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ABSTRACT. In this paper, we mainly consider the nonexistences of minimal distal ac-
tions by some groups on compact manifolds, particularly on surfaces. Suppose that X is a
compact manifold and Γ is a finitely generated group acting on X . We show in the follow-
ing cases that Γ cannot act on X minimally and distally. (1) X is connected and the first
Čech cohomology group Ȟ1(X) with integer coefficients is nontrivial and Γ is amenable;
(2) X is the 2-sphere S2 or the real projective plane RP2 and Γ contains no nonabelian
free subgroup; (3) X is a closed surface and Γ is a lattice of SL(n,R)(n ≥ 3).

1. INTRODUCTION

The notion of distality was introduced by Hilbert for better understanding equicontinu-
ity ([8]). The study of minimal distal systems culminates in the beautiful structure theorem
of H. Furstenberg ([10]), which describes completely the relations between distality and
equicontinuity for minimal systems. Considering minimal distal actions on compact man-
ifolds, Rees proved a sharpening of Furstenberg’s structure theorem ([21]). An interesting
question is that given a discrete group G and a compact metric space X , can G act on X
distally and minimally? Clearly, the answer to this question depends on the topology of
the phase space and the algebraic structure of the acting group.

Due to the fact that every nontrivial minimal distal system admits a nontrivial equicon-
tinuous factor, there are groups that have no nontrivial minimal equicontinuous actions
and hence have no nontrivial minimal distal actions, e.g. minimally almost periodic groups
that are groups having trivial Bohr compactifications. In [1], the author shows that an al-
most connected locally compact second countable group admits a faithfully distal action if
and only if it is polynomially growing (some partial results are also obtained in [18]) and
also gives some necessary conditions for a countable discrete group admitting faithfully
distal actions. These indicate that there are obstructions from groups on distal actions.

On the other hand, the topology of phase spaces also can prevent groups acting distally
and minimally. A remarkable result due to Furstenberg says that if a nontrivial space X
admits a distal minimal action by a locally compact abelian group, then X cannot be sim-
ply connected (see [10, Theorem 11.1] or [2, Chapter 7-Theorem 16]). Bronšteı̌n proved
that if X is a connected and locally connected finitely dimensional compact metric space
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which admits a distal minimal group action, then X must be a manifold and the funda-
mental group π1(X) is virtually nilpotent ([7]); this implies that if X is a closed surface
except for the sphere S2, the real projective plane RP2, the torus T2, and the Klein bottle
K2, then it admits no distal minimal actions by any group.

In this paper, we are aiming at further study on some obstructions on minimal distal
actions, particular in actions on surfaces.

Our first result is to consider minimal distal action by amenable groups which is an
analogy of Furtenberg’s result that simply connectivity of the phase space is an obstruction
for a locally compact abelian group acting minimally and distally.

Theorem 1.1. Let X be a non-degenerate compact connected metric space. If X admits a
minimal distal action by a finitely generated amenable group, then the first Čech cohomol-
ogy group Ȟ1(X) with integer coefficients is nontrivial. In particular, if X is homotopically
equivalent to a CW complex, then the fundamental group of X cannot be finite.

Then the following corollary is immediate.

Corollary 1.2. The n-sphere Sn (n ≥ 2) does not admit any minimal distal actions by
finitely generated amenable groups.

If we focus on S2 or RP2 we can show more. Recall that a group G is a small group if
it contains no free nonabelian subgroups.

Theorem 1.3. Let X be the 2-sphere S2 or the real projective plane RP2. If Γ is a finitely
generated group acting minimally and distally on X, then Γ contains a nonabelian free
subgroup. Equivalently, X admits no distal minimal actions by a small group.

Here we remark that the class of small groups is strictly larger than that of amenable
groups, so this theorem is not implied by Theorem 1.1 and it is easy to construct distal
minimal actions on S2 and RP2 by Z ∗Z. However, the theorem does not hold when X
is either the torus T2 or the Klein bottle K2, since they admit distal minimal actions by
abelian groups (see section 4.1).

Compared to amenable groups, groups having Kazhdan’s property (T) lie in the other
extreme end. In [27, Corollary 1.2], Zimmer shows that every regular distal ergodic ac-
tion on compact manifolds under groups having Kazhdan’s property (T) is isometric
and it is conjectured that whether it also holds for distal action. Here regular distality
is stronger than distality (see [27]). However, we will show this is the case for surfaces
(2-dimensional compact connected manifolds). Considering the distal minimal actions of
some higher rank lattices on closed surfaces, we obtain the following result.

Theorem 1.4. Let Γ be a lattice in SL(n,R) with n ≥ 3 and X be a closed surface. Then
Γ has no distal minimal action on X.
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Here we remark that this theorem does not hold for the case n = 2, since the free
nonabelian group Z ∗Z is a lattice in SL(2,R) and we have mentioned that Z ∗Z can
act on S2 minimally and distally. In addition, there do exist isometric minimal actions of
some lattices in SL(n,R) on compact manifolds with dimension > 2 (see e.g. [17] or [7,
p.59]). We should notice that there are nondistal minimal actions of higher rank lattices
on surfaces, such as the action of SL(3,Z) on RP2 induced by the linear action on R3.

Now we summarize all the known results around the existence of distal minimal group
actions on closed surfaces in the following tabular.

Closed surfaces Existence Non-existence
S2,RP2 Z∗Z small groups, SL(n,Z)(n ≥ 3)
T2,K2 Z SL(n,Z)(n ≥ 3)
Others Any groups

Organization of the paper. Section 2 is devoted to give some necessary notions and
classical results used in the sequel. Then we prove Theorem 1.1, Theorem 1.3 and Theo-
rem 1.4 in section 3, 4 and 5 repectively.

2. PRELIMINARIES

In this section, we will recall some basic notions and introduce some results which will
be used in the proof of the main theorems.

2.1. Distal actions. Let X be a topological space and let Homeo(X) be the homeomor-
phism group of X . Suppose G is a topological group. A group homomorphism φ : G →
Homeo(X) is called a continuous action of G on X if (x,g) 7→ φ(g)(x) is continuous; we
use the symbol (X ,G,φ) to denote this action. The action φ is said to be faithful if it is
injective. For brevity, we usually use gx or g(x) instead of φ(g)(x) and use (X ,G) instead
of (X ,G,φ) if no confusion occurs.

For x ∈ X , the orbit of x is the set Gx ≡ {gx : g ∈ G}; K ⊂ X is called G invariant
if Gx ∈ K for every x ∈ X ; (X ,G,φ) is called minimal if Gx is dense in X for every
x ∈ X , which is equivalent to that G has no proper closed invariant set; is called transitive
if Gx = X for some x ∈ X . If K ⊂ X is G invariant, then we naturally get a restriction
action φ |K of G on X ; if K is closed and nonempty, and the restriction action (K,G,φ |K)

is minimal, then we call K a minimal set of X or of the action. It is well known that
(X ,G,φ) always has a minimal set when X is a compact metric space.

Suppose (X ,G,φ) and (Y,G,ψ) are two actions. If there is a continuous surjection
f : X → Y such that f (φ(g)x) = ψ(g) f (x) for every g ∈ G and every x ∈ X , then we say
f is a homomorphism and (Y,G,ψ) is a factor of (X ,G,φ). If Y is a single point, then we
call (Y,G,ψ) a trivial factor of (X ,G,φ).

Assume further that X is a compact metric space with metric d. The action (X ,G,φ) is
called equicontinuous if for every ε > 0 there is a δ > 0 such that d(gx,gy) < ε for any
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g ∈ G whenever d(x,y)< δ ; is called distal, if for every x ̸= y ∈ X , infg∈G d(gx,gy)> 0.
Clearly, equicontinuity implies distality.

The following results can be found in [2].

Theorem 2.1 ([2], p.98). Let (X ,G,φ) and (Y,G,ψ) be distal minimal actions, and let
f : X → Y be a homomorphism. Then f is open.

Theorem 2.2 ([2], p.104). Let (X ,G,φ) be a distal minimal action. If X is not a single
point, then (X ,G,φ) has a nontrivial maximal equicontinuous factor.

Theorem 2.3 ([2], p.52). Let (X ,G,φ) be equicontinuous. Then the closure φ(G) in
Homeo(X) with respect to the uniform convergence topology is a compact topological
group.

Theorem 2.4. [7, Theorem 3.17.12] Let π : (X ,G,φ) → (Y,G,ψ) be a homomorphism
between minimal systems. Suppose that π is open and G is finitely generated. If (Y,G,ψ) is
equicontinuous and there is some y∈Y such that π−1(y) is of 0-dimension. Then (X ,G,φ)

is also equicontinuous.

Theorem 2.5. [21] Let (X ,G,φ) and (Y,G,ψ) be distal minimal actions, and let f : X →Y
be a homomorphism. Then for every y ∈ Y , we have dim(Y )+dim( f−1(y)) = dim(X).

We remark here that Rees also showed in [22] that fibers are the same for distal ex-
tension under some mild conditions. Let (X ,G) be a quasi-separable minimal system and
π : (X ,G)→ (Y,G) be a distal extension. If Y is arcwise connected, then for any y1,y2 ∈Y ,
the fibers π−1(y1) and π−1(y2) are homeomorphic. In addition, she also constructed a
counterexample there to show that the arcwise connectedness of Y cannot be dropped.

Theorem 2.6. [7, Theorem 3.17.10] Let (X ,G,φ) be a distal minimal system with X being
a connected and locally connected compact metric space of finite dimension, then X is a
manifold.

It is well known that a compact connected Hausdorff space is locally connected metriz-
able if and only if it is a continuous image of the closed interval [0,1] ([19, Theorem
8.18]). Thus the following result is direct.

Lemma 2.7. Let X be a compact metric space which is connected and locally connected
and Y be a Hausdorff space. If there is a continuous surjection f : X → Y , then Y is
connected, locally connected and metrizable.

Now combining the above results, we can have the following proposition.

Proposition 2.8. Let G be a finitely generated group and X be a connected compact mani-
fold with dim(X)≥ 2. If G acts on X minimally and distally, then the maximal equicontin-
uous factor Y is also a connected manifold with 1 ≤ dim(Y )≤ dim(X). Further, if (X ,G)

is not equicontinuous then dim(Y )< dim(X).
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Proof. First by Theorem 2.2, (X ,G) has a nontrivial maximal equicontinuous factor (Y,G).
Then it follows from Theorem 2.4 and Theorem 2.5 that dim(Y )≤ dim(X) and dim(Y )<
dim(X) whenever (X ,G) is not equicontinuous. By Lemma 2.7, Y is connected and lo-
cally connected. Then Theorem 2.6 implies that Y is also a connected compact manifold,
since dim(Y )≤ dim(X). Clearly, dim(Y )≥ 1 since Y is nontrivial and connected. □

2.2. Compact Lie groups. Let G be a connected Lie group and let Lie(G) be the Lie
algebra of G. Recall that G is said to be solvable if its Lie algebra is solvable, that is
there is a sequence of ideals Lie(G) = ℑ0 ▷ℑ1 ▷ · · ·▷ℑn = {0} such that ℑi/ℑi+1 is
commutative for each i; this is equivalent to the existence of a sequence of closed normal
subgroups G = G0 ▷G1 ▷ · · ·▷Gn = 0 such that Gi/Gi+1 is commutative for each i. If
the Lie algebra Lie(G) of G contains no nontrivial solvable ideal, then G is said to be
semisimple.

The following theorems are classical in the theory of Lie groups.

Theorem 2.9 ([12], Corollary 4.25 ). Let G be a compact Lie group and let ℑ be the
Lie algebra of G. Then ℑ = Z(ℑ)

⊕
[ℑ,ℑ], where Z(ℑ) is the center of ℑ and [ℑ,ℑ] is

semisimple.

Theorem 2.10 ([12], Corollary 1.103). Let G be a compact connected commutative Lie
group of dimension n. Then G is isomorphic to the n-torus Tn.

Corollary 2.11. Let G be a connected compact Lie group. If G is solvable, then G is
isomorphic to the n-torus Tn.

Proof. Let ℑ be the Lie algebra of G and let Z(ℑ) be its center. If [ℑ,ℑ] ̸= 0, then ℑ/Z(ℑ)
is semisimple by Theorem 2.14. However, this is impossible since ℑ/Z(ℑ) is also solv-
able. So [ℑ,ℑ] = 0 and hence ℑ is commutative. This implies G is commutative, since G
is connected. It follows from Theorem 2.10 that G is isomorphic to the n-torus Tn, where
n is the dimension of G. □

Theorem 2.12 ([12], Corollary 4.22). Let G be a compact Lie group. The G is isomorphic
to a closed linear group.

Theorem 2.13 ([16], p.99). Let G be a compact group and let U be an open neighborhood
of the identity e. Then U contains a normal subgroup H of G such that G/H is isomorphic
to a Lie group.

Theorem 2.14. [12, Corollary 4.25] Let G be a compact Lie group and let g be the Lie
algebra of G. Then g= Z(g)

⊕
[g,g], where Z(g) is the center of g and [g,g] is semisimple.

Theorem 2.15. [24, Theorem 3.50] Let G be a connected Lie group with Lie algebra g.
Then the center of G is a closed Lie subgroup of G with Lie algebra the center of g.
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2.3. Compact transformation group. Let (X ,G,φ) be a group action and H be a closed
subgroup of G. Then we use X/H to denote the orbit space under the H action, which is
endowed with the quotient space topology. We use G/H to denote the coset space with
the quotient topology, which is also the orbit space obtained by the left translation action
on G by H. If H is a normal closed subgroup of G, then G/H is a topological group.

The following theorems can be seen in [16]. We only state them in some special cases
which are enough for our uses.

Theorem 2.16 ([16], p.65). Let X be a compact metric space and let (X ,G) be an action
of group G on X. Suppose G is compact. Then for every x ∈ X, G/Gx is homeomorphic to
Gx, where Gx = {g ∈ G : gx = x}.

Theorem 2.17 ([16], p.61). Let X be a compact metric space and let (X ,G) be an action
of group G on X. Suppose G is compact and H is a closed normal subgroup of G. Then
G/H can act on X/H by letting gH ·H(x) = H(gx) for gH ∈ G/H and H(x) ∈ X/H.

2.4. Čech cohomology group. First we will recall an equivalent definition of the first
Čech cohomology group with integer coefficients. Let S1 be the unit circle in the complex
plane. For any paracompact normal space X , let C(X ,S1) be the set of all continuous func-
tions from X to S1, and let I(X ,S1) be the set of all f ∈C(X ,S1) which is inessential (i.e.
f is homotopoic to a constant map from X to S1). Then under pointwise complex multi-
plication, C(X ,S1) becomes a commutative group and I(X ,S1) is a subgroup of C(X ,S1).
Define the first cohomology group Ȟ1(X) of X by Ȟ1(X) =C(X ,S1)/I(X ,S1).

Suppose f : X → Y is continuous. Then f naturally induced a group homomorphism
f ∗ : H1(Y )→ H1(X) by letting f ∗([g]) = [g◦ f ] for any [g] ∈ H1(Y ). The map f is called
confluent if for any subcontinuum B of Y and any component A of f−1(B), we have
f (A) = B.

The following theorem is due to Lelek (see [14] or [19, Theorem 13.45]).

Theorem 2.18. Let f : X → Y be a confluent map from continuum X onto continuum Y .
Then f ∗ : H1(Y )→ H1(X) is injective.

The following theorem is due to Whyburn (see [25] or [19, Theorem 13.14]).

Theorem 2.19. Every open map of one compact metric space onto another is confluent.

From Theorem 2.18 and Theorem 2.19, we immediately get the following corollary.

Corollary 2.20. Let f : X → Y be an open map from continuum X onto continuum Y .
Then f ∗ : H1(Y )→ H1(X) is injective.

3. AMENABLE GROUP ACTIONS

This section is devoted to prove Theorem 1.1.
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3.1. Amenable groups. Amenability was first introduced by von Neumann. Recall that
a countable group G is amenable if there is a sequence of finite sets Fi (i = 1,2,3, . . . )
such that lim

i→∞

|gFi△Fi|
|Fi| = 0 for every g ∈ G, where |Fi| is the number of elements in Fi; the

sequence (Fi) is called a Følner sequence. For an abstract group G, if there is a sequence
of normal subgroups G = G0▷G1▷ · · ·▷Gn = {e} such that Gi/Gi+1 is commutative for
each i, then G is called solvable.

Now we list some well known facts about amenable groups and solvable groups. One
may consult [20] for the details.

Theorem 3.1. (1) Solvable groups and finite groups are amenable; (2) any group con-
taining a free noncommutative subgroup cannot be amenable; (3) every subgroup of an
amenable group (resp. solvable group) is amenable (resp. solvable); (4) every quotient
group of an amenable group (resp. solvable group) is amenable (resp. solvable).

Lemma 3.2. Let G be a Lie group and Γ be a dense subgroup of G. If Γ is solvable as an
abstract group, then G is a solvable Lie group.

Proof. Since Γ is solvable, we have a sequence of normal subgroups Γi such that Γ= Γ0▷

Γ1▷ · · ·▷Γn = {e} such that Γi/Γi+1 is commutative for each i. Let Gi = Γi. Then we get
a decreasing sequence of closed normal subgroups G = G0 ▷G1 ▷ · · ·▷Gn = {e}. Since
Γi+1 ⊂ Gi+1 and Γi/Γi+1 is commutative, Γi/(Γi ∩Gi+1) is commutative. So Gi/Gi+1 is
commutative by the continuity of group operations. Then G is solvable. □

Theorem 3.3. [4, Theorem 1.3] Let G be a connected non-solvable real Lie group of
dimension d. Then any finitely generated dense subgroup of G contains a dense free sub-
group of rank 2d.

The following remarkable result is known as Tits Alternative (see [23]).

Theorem 3.4. Let Γ be a finitely generated subgroup of a linear group. Then either Γ

contains a free nonabelian subgroup or Γ has a solvable subgroup with finite index.

3.2. Proof of Theorem 1.1.

Lemma 3.5. Let G be a compact Lie group and G0 be the connected component of the
unit e ∈ G. Suppose G acts transitively on a connected compact manifold M. Then the G0

action on M is also transitive.

Proof. It is well known that G0 is a clopen normal subgroup of G. Since G is compact, G0

has finite index in G. Let G = g1G0 ∪ ...∪ gkG0 be the coset decomposition, where k =

[G : G0]. Fix an x0 ∈ M. Then ∪k
i=1giG0x0 = Gx0 = M, since the G action is transitive. So,

G0x0 contains a nonempty open set, which implies that G0x0 is open by the homogeneous
of the orbit G0x0. Thus G0x0 is clopen in M. Hence G0x0 = M by the connectedness of
M. □
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Proof of Theorem 1.1. Let X be a connected compact metric space and let Γ be a finitely
generated amenable group. Suppose X admits a minimal distal action φ : Γ →Homeo(X).
We will show that the first Čech cohomology group Ȟ1(X) with integer coefficients is
nontrivial.

By Theorem 2.2, there is a nontrivial equicontinuous factor (Y,Γ,ψ) of (X ,Γ,φ), which
is still minimal and connected. Set H = ψ(Γ). From Theorem 2.3, H is a compact sub-
group of Homeo(Y ) with respect to the uniform convergence topology. Applying Theorem
2.13, we can take a small normal subgroup H ′ of H such that H/H ′ is a Lie group and
H ′y is a proper subset of Y for every y ∈ Y .

Then we get an equicontinuous action ψ ′ of the Lie group H/H ′ on the quotient
space Y/H ′ by Theorem 2.17; in particular, Y/H ′ is homeomorphic to the quotient space
(H/H ′)/Ker(ψ ′) by Theorem 2.16, which is a connected compact manifold of dimen-
sion ≥ 1 (see [24, Theorem 3.58]). Then H/H ′ is a compact Lie group of dimension ≥ 1.
From Theorem 3.1-(4), ψ(Γ)H ′ is an amenable subgroup of H/H ′ (as abstract groups);
from Theorem 2.12, Theorem 3.4, and Theorem 3.1-(2), we see that ψ(Γ)H ′ has a solv-
able subgroup Γ′ of finite index. Then Γ′ is a closed subgroup of H/H ′ with finite index,
and hence contains the connected component (H/H ′)0 of H/H ′. Since Γ′ is solvable as
a abstract group, Γ′ is a solvable Lie group by Lemma 3.2. So, (H/H ′)0 is a connected
compact solvable Lie group, and hence is isomorphic to Tn with n ≥ 1, by Corollary 2.11.

It follows from Lemma 3.5 that the (H/H ′)0 action on Y/H ′ is still transitive. So, Y/H ′

is homeomorphic to (H/H ′)0/(Ker(ψ ′)∩ (H/H ′)0). Since (H/H ′)0 is isomorphic to Tn,
Y/H ′ is homeomorphic to Tm for some 1 ≤ m ≤ n. Thus the first Čech cohomology group
Ȟ1(Y/H ′)∼= Ȟ1(Tm)∼=Zm ̸= 0. Noting that (Y/H ′,Γ) is a minimal equicontinuous factor
of (X ,Γ), we denote by π the factor map between them. Then π is open and surjective by
Theorem 2.1. Applying Theorem 2.20, we have π∗ : Ȟ1(Y/H ′)→ Ȟ1(X) is injective; in
particular, Ȟ1(X) ̸= 0.

Since the first Čech cohomology group coincides with the first singular cohomology
group H1(X ,Z) when X is homotopically equivalent to a CW complex. By the universal
coefficient theorem, we have

0 → Ext(H0(X),Z)→ H1(X ,Z)→ Hom(H1(X ,Z),Z)→ 0.

Since H0(X) is always free, Ext(H0(X),Z) = 0. Thus H1(X ,Z) ∼= Hom(H1(X ,Z),Z).
Hence H1(X ,Z) is not finite. Finally, it follows from H1(X ,Z) = π1(X)/[π1(X),π1(X)]

that π1(X) is not finite. □

Note that an ingredient used in the proof of Theorem 1.1 is the existence of a non-trivial
equicontinuous factor. It is well known that a minimal system with an invariant probability
measure is weakly mixing if and only if it has no non-trivial equicontinuous factor(see [2,
p. 132]). Thus if Γ is a finitely generated amenable group and X is continuum with Ȟ1(X)
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is nontrivial then every minimal action by Γ on X is weakly mixing since Γ preserves a
probability measure on X .

4. SMALL GROUP ACTIONS ON S2 OR RP2

Lemma 4.1. Let X be the 2-sphere S2 or the real projective plane RP2. Let Γ be a finitely
generated group and φ : Γ → Homeo(X) be a distal minimal action on X. Then (X ,Γ,φ)

is equicontinuous.

Proof. Assume to the contrary that φ is not equicontinuous. From Theorem 2.2, we let
(Y,Γ,ψ) be the maximal equicontinuous factor of (X ,Γ,φ) with a factor map π . By
Proposition 2.8, we conclude that Y is a connected compact manifold of 1-dimension.
Further, since Γ acts on Y minimally, Y is the circle S1. Since π is open and Ȟ1(S1) is
the integer group, from Theorem 2.1 and Theorem 2.20, we have that Ȟ1(X) is infinite,
which is a contradiction. □

Lemma 4.2. Let G be a connected compact Lie group acting faithfully and transitively
on a closed surface X with finite fundamental group. Then G is semisimple.

Proof. Assume to the contrary that G is not semisimple. Then by Theorem 2.14, Theorem
2.10, and Theorem 2.15, the connected component Z(G)0 of the center of G is isomorphic
to some torus Tn with n > 0. Set K = Z(G)0. For x ∈ X , let Stab(x) := {k ∈ K : kx = x}
be the stabilizer of x in K. Then from Theorem 2.16, Kx is homeomorphic to K/Stab(x)
which is also a torus. Thus Kx is either a point or a circle. If for every x ∈ X , Kx is a circle,
then similar to the arguments in Lemma 4.1, X/K is a circle and the Čech cohomology
group Ȟ1(X) with integer coefficients is infinite. This is a contradiction. So, there is some
x0 ∈ X with Kx0 = x0. Since K is in the center of G, we have Kgx0 = gKx0 = gx0 for
every g ∈ G. Noting that Gx0 = X , the action of K on X is trivial, which contradicts the
faithfulness of the action. So, G is semisimple. □

Proof of Theorem 1.3. Let φ : Γ → Homeo(X) be the distal minimal action. From Lemma
4.1, we see that the (X ,Γ,φ) is equicontinuous. Let K be the closure of φ(Γ) with respect
to the uniform topology on Homeo(X). It follows from Theorem 2.3 that K is a compact
metric group acting transitively on X . By Theorem 2.13, we can take a closed normal
subgroup N of K such that K/N is a Lie group and X/N is not a single point. Then it
canonically induces an action of K on X/N and the natural quotient map X → X/N is a
equicontinuous extension. Thus it follows from Theorem 2.5, Theorem 2.6, and Theorem
2.7 that X/N is a manifold of dimension ≤ 2. Similar to the arguments in Lemma 4.1, we
have dim(X/N) = 2.

Set p : S2 → X be a covering and q : X → X/N be the quotient map. Let π : Y → X/N
be the universal covering and q̃p : S2 → Y be the lifting of qp. Since π is open and p and
q are local homeomorphisms, we see that q̃p is open. Thus q̃p(S2) is open and closed in
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Y . Thus Y = q̃p(S2) by the connectedness. So Y is compact (homeomorphic to S2). Thus
π is a finite cover and then the fundamental group of X/N is finite.

Now consider the natural action of K/N on X/N (see Theorem 2.17). Since the con-
nected component (K/N)0 has finite index in K/N, the (K/N)0 action on X/N is still
transitive and φ(Γ)N ∩ (K/N)0 is dense in (K/N)0. Applying Lemma 4.2, we see that
a quotient group of (K/N)0 is semisimple. This together with Theorem 3.3 implies the
existence of free nonabelian subgroups in Γ. □

4.1. Minimal distal homeomorphism on the Klein bottle. In this subsection, we show
that there is a minimal distal homeomorphism on the Klein bottle.

Let the torus T2 be R2/Z2. Then there is a Z2 action on T2 by

h(x,y) = (x+
1
2
,1− y) mod Z2,

where h is the nonidentity element in Z2. It is easy to see that this action is free and
properly discontinuous and the quotient space T2/Z2 is the Klein bottle K2.

Now for a homeomorphism T of T2, if it commutes with h, i.e., T h = hT , then it
induces a homeomorphism T̃ of K2.

Let α be an irrational number and φ : T→ T be a continuous mapping. Further, define
a homeomorphism T : T2 → T2 by

T (x,y) = (x+α,y+φ(x)) mod Z2.

The system (T2,T ) is a skew product system and it is well known that this system is
distal, since it is a group extension of a minimal equicontinuous system. The following
theorem characterizes the minimality of such skew product system.

Theorem 4.3. [2, Chapter 5, Theorem 10] The above defined system (T2,T ) is minimal
if and only if for each k ∈ Z \ {0}, there is no continuous function f : T → T such that
f (x+α) = f (x)+ kφ(x) for each x ∈ T.

Now we take φ : T → T to be φ(x) = 1− |1− 2x| for x ∈ [0,1). By comparing the
Fourier coefficients, there is no continuous function f : T → T such that f (x + α) =

f (x)+ kφ(x) for each k ∈ Z \ {0}. Thus the system (T2,T ) is minimal by Theorem 4.3.
It is straightforward to calculate that for each (x,y) ∈ T2, T h(x,y) = (x+α + 1

2 ,1− y+
φ(x+ 1

2)) and hT (x,y) = (x+α + 1
2 ,1− y−φ(x)). Note that

φ(x+
1
2
) =

{
1−2x, x ∈ [0,1/2)
2x−1, x ∈ [1/2,1)

and −φ(x) =

{
−2x, x ∈ [0,1/2)
2x−2, x ∈ [1/2,1)

.

Therefore, it follows that T commutes with h and thus the induced homeomorphism T̃ on
K2 is also minimal and distal.
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5. HIGHER RANK LATTICE ACTIONS

5.1. Higher rank lattices. A subgroup Γ of a Lie group G is called a lattice in G if Γ

is discrete and G/Γ has finite volume. If Γ is a lattice of G and G/Γ is compact, then Γ

is called a cocompact lattice of G. It is well known that SL(n,R) with n ≥ 3 always has
cocompact and non-cocompact lattices; SL(n,Z) is a non-cocompact lattice of SL(n,R).
One may consult [26] for the examples of cocompact lattices in SL(n,R).

The following theorem can be deduced from [15, Theorem VII.6.5] and [26, Corollary
16.4.2] (see also [7, Theorem 12.4]).

Theorem 5.1. Let Γ be a lattice in SL(n,R) with n ≥ 3 and let H be a compact Lie group.
Suppose φ : Γ → H is a group homomorphism. If φ(Γ) is infinite, then dim(H)≥ n2 −1.

5.2. Dimension of compact subgroups of Homeo(S ). It is well known that if M is
a connected compact Riemannian manifold of dimension n and I(M) is the isometric
transformation group of M, then I(M) is a compact Lie group of dimensional at most
n(n+1)/2 (see e.g. [13]). In general, for a compact group G of Homeo(M), it no longer
preserves the Riemannian metric on M. However, G can still preserve a compatible metric
on M. In fact, let µ be the Haar measure of G and ρ be any compatible metric on M. Then
the metric d on M defined by d(x,y) =

∫
g∈G ρ(gx,gy)dµ(g) is G invariant.

The following theorem is [11, Proposition 4.1].

Theorem 5.2. Up to conjugacy, the rotation group SO(2,R) is the only maximal compact
subgroup of Homeo+(S1).

Theorem 5.3. Let G be a compact Lie group acting faithfully and transitively on a closed
surface S . Then dim(G)≤ 3.

Proof. Fix a G invariant metric d on S and fix a point p ∈ S . Since G acts on S transi-
tively, G/Gp is homeomorphic to S by Theorem 2.16, where Gp is the closed subgroup
of G which fix p. Note that Gp is also a Lie subgroup of G, since a closed subgroup of a
Lie group is a Lie group (see [24, Theorem 3.42]). Thus dim(G) = dim(Gp)+dim(S ) =

dim(Gp)+ 2. We need only to show that dim(Gp) ≤ 1. Let F be the connected compo-
nent of e in Gp. Then F is a closed and hence a Lie subgroup of Gp which has the same
dimension as that of Gp. If F = e, then dim(Gp) = dim(F) = 0 ≤ 1 and we are done. So,
we assume that F is a nontrivial connected Lie group in the sequel.

Take a closed disk D in S such that the interior Int(D) contains p, and take an ε > 0
such that the closed ball Bd(p,ε) ⊂ Int(D). Since F preserves the metric d and leaves p
invariant, Bd(p,ε) is F invariant. Let D1 be a closed disk such that p ∈ Int(D1) ⊂ D1 ⊂
Bd(p,ε). Let K =∪g∈FgD1. Then K is an F invariant locally connected continuum by 2.7,
which is the closure of the connected open set ∪g∈Fg(Int(D1)). Similar to the argument
in [5, corollary 4.7], we then get an F invariant closed disk D3 ⊂ Int(D) with p ∈ Int(D3).
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Then the boundary ∂D3 is an F invariant simple closed curve; in fact, ∂D3 is the boundary
of the (unique) unbounded component of Int(D)\K.

Define a map R : F →Homeo(∂D3) by letting R(g) = g|∂D3. If there is some g ̸= e∈ F
such that g fixes every point of ∂D3, then g fixes every point of S (see the proof of [5,
Lemma 4.8]), which contradicts the assumption that the action of G on S is faithful.
Therefore, R is a continuous isomorphism between F and R(F); particularly, R(F) is a
compact connected subgroup of Homeo(∂D3). Then we get dim(F) = dim(R(F)) = 1 by
Theorem 5.2.

All together, we have dim(F)≤ 1 and hence dim(G)≤ 3. □

5.3. Proof of Theorem 1.4. First we show that every discrete group having Kazhdan’s
property (T) acts on a closed surface minimally and distally must be equicontinuous.

Proposition 5.4. Let Γ be a discrete group having Kazhdan’s property (T) and X be a
closed surface. If Γ acts on X minimally and distally, then it is equicontinuous.

Proof. To the contrary, suppose that (X ,Γ) is not equicontinuous. Then, by Theorem 2.2,
(X ,Γ) has a maximally equicontinuous factor (Y,Γ) and it follows from Proposition 2.8
that Y is a connected compact manifold of 1-dimension. Since Γ acts on Y minimally, Y is
the circle S1. Then by Theorem 2.3, it will extend to an action by compact group. Further,
it follows from Theorem 5.2 that there is a group homomorphism φ : Γ → SO(2,R). It is
well known that the abelianisationa of a discrete group having Kazhdan’s property (T) is
finite(see [3, Corollary 1.3.6]). Thus the homomorphism φ has finite image since SO(2,R)
is abelian. In other words, (S1,Γ) factors through a finite group action. But this cannot be
a minimal action. This contradiction shows that Γ acts on X equicontinuously. □

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Assume to the contrary that there is a distal minimal action φ : Γ→
Homeo(X). Recall that Γ has Kazhdan’s property (T) (see [3, §1.4]). Thus it follows from
Proposition 5.4 that Γ acts on X equicontinuously. Set H = φ(Γ). From Theorem 2.3, H is
a compact subgroup of Homeo(X). Applying Theorem 2.13, we can take a small normal
subgroup H ′ of H such that H/H ′ is a Lie group and H ′x is a proper subset of K for every
x ∈ X . Then we get a continuous transitive action ψ of the Lie group H/H ′ on the quotient
space X/H ′ by Theorem 2.17; in particular, X/H ′ is a connected compact manifold of
dimension ≥ 1. Since (X/H ′,Γ,ψφ) is a nontrivial factor of (S ,Γ,φ), by Theorem 2.5,
we have dim(X/H ′) ≤ dim(X) ≤ 2. It follows from Theorem 5.2 and Theorem 5.3 that
dim(H/H ′)≤ 3. Since Γ acts on X/H ′ minimally and X/H ′ is of dimension ≥ 1, ψφ(Γ)

cannot be finite. Thus dim(H/H ′)≥ 8 by Theorem 5.1, which is a contradiction.
□
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