y,h) = 0, forany y € Cy(F);
for any z € Cy(L,) .

3) o(z,h) = {Cw(x3)}, and a(z,h) = {Cw(xe)},
Noting that E= Cl//(]*s) and JE = Cy(dF) = Sy (L)) U Cy(L,), from Claim

3.4.2 and Lemma 3.4 we see that the homeomorphism # satisfies the requirement. The
U

proof is complete .

vooww W uy | wi_owy Wi v
X1 X2 X3
L — F — Ly
X4 X5 X6
V3 Wes M4 W=6 us We7 u6 Weg V4
Figure 3.1
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