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STRUCTURES OF R( f )−P( f ) FOR GRAPH MAPS f

JIEHUA MAI, ENHUI SHI, KESONG YAN*, AND FANPING ZENG

ABSTRACT. Let G be a graph and f : G → G be a continuous map. We establish

a structure theorem which describes the structures of the set R( f )− P( f ), where

R( f ) and P( f ) are the recurrent point set and the periodic point set of f respectively.

Roughly speaking, the set R( f )−P( f ) is covered by finitely many pairwise disjoint

f -invariant open sets U1 , · · · ,Un ; each Ui contains a unique minimal set Wi which ab-

sorbs each point of Ui; each Wi lies in finitely many pairwise disjoint circles each of

which is contained in a connected closed set; all of these connected closed sets are con-

tained in Ui and permutated cyclically by f . As applications of the structure theorem,

several known results are improved or reproved.

1. INTRODUCTION AND PRELIMILARIES

In this section, we will state the main theorem obtained. We will also introduce

the backgrounds of the study, the notions and notations used in the paper, and the

organizations of the paper.

1.1. Backgrounds and the aim of the paper. The study of the dynamics of graph

maps can date back to the work of A. Blokh in 1980’s ([7, 8, 9]). Since then, lots of

literatures appeared in this area. One may consult [5] for a systematic introduction to

the combinatorial dynamics and chaotic phenomena for graph maps before 2000 and

consult [3, 4, 15, 16, 18, 19, 20, 27] and their references for later investigations.

Recurrence is one of the most fundamental notions in the theory of dynamical sys-

tem. For a compact metric space X and a continuous map f : X → X , there are sev-

eral f -invariant subsets of X which exhibit various recurrence behaviors, such as the

periodic point set P( f ), the almost periodic point set AP( f ), and the recurrent point
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set R( f ). The ω-limit point set ω( f ) and the nonwandering point set Ω( f ) are also f -

invariant and exhibit some weaker dynamical behaviors than recurrence. The structures

of these sets have been intensively studied during the development of dynamical sys-

tems. One may consult [2, 14] for the introductions to the abstract theory of recurrence

and its applications in number theory.

Due to the simplicity of the phase spaces in topology, finer and more interesting re-

sults around recurrence can be obtained for graph maps. Blokh constructed the spectral

decomposition of the sets P( f ), ω( f ) and Ω( f ) for any graph map f , and obtained a

series of applications of the spectral decomposition ([10]). In [12] and [28], the au-

thors showed that R( f ) = P( f ) for any interval map f . This was extended by Ye to

tree maps ([29]). For any graph map f , the authors proved that R( f ) = R( f )∪P( f )

and R( f ) = AP( f ) ([17, 22]). We suggest the readers to refer to [1, 11, 23, 24] for the

study of recurrence for maps on phase spaces beyond graphs.

The aim of this paper is to study the structure of R( f )−P( f ) for any graph map

f : G → G. We will show that R( f )−P( f ) is contained in G−EP( f ) which has only

finitely many connected components U1 , · · · ,Un , where EP( f ) is the eventually peri-

odic point set of f . Then we describe the dynamical behavior of f on the intersection

of each Ui with R( f ) . In the last of this section, we will give an explicit statement of

the main theorem.

1.2. Notions and notations. Let (X ,d) be a metric space with metric d. For any

Y ⊂ X , denote by IntX(Y ), ∂XY , and ClosX(Y ) the interior, the boundary, and the

closure of Y in X , respectively. If there is no confusion, we also write Y for ClosX(Y ).

For any y ∈ Y ⊂ X and any r > 0, write B(y,r) = {x ∈ X : d(x,y)< r} and B(Y,r) =

{x ∈ X : d(x,Y )< r}.

By a dynamical system, we mean a pair (X , f ), where X is a compact metric space

and f : X → X is a continuous map. Denote by C0(X) the set of all continuous maps

from X to X . Let N be the set of all positive integers, and let Z+ = N∪ {0}. For

any n ∈ N , write Nn = {1, · · · ,n}. For any f ∈ C0(X) , let f 0 be the identity map of

X , and let f n = f ◦ f n−1 be the composition map of f and f n−1. For x ∈ X , the set

O(x, f ) ≡ { f n(x) : n ∈ Z+} is called the orbit of x under f . A point x ∈ X is called a
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fixed point of f if f (x) = x ; is called a periodic point of f if f n(x) = x for some n∈N ;

is called an eventually periodic point of f if the orbit O(x, f ) is a finite set; is called

a non-wandering point of f if for any neighborhood U of x in X there is an n ∈ N

such that f n(U)∩U 6= /0 . The set ω(x, f ) ≡
⋂∞

i=0 O( f i(x), f ) is called the ω-limit

set of x under f . Write ω( f ) =
⋃

x∈X ω(x, f ) , called the ω-limit set of f . The point

x ∈ X is called a recurrent point of f if x ∈ ω(x, f ) and is called an almost periodic

point of f if for any neighborhood U of x in X there exists an m ∈ N such that

{ f n+i(x) : i∈Nm}∩U 6= /0 for every n∈Z+ . A subset W of X is said to be f -invariant

if f (W )⊂W ; is said to be strongly f -invariant if f (W ) =W ; is said to be a minimal set

of f if it is non-empty, closed and f - invariant and if no proper subset of W has these

three properties. A minimal set W of f is said to be totally minimal if it is a minimal

set of f n for all n ∈ N . Denote by Fix( f ) , P( f ) , EP( f ) , AP( f ) , R( f ) and Ω( f ) the

sets of fixed points, periodic points, eventually periodic points, almost periodic points,

recurrent points and non-wandering points of f , respectively. From the definitions it is

easy to see that P( f )⊂ EP( f ) and Fix( f )⊂ P( f )⊂ AP( f )⊂ R( f )⊂ ω( f )⊂ Ω( f ) .

A non-degenerate metric space X is called an arc (resp. an open arc , a circle) if it

is homeomorphic to the interval [0,1] ( resp. the open interval (0,1) , the unit circle

S1). A compact connected metric space G is called a (topological) graph if there exists

a finite subset V (G) of G such that each connected component of G−V (G) is an open

arc, and any circle in G contains at least three points in V (G) . Every point in the given

finite subset V (G) is called a vertex of G. Every connected component of G−V (G)

is called an edge of G. A graph containing no circle is called a tree . A continuous

map from a graph (resp. a tree, a circle, an interval) to itself is called a graph map

(resp. a tree map , a circle map , an interval map) . Note that if X is a non-degenerate

connected closed subset of a graph G then X itself is also a graph.

Let G be a graph. We may assume that the metric d on G satisfies the following

two conditions : (1) for any x ∈ G and any r > 0, the open ball B(x,r) in G is a con-

nected set ; (2) d(u,v) ≥ 1, for any two different vertices u and v of G. For any finite

set S, denote by |S| the number of elements of S. For any x ∈ G, write valG(x) =

lim r→0 |∂GB(x,r)| , called the valence of x in G; x is called a branching point (resp.

an endpoint) of G if valG(x) > 2 (resp. valG(x) = 1). Denote by Br(G) and End(G)
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the sets of branching points and endpoints of G, respectively. For any arc A in G and

any two points a,b ∈ A, denote by [a,b]A the smallest connected closed subset of A

containing a and b . If there is no confusion, we also write [a,b] for [a,b]A. In addition,

we write (a,b] = [b,a) = [a,b]−{a} and (a,b) = (a,b]−{b}. Note that [a,a] = {a}

and (a,a] = (a,a) = /0 .

For any metric space (even for any topological space) X , any f ∈ C0(X) and any

n ∈ N , by the definitions, it is easy to see that P( f ) = P( f n) and ω( f ) = ω( f n) .

Erdös and Stone proved that R( f ) = R( f n) and AP( f ) = AP( f n) also hold ([13]). It is

well known that if X is a compact metric space and f ∈C0(X) , then a point x ∈ AP( f )

if and only if O(x, f ) is a minimal set of f (see e.g. [6, Proposition V.5]).

1.3. Organizations and the statement of the main theorem. In section 2, for a graph

map f on a graph G and for a subset K of G, we introduce the notions of absorbed set

and main absorbed set of K, and use them to analyse the structures of the orbits of some

specified connected subsets of G under f . In the beginning of Section 3, we will recall

the structure theorem of graph maps without periodic points obtained by Mai and Shao

in [21], which is a key ingredient in the proof of the main theorem. Then, based on

these preparations, we prove the following main theorem (Theorem 3.8).

Theorem 1.1. Let G be a connected graph and f : G → G be a continuous map such

that P( f ) 6= /0 and R( f )−P( f ) 6= /0. Then there exist pairwise disjoint nonempty open

subsets U1, · · · ,Un of G with n ∈ N such that

(1) f (Ui)⊂Ui, for each i ∈ Nn.

(2) Write U =
⋃ n

i=1 Ui and U0 = G−U. Then P( f ) ⊂ U0, U −U ⊂ EP( f ), and

Ω( f )−U0 = R( f )−U0 = R( f )−P( f )⊂U.

(3) For each i∈Nn , Ui has ki connected components Ui1, · · · ,Uiki
with ki ∈N, which

satisfy f (Uiki
)⊂Ui1 and f (Ui j)⊂Ui , j+1 for 1 ≤ j < ki.

(4) For each i ∈ Nn , write Wi = R( f )∩Ui. Then Wi is a unique minimal set of f

contained in Ui.

(5) For each i ∈Nn and j ∈ Nki
, write Wi j =Wi∩Ui j. Then Wi j is a unique minimal

set of f ki contained in Ui j, and there is a connected closed subset Gi j of G and a circle
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Ci j such that Wi j ⊂Ci j ⊂ Gi j ⊂Ui j, f (Wiki
) =Wi1, f (Giki

) = Gi1, and f (Wi j) =Wi , j+1

and f (Gi j) = Gi , j+1 for 1 ≤ j < ki.

(6) For each i ∈Nn, j ∈Nki
, and for each x ∈Ui j, one has limm→∞ d( f m(x),Wi) = 0,

and limm→∞ d( f mki(x),Wi j) = 0.

In Section 4, as applications of the main theorem, we give several propositions part

of which improve or reprove some known results .

2. ABSORBED SETS AND ORBITS OF SUBSETS OF GRAPHS

Definition 2.1. Let f : G → G be a graph map. For any subset K of G and any n ∈Z+ ,

write

(2.1) O(K, f ) =
⋃ ∞

i=0 f i(K) , and On(K, f ) =
⋃ n

i=0 f i(K) .

Then O(K, f ) is an f - invariant set, called the orbit of the set K under f , and the set

On(K, f ) is called a segment of the orbit of K under f . Write

(2.2) O−(K, f ) =
⋃ ∞

i=0 f − i(K) ,

called the inverse orbit of K under f , or called the absorbed set by K under f . Let

(2.3) Ab(K, f ) =
⋃

{Y : Y is a connected component of O−(K, f ) , and Y∩K 6= /0},

called the main absorbed set by K under f .

For any connected open subset U of G, define a function

(2.4) ξ (U) = ξG(U) = ∑
{

valG(v)−2 : v ∈U ∩Br(G)
}

,

called the total branching number of U in G. The following lemma gives the supre-

mum of numbers of boundary points of connected sets in G.

Lemma 2.2. ([26, Lemma 4.1]) Let G be a graph. Then |∂GX | ≤ ξ (G)+2 for any

connected subset X of G, and there is a subtree T of G such that |∂GT | = ξ (G)+2 .

Corollary 2.3. Let G be a graph, and U be a connected open subset of G containing

a circle C. Then |∂GU | ≤ ξ (U) .

Proof. Let r = min
{

d(x,y)/3 : x and y are two different points in ∂GU ∪V (G)
}

, and

let Z= U −
⋃

{B(x,r) : x ∈ ∂GU} . Then Z is a connected open subset of G containing

C, U∩ Br(G) = Z∩ Br(G) , and |∂GU | ≤ |∂GZ| . Let X = Z . Then X is a subgraph of
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G, Br(X) = Z∩ Br(G), and ∂GZ = ∂XZ . Take an arc A ⊂C−V (G) and let Y = Z−A .

Then Y is a connected open subset of Z . From Lemma 2.2 we get |∂XZ|+2 = |∂XY | ≤

ξX(X)+2 = ξG(Z)+2 = ξG(U)+2. Thus |∂GU | ≤ ξG(U) . �

Lemma 2.4. Let f : G → G be a graph map, and L ⊂ G be an f -invariant connected

set. Let W = O−(L, f ) and U = Ab(L, f ) be defined as in (2.2) and (2.3). Then

(1) Both W and U are f -invariant ;

(2) Further, if L is open, then W and U are open, f (∂GU)⊂ ∂GU ⊂ EP( f ) , and

∂GU ∩ P( f ) 6= /0 .

Proof. (1) Since f (L) ⊂ L and f
(

f −i(L)
)

⊂ f 1−i(L) for any i ∈ N , from the def-

inition of W = O−(L, f ) we get f (W ) ⊂ W ∪ f (L) ⊂ W ∪ L = W . Since U is the

connected component of W containing L, it follows that f (U) is connected, and

f (U)∩ U ⊃ f (L)∩ L = f (L) 6= /0 . Thus f (U)∪U is a connected subset of W con-

taining L and hence f (U)⊂U ∪ f (U) =U . Therefore, W and U are f -invariant.

(2) Further, if L is open, then f −i(L) is open, for any i ∈ Z+ . Thus W is open,

so is the connected component U of W . From f (U) ⊂ U we get f (U ) ⊂ U . If

there is a point x ∈ ∂GU such that f (x) /∈ ∂GU , then we will have f (x) ∈U , and there

will be a connected open neighborhood Z of x such that f (Z) ⊂ U . This means that

Z ⊂ f−1(U) ⊂ f−1(W ) ⊂W . Therefore, Z ∪U is a connected open subset of W , and

hence we have x ∈ Z∪U = U . However, this contradicts that x ∈ ∂GU . Thus we must

have f (∂GU)⊂ ∂GU , which with |∂GU | ≤ ξ (G)+2 implies that ∂GU ⊂ EP( f ) and

∂GU ∩P( f ) 6= /0 . �

Lemma 2.5. Let f : G →G be a graph map, and K be an f -invariant connected closed

set with ∂GK ∩P( f ) = /0 . Then

(1) There exists an f -invariant connected open set L ⊃ K such that the absorbed set

O−(L, f ) = O−(K, f ) , and the main absorbed set Ab(L, f ) = Ab(K, f ) ;

(2) O−(K, f ) and Ab(K, f ) are open sets in G ;

(3) For any y ∈ O−(K, f ) , there exist an m ∈ N and a neighborhood Z of y in G

such that f i(Z)⊂ K for all i ≥ m ;

(4) ω( f )∩ O−(K, f ) = ω( f )∩Ab(K, f ) = ω( f )∩K = ω( f |K) ;

(5) Ω( f )∩ O−(K, f ) = Ω( f )∩Ab(K, f ) = Ω( f )∩K ⊂ Ω( f |K)∪ ∂GK .
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Proof. (1) By Lemma 2.2, ∂GK is a finite subset of K. Write L0 = IntG(K) . Since

∂GK ∩P( f ) = /0 , there is an n ∈ N such that f n(∂GK)⊂ L0 . Let L1 =
⋃n

i=0 f −i(L0) .

Then L1 is an open set containing K . Let L be the connected component of L1

containing K. Then L is also open. Since f (L)∩ L ⊃ f (K)∩K = f (K) 6= /0 and

f (L) ⊂ f (L1) ⊂
⋃ n

i=0 f 1−i(L0) ⊂ K ∪
(

⋃n−1
i=0 f −i(L0)

)

⊂ L1 , we have f (L) ⊂ f (L)∪

L = L . From O−(L, f ) ⊂ O−(L1, f ) =
⋃∞

j=0 f − j
(

⋃n
i=0 f −i(L0)

)

=
⋃∞

j=0 f − j(L0) =

O−(L0, f )⊂O−(K, f )⊂O−(L, f ) we get O−(L, f )=O−(K, f ) , and hence Ab(L, f )=

Ab(K, f ) .

(2) follows from (1) of this lemma and (2) of Lemma 2.4.

(3) For any y ∈ O−(K, f ) , there is a p ∈ N such that f p(y) ∈ K. If f p(y) ∈ ∂GK,

we can take an n ∈ N such that f p+n(y) ∈ IntG(K) and put m = p+ n . If f p(y) ∈

IntG(K), we put m = p . By the continuity of f m, there is a neighborhood Z of y in G

such that f m(Z)⊂ IntG(K) . Since f (K)⊂ K, we have f i(Z)⊂ K for all i ≥ m .

(4) It suffices to show ω( f )∩O−(K, f )⊂ ω( f |K), since ω( f )∩O−(K, f )⊃ω( f )

∩Ab(K, f )⊃ω( f )∩K ⊃ω( f |K) is clear . Given a point x ∈ω( f )∩O−(K, f ) . Since

O−(K, f ) is open, there is a point y ∈ O−(K, f ) such that x ∈ ω(y, f ) . Take n ∈ N

such that f n(y) ∈ K. Then we have x ∈ ω(y , f ) = ω
(

f n(y) , f
)

⊂ ω( f |K) . Thus

ω( f )∩ O−(K, f )⊂ ω( f |K) .

(5) By (3) of this lemma, we have
(

O−(K, f )−K
)

∩ Ω( f ) = /0 , which implies that

Ω( f )∩O−(K, f ) =Ω( f )∩Ab(K, f ) = Ω( f )∩K. For any x ∈ IntG(K) , it is clear that

x ∈ Ω( f ) if and only if x ∈ Ω( f |K) . Thus we have Ω( f )∩K ⊂ Ω( f |K)∪∂GK. �

Lemma 2.6. Let f : G → G be a graph map, and K be a connected closed subset of

G with f (K)∩K 6= /0 . Let X = O(K, f ) and Xn = On(K, f ) be defined as in (2.1).

Suppose that X −Xn 6= /0 for any n ∈ N . Write S =
⋂∞

n=0 X −Xn . Then

(1) P( f ) ⊃ f (S) = S 6= /0 , and S contains at most ξ (G)+2 points ;

(2) Further, if K ∩EP( f ) = /0 , then there exists an open arc (u,v) ⊂ X −V (G)

such that S = X − X = {v} ⊂ Fix( f ) , f (x) ∈ (x,v) for any x ∈ [u,v) , and X is

contained in the main absorbed set Ab
(

(u,v) , f
)

.

Proof. (1) By the conditions of the lemma, all the sets K = X0 ⊂ X1 ⊂ X2 ⊂ X3 ⊂

·· · ⊂ X are connected, and Xn is closed in G for all n ∈ Z+ . Since X −Xn 6= /0 , for
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any n ∈ N , we have Xn+1 −Xn 6= /0 . Since V (G) is a finite set and since the valence

of any vertex of G is finite, there is a sufficiently large β ∈ N such that

(a) X ∩V (G) = Xn∩V (G) = Xβ ∩V (G) for any n ≥ β ;

(b) valXn
(w) = valXβ

(w) for any w ∈ Xβ ∩V (G) and any n ≥ β .

From property (a) we can derive

(c) For any n ≥ β , every connected component of X −Xn is contained in an edge of

G, and every edge of G contains at most two connected components of X −Xn . Thus

X −Xn has only finitely many connected components ;

(d) For any n ≥ β , every connected component of X − Xn+1 is contained in a

connected component of X −Xn , and every connected component of X −Xn contains

at most one connected components of X −Xn+1 .

Let λn be the number of connected component of X −Xn . By property (d) we have

λβ ≥ λβ+1 ≥ λβ+2 ≥ ·· · . Let λ = limn→∞ λn . Then λ ≥ 1, and there is an m ≥ β

such that λn = λ for all n ≥ m. If m > β , we can replace β by m . Thus we may

assume that λn = λ for all n ≥ β . This means that, for n ≥ β , every connected

component of X −Xn contains exactly one connected components of X −Xn+1 .

Since X is connected and Xβ is closed, no connected component of X −Xβ is a

closed arc. If there is a connected component J of X −Xβ such that J = (u,v] is

a semi-open arc, then u ∈ Xβ and there is a neighborhood U of v in G such that

X∩U ⊂ (u,v] . Since v ∈ X , there is m > β such that v ∈ Xm , which with Xm∩U ⊂

X ∩ U ⊂ (u,v] and (u,v)∩V (G) = /0 implies that [u,v] ⊂ Xm , and hence J = (u,v]

contains no connected component of X −Xm . This leads to a contradiction. Thus every

connected component of X −Xβ must be an open arc.

Let J1 , · · · , Jλ be the λ connected components of X −Xβ with Ji = (ui,vi) . For

each i ∈ Nλ , by means of a homeomorphism from [ui,vi] to [0,1] we can define a

linear order < on [ui,vi] such that ui < vi . For any n ≥ β , write Jin = Ji −Xn . Then

Jin is an open arc, and Jin is the connected component of X −Xn contained in Ji .

Suppose that Jin = (uin ,vin) with uin < vin . Then we have limn→∞ d(uin,vin) = 0 and

ui = uiβ ≤ uin ≤ uim < vim ≤ vin ≤ viβ = vi for any m > n ≥ β .
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Let zi = limn→∞ uin . If uin < zi < vin for all n ≥ β , then zi /∈ Xn for all n ≥ β .

This contradicts that zi ∈ Ji ⊂ X . Thus there exists m ≥ β such that uim < zi = vim or

uim = zi < vim . By symmetry, we may assume that the case uim < zi = vim occurs. In

addition, if m > β then we can replace β by m . Hence we may assume that,

(e) for any i ∈ Nλ and any n ≥ β , Jin = (uin,vi) , and limn→∞ uin = vi .

From property (e) we get X −Xn =
⋃λ

i=1(uin ,vi) , S =
⋂∞

n=0 X −Xn = {v1 , · · · , vλ} ,

and X = X ∪ S. By property (b) , we have ui /∈ V (G) . Note that it is possible that

vi ∈V (G)∪Xβ for some i ∈ Nλ , or that vi = v j for some 1 ≤ i < j ≤ λ . Let Ei be

the edge of G containing (ui,vi) and let wi be the endpoint of Ei such that ui ∈ (wi,vi) .

Let ε = min{d(ui,wi) : i ∈ Nλ} . Take a δ > 0 such that d
(

f (x), f (y)
)

< min{ε,1}

for any x , y ∈ G with d(x,y)≤ δ . We may assume that β is so large that

(f) all the diameters of J1 , · · · , Jλ are less than δ .

For any i ∈ Nλ , it is clear that

Ji,β+1 = Ji −Xβ+1 ⊂ X −Xβ+1 ⊂ f (X −Xβ ) = f
(

⋃λ
k=1 Jk

)

=
⋃λ

k=1 f (Jk) .

So for each i∈Nλ there is a k i ∈Nλ such that f (Jki
)∩Ji,β+1 6= /0 , which with property

(f) implies that wi /∈ f (Jki
) . If vi ∈ f (Jki

) , then there exist xi ∈ Ji and m > β such

that {xi,vi} ⊂ f (Xm ∩ Jki
) , which leads to [xi,vi] ⊂ f (Xm ∩ Jki

) ⊂ f (Xm) ⊂ Xm+1. But

this contradicts that Ji −Xm+1 = (ui,m+1,vi) . So we must have vi /∈ f (Jki
) , which with

wi /∈ f (Jki
) implies that f (Jki

)⊂ (wi,vi) . Hence, for any i, j ∈Nλ with j 6= i , we have

f (Jk j
)∩ f (Jki

)⊂ (w j ,v j)∩ (wi ,vi) = /0 , which implies that k j 6= k i . Thus we have

(g) {k i : i ∈ Nλ}= Nλ , and Ji,β+1 ⊂ f (Jki
) ⊂ (wi,vi) for each i ∈ Nλ .

For n ≥ β and i ∈ Nλ , since Ji,n+1 ⊂ X −Xn+1 ⊂ f (X −Xn) =
⋃λ

k=1 f (Jkn) , from

property (g) we get Ji,n+1 ⊂ f (Jkin) , which with

limn→∞ diam
(

f (Jkin)
)

= limn→∞ diam(Jkin) = 0

implies that f (vki
) = vi . Hence we have f (S) = S. Noting that S = {v1 , · · · , vλ} is a

finite set, we have S ⊂ P( f ) . By Lemma 2.2, we have

|S| ≤ λ = |{u1, · · · , uλ}|= |∂X Xβ | ≤ |∂GXβ | ≤ ξ (G)+2 .

(2) Further, if K ∩ EP( f ) = /0 , then X ∩S ⊂ X ∩P( f )⊂ X ∩EP( f ) = /0 , which

with X = X ∪S implies that X −X = S .
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For any i ∈ Nλ and any n ≥ β , write Lin = L(i,n) = Ji ∩ (Xn+1 −Xn) . Then Lin =

(uin ,ui,n+1 ] ⊂ Jin and Xn+1 −Xn =
⋃λ

i=1 Lin . Noting that Li,n+1 ⊂ Xn+2 −Xn+1 ⊂

f (Xn+1 −Xn) =
⋃λ

k=1 f (Lkn) , from property (g) we get Li,n+1 ⊂ f (Lkin) .

Define a map ψ : Nλ → Nλ by ψ(i) = k i for any i ∈ Nλ . Then ψ is a bijection and

f (vψ(i)) = vi . Let ti ∈ Nλ be the least positive integer such that ψti(i) = i . Then we

have f ti(vi) = vi . Choose an n > β + ti such that Lin 6= /0 and take a point z0 ∈ Lin .

Then there exist points z1 , z2 , · · · , zti such that f (z j) = z j−1 and z j ∈ L
(

ψ j(i) , n− j
)

for each j ∈Nti . Noting that zti ∈ L(i,n− ti)⊂ (ui,uin ] and z0 ∈ (uin,ui,n+1 ] , we have

f ti(zti) = z0 ∈ (zti ,vi)⊂ (ui,vi).

If f ti
(

(ui,vi)
)

6⊂ (ui,vi) , then there exist m > n and z ∈ (ui,uim] = (ui,vi)∩Xm such

that f ti(z) ∈ {ui ,vi} and f ti
(

[zti,z)
)

⊂ (ui,vi) . However, if f ti(z) = ui then (zti,z)∩

Fix( f ti) 6= /0 , which contradicts that [zti,z]∩P( f )⊂ X∩EP( f ) = /0 . If f ti(z)= vi then

Xm+ti ⊃ f ti
(

[zti,z]
)

⊃ [z0,vi] , which also contradicts that Ji−Xm+ti = (ui,m+ti , vi) . Thus

we must have f ti
(

(ui,vi)
)

⊂ (ui,vi) , which with f ti(zti)∈ (zti,vi) and [ui,vi)∩P( f )= /0

implies that f ti(x) ∈ (x,vi) for any x ∈ [ui,vi) .

Write t = ∏ λ
j=1 t j . Then for any i ∈ Nλ , the open arc Ji = (ui,vi) is f t-invariant.

Let Ui = Ab(Ji, f t) be the main absorbed set by Ji under f t . Then by Lemma 2.4 we

get ∂GUi ⊂ EP( f t) = EP( f ) . Hence, if X 6⊂ Ui then X ∩EP( f ) ⊃ X ∩ ∂GUi 6= /0 .

But this will leads to a contradiction. Thus we must have X ⊂Ui .

If λ ≥ 2, then we have both X ⊂ U1 and X ⊂ U2 . On the other hand, from

J1 ∩ J2 = /0 we get U1 ∩U2 = /0 . These will lead to a contradiction. Thus we must

have λ = 1, which implies that t = t1 = 1. Let u = u1 and v = v1 . Then the open

arc (u,v) satisfies the all conditions in Lemma 2.6, and the proof is complete. �

As a corollary of Lemma 2.6, we have the following

Proposition 2.7. Let f : G → G be a graph map, and K be a connected closed subset

of G with f (K)∩K 6= /0 . Let X = O(K, f ) be the orbit of K under f . If X −X

contains more than one point, then X ∩P( f ) 6= /0 .

Proof. Let Xn = On(K, f ) be defined as in (2.1) . Then Xn is closed. Since X is not

closed, we have X −Xn 6= /0 for any n ∈ N . If X ∩P( f ) = /0 , then X ∩EP( f ) = /0 ,
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and by Lemma 2.6, X −X will contain only one point. Therefore, if X −X contains

more than one point then we must have X ∩P( f ) 6= /0 . �

Lemma 2.8. Let f : G → G be a graph map, and K be a connected closed subset of

G with f (K)∩K 6= /0 . Let X = O(K, f ) and Xn = On(K, f ) be defined as in (2.1).

If X −Xn 6= /0 for any n ∈ N , then the following eight conditions are equivalent :

(1) K ∩EP( f ) = /0 ;

(2) X ∩EP( f ) = /0 ;

(3) X ∩P( f ) = /0 ;

(4) X ∩R( f ) = /0 ;

(5) X ∩ ω( f ) = /0 ;

(6) X ∩ Ω( f ) = /0 ;

(7) X −X 6= /0 , and lim n→∞ d
(

f n(x) , X −X
)

= 0 for any x ∈ X ;

(8) There exists an open arc (u,v) ⊂ X −V (G) such that X −X = {v} ⊂ Fix( f ) ,

f (x) ∈ (x,v) for any x ∈ [u,v) , and X ⊂ Ab
(

(u,v) , f
)

.

Proof. (6) ⇒ (5) ⇒ (4) ⇒ (3) are trivial, since Ω( f )⊃ ω( f )⊃ R( f )⊃ P( f ) . By the

definition of the orbit X = O(K, f ) , (3) ⇔ (2) ⇔ (1) are clear. Since X −X ⊂ ∂GX is

a finite set, from the definition of recurrent points we can directly derive (7) ⇒ (4). In

Lemma 2.6 we have proved (1) ⇒ (8). Thus it suffices to show that (8) ⇒ (6) and (8)

⇒ (7) .

Suppose that (8) is true. Then (u,v)∩Ω( f )= /0 , and lim n→∞ f n(x)= v for any x∈

[u,v) . Since X ⊂ Ab
(

(u,v) , f
)

, we also have X ∩ Ω( f ) = /0 , and lim n→∞ f n(x) = v

for any x ∈ X . Hence (6) and (7) are true. �

From Lemma 2.8 we obtain the following corollary at once.

Corollary 2.9. Let f : G → G be a graph map, and K be a connected closed subset of

G with f (K)∩K 6= /0 . Let X = O(K, f ) and Xn = On(K, f ) be defined as in (2.1) .

If K ∩EP( f ) = /0 and K ∩ Ω( f ) 6= /0 , then there exists an n ∈ N such that X = Xn ,

and hence X is closed in G.

The following lemma is given in [22].
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Lemma 2.10. ([22, Lemma 2.3]) Let f : G → G be a graph map, and A = [w,z] be an

arc in G. If (w,z)∩
(

V (G)∪P( f )
)

= /0 and (w,z)∩ R( f ) 6= /0, then O(w, f )∩ (w,z) 6=

/0.

Corollary 2.11. Let f : G → G be a graph map, and A = [x,y] be an arc in G. If

(x,y) ∩
(

V (G)∪P( f )
)

= /0 and (x,y) ∩ R( f ) 6= /0 , then A∩EP( f ) = /0 .

Proof. If A∩ EP( f ) 6= /0, then there exist w ∈ A and n ∈ N such that f n(w) ∈ P( f ) ,

which with (x,y)∩P( f ) = /0 implies that f i(w) /∈ (x,y) for any i ≥ n . On the other

hand, take a point z ∈ [x,y]−{w} such that (w,z)∩R( f ) 6= /0 . Then (w,z)∩R( f n) 6= /0 ,

and by Lemma 2.10 we get O(w, f n)∩ (w,z) 6= /0 . But this contradicts that f i(w) /∈

(x,y) for any i ≥ n . Thus we must have A∩EP( f ) = /0 . �

3. STRUCTURES OF R( f )−P( f ) FOR GRAPH MAPS f

Now we list several results coming from [21] in the following theorem, which is a

key ingredient in the proof of the main theorem.

Theorem 3.1. Let f : G → G be a graph map without a periodic point. Then there exist

an n ∈ N , a subgraph X of G and a circle Q ⊂ X such that the following items hold:

(1) G ) f (G) ) · · · ) f n−2(G) ) f n−1(G) = X = f (X) ;

(2) f |X has a unique minimal set M which is totally minimal;

(3) Ω( f |X) = AP( f |X) = M ⊂ Q;

(4) for each x ∈ X, we have limm→∞ d( f m(x),M) = 0;

(5) f is topologically semi-conjugate to an irrational rotation of the unit circle S1.

Remark 3.2. The conclusion (1) of Theorem 3.1 follows from Theorem [21, Theo-

rem 4.2] and Definitions 3.3 and 3.4 in [21]; the conclusions (2) and (3) follow from

Claim 24 and Corollary 4.4 in [21]; the conclusion (5) is implied by [21, Theorem 4.3].

Though the conclusion (4) of Theorem 3.1 is not explicitly stated in [21], it can be seen

easily from [21, Theorem 4.2] and the constructions in Section 3 of [21].

Definition 3.3. Let f : G → G be a graph map. A subset X of G is called a component-

cyclic f -invariant set if X has only finitely many connected components X1 , · · · , Xk

and f (Xi) ⊂ Xi+1(mod k) for every i ∈ Nk . A component-cyclic f -invariant set X is

called a component-cyclic strongly f -invariant set if f (X) = X .



STRUCTURES OF R( f )−P( f ) FOR GRAPH MAPS f 13

Lemma 3.4. Let f : G→G be a graph map, and X,Y be component-cyclic f -invariant

sets. If X∩Y 6= /0 , then X∪Y is also a component-cyclic f -invariant set .

Proof. Suppose that X has n connected components X1 , · · · , Xn with f (Xi)⊂Xi+1(mod n)

for i ∈ Nn , and Y has m connected components Y1 , · · · , Ym with f (Yi) ⊂ Yi+1(mod m)

for i ∈ Nm . Since X ∩ Y 6= /0 , we may assume that X1 ∩ Y1 6= /0 . For any i ∈ N ,

write Xi+n = Xi and Yi+m = Yi . Then Xi ∩ Yi 6= /0 . Let Z = X ∪ Y and let Zi be the

connected component of Z containing Xi ∪ Yi . Then f (Zi)⊂ Zi+1 , and there is a com-

mon factor k of n and m such that Zi+k = Zi for all i ∈ N . Thus Z = X ∪ Y is also a

component-cyclic f -invariant set. �

Lemma 3.5. Let f : G → G be a graph map. Then for any x ∈ R( f )−P( f ) there is a

component-cyclic f -invariant closed set Y such that x ∈ Y ⊂ G−EP( f ) .

Proof. Since x ∈ R( f )−P( f ) , there is an arc A = [x,y]⊂ G−P( f ) such that (x,y]∩

V (G) = /0 and (x,y)∩R( f )⊃ (x,y)∩ O(x, f ) 6= /0 . Hence, there is an n ∈ N such that

f n(A)∩A 6= /0 . Let Y = O(A, f ) and Z = O(A, f n) be the orbits of A under f and

f n, respectively. Then f (Y ) ⊂ Y =
⋃n−1

i=0 f i(Z) , f n(Z) ⊂ Z, and Z is connected. By

Corollary 2.11, we have A∩EP( f ) = /0 . Hence Y ⊂ G−EP( f ) . By Corollary 2.9, Z

is closed in G. So Y is also closed. Let k be the number of connected components of Y.

Then k is a factor of n . Let Y1 be the connected component of Y containing Z . Then

x ∈ Y1 and f k(Y1) ⊂ Y1 . Write Yi = f i−1(Y1) for i = 2 , · · · , k . Then Y1 , Y2 , · · · , Yk

are just the k connected components of Y, and f (Yi) ⊂ Yi+1(mod k) for every i ∈ Nk .

Thus Y is a component-cyclic f -invariant set. �

For any graph map f : G → G and any n ∈ N , write

EPn( f ) = {x ∈ G : the orbit O(x, f ) contains at most n points}.

Then EPn( f ) is a closed subset of G, and EPn( f ) ⊂ EP( f ) . For any connected open

set U in G, let ξ (U) be defined as in (2.4) . The following proposition describes the

structures of component-cyclic f -invariant closed sets without periodic points.

Proposition 3.6. Let f : G → G be a graph map, and Y ⊂ G−P( f ) be a component-

cyclic f -invariant closed set with k connected components Y1 , · · · , Yk such that f (Yi)⊂

Yi+1(mod k) for each i ∈ Nk . Then
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(1) There exists a component-cyclic strongly f -invariant closed set X with k con-

nected components X1 , · · · , Xk such that Xi ⊂ Yi for each i ∈ Nk ;

(2) For any i ∈ Nk , let Ui = Ab(Xi , f k) be the main absorbed set by Xi under f k,

and let U =
⋃k

i=1Ui . Then Yi ⊂Ui , f (Ui) ⊂Ui+1(mod k) , Y ⊂U = Ab(X , f ) , and U

is a component-cyclic f -invariant open set with k connected components U1 , · · · ,Uk ;

(3) For any i ∈ Nk , Xi contains at least one circle Ci , and f k|Xi has a unique

minimal set Mi , which satisfy ω( f )∩ Ui = AP( f k|Xi) = Mi ⊂ Ci and Ω( f )∩ Ui =

Ω( f k)∩Xi ⊂ Mi ∪ ∂GXi . This Mi is also a unique minimal set of f k|Yi and of f k|Ui ;

(4) Write M =
⋃k

i=1 Mi . Then ω( f )∩U =AP( f |X)=AP( f k|X)=M, Ω( f )∩U=

Ω( f )∩X = Ω( f k)∩X ⊂ M∪ ∂GX , and M is a unique minimal set of any of the three

maps f |X, f |Y and f |U ;

(5) For any i ∈ Nk , the main absorbed set Ui = Ab(Xi , f k) is a connected compo-

nent of any of the three sets G−EP( f ) , G−EP( f ) and G−EPξ (G)( f ) .

Proof. Since Y is f -invariant, from Y ⊂ G−P( f ) we get Y ⊂ G−EP( f ) .

(1) Note that Y1 itself is a graph, and f k|Y1 : Y1 → Y1 is a graph map without

periodic point. By (1) of Theorem 3.1, there exist an n ∈ N and a connected closed

set X1 ⊂Y1 such that f k(n−1)(Y1) = X1 = f k(X1) . Let Xi = f i−1(X1) for i = 2 , · · · , k .

Put X =
⋃k

i=1 Xi . Then X satisfies the conditions mentioned in (1) of this theorem.

(2) For any i ∈Nk , it follows from (2) of Lemma 2.5 that Ui = Ab(Xi , f k) is open

in G. Since f kn(Yi) = f i−1 f k(n−1) f k+1−i (Yi) ⊂ f i−1 f k(n−1)(Y1) = f i−1(X1) = Xi ,

we have Yi ⊂Ui , and hence Y ⊂U . Write Xk+1 = X1 and Uk+1 =U1 . Since f (Ui)

is a connected set containing Xi+1 and f (Ui) ⊂ f
(

O−(Xi , f k)
)

⊂ O−(Xi+1 , f k) , we

have f (Ui) ⊂ Ui+1 . Since X1 , · · · , Xk are pairwise disjoint, the main absorbed sets

U1 , · · · ,Uk are also pairwise disjoint. Thus U is a component-cyclic f -invariant open

set with k connected components U1 , · · · ,Uk . From (2.3) and (2.2) it is easy to check

that U =
⋃k

i=1Ui is just the main absorbed set Ab(X , f ) .

(3) For any i ∈ Nk , from Theorem 3.1 we see that Xi contains at least one circle

Ci , and f k|Xi has a unique minimal set Mi , which satisfy Ω( f k|Xi) = ω( f k|Xi) =

AP( f k|Xi) = Mi ⊂ Ci . It is well known that ω( f ) = ω( f k). By (2) of this theorem

we have Ω( f )∩ Ui = Ω( f k)∩ Ui . Hence, from (4) and (5) of Lemma 2.5 we get
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ω( f )∩Ui = ω( f k)∩Ui = ω( f k|Xi) = Mi and Ω( f )∩ Ui = Ω( f k)∩ Ui = Ω( f k)∩

Xi ⊂ Ω( f k|Xi)∪ ∂GXi = Mi ∪ ∂GXi , and from ω( f k)∩Ui = Mi we see that Mi is also

a unique minimal set of f k|Yi and of f k|Ui .

(4) follows from (2) and (3) of this theorem and the fact that AP(ϕ) = AP(ϕ n) for

any n ∈ N and any continuous map ϕ from a topological space to itself ([13]).

(5) For any i ∈ Nk , from Xi ⊂ G−EP( f ) we get Ui = Ab(Xi , f k) ⊂ G−EP( f ) .

By (1) of Lemma 2.5 and (2) of Lemma 2.4, we have ∂GUi ⊂ EP( f ) . Thus Ui

is just a connected component of G − EP( f ) . Since Ui is open, it is also a con-

nected component of G−EP( f ) . By Corollary 2.3, we have |∂GUi| ≤ ξ (Ui) . So

|
⋃ k

j=1 ∂GUj | ≤ ∑ k
j=1 ξ (Uj) ≤ ξ (G) . From f (Ui)⊂Ui+1 and f (∂GUi)⊂ f

(

EP( f )
)

⊂

EP( f ) ⊂ G−Ui+1 we get f (∂GUi) ⊂ ∂GUi+1 . Thus
⋃ k

j=1 ∂GUj is f -invariant, and

∂GUi ⊂
⋃ k

j=1 ∂GUj ⊂ EPξ (G)( f ) . Hence Ui is also a connected component of G−

EPξ (G)( f ) .

All together, we complete the proof. �

Corollary 3.7. Let f : G → G be a graph map, and Y and Y ′be component-cyclic f -

invariant closed sets contained in G−P( f ) . If Y ∩ Y ′ 6= /0 , then ω( f |Y ) = ω( f |Y ′) .

Proof. By (4) of Proposition 3.6, f |Y and f |Y ′ have unique minimal sets M and M ′,

respectively, which satisfy ω( f |Y ) = M and ω( f |Y ′) = M ′. Obviously, both M and

M ′ are minimal sets of f |(Y ∪ Y ′) . Since Y ∩ Y ′ 6= /0 , by Lemma 3.4 , Y ∪ Y ′ is also a

component-cyclic f -invariant closed set. Hence, by (4) of Proposition 3.6 , f |(Y ∪ Y ′)

has only one minimal set, which must be M = M ′ . Thus ω( f |Y ) = ω( f |Y ′) . �

The following theorem is a main result of this paper, which describes the dynamical

behavior of f on the intersection of each connected component of G− EP( f ) with

R( f ) .

Theorem 3.8. Let G be a connected graph, and f : G → G be a continuous map such

that P( f ) 6= /0 and R( f )−P( f ) 6= /0. Then there exist pairwise disjoint nonempty open

subsets U1, · · · ,Un of G with n ∈ N such that

(1) f (Ui)⊂Ui, for each i ∈ Nn.
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(2) Write U =
⋃ n

i=1 Ui and U0 = G−U. Then P( f ) ⊂ U0, U −U ⊂ EP( f ), and

Ω( f )−U0 = R( f )−U0 = R( f )−P( f )⊂U.

(3) For each i∈Nn , Ui has ki connected components Ui1, · · · ,Uiki
with ki ∈N, which

satisfy f (Uiki
)⊂Ui1 and f (Ui j)⊂Ui , j+1 for 1 ≤ j < ki.

(4) For each i ∈ Nn , write Wi = R( f )∩Ui. Then Wi is a unique minimal set of f

contained in Ui.

(5) For each i ∈Nn and j ∈ Nki
, write Wi j =Wi∩Ui j. Then Wi j is a unique minimal

set of f ki contained in Ui j, and there is a connected closed subset Gi j of G and a circle

Ci j such that Wi j ⊂Ci j ⊂ Gi j ⊂Ui j, f (Wiki
) =Wi1, f (Giki

) = Gi1, and f (Wi j) =Wi , j+1

and f (Gi j) = Gi , j+1 for 1 ≤ j < ki.

(6) For each i ∈Nn, j ∈Nki
, and for each x ∈Ui j, one has limm→∞ d( f m(x),Wi) = 0,

and limm→∞ d( f mki(x),Wi j) = 0.

Proof. Since R( f )−P( f ) 6= /0 , by Lemma 3.5, there exists at least one component-

cyclic f -invariant closed set Y (1) in G− EP( f ) . By Proposition 3.6, Y (1) ⊂ G−

EP( f ) , and if Y (1) has k1 connected components then Y (1) contains at least k1

pairwise disjoint circles. Thus we can assume that there exist n pairwise disjoint

component-cyclic f -invariant closed sets Y (1), · · · , Y (n) in G−EP( f ) with n ∈ Nm

but G− EP( f ) cannot admit n+ 1 pairwise disjoint component-cyclic f -invariant

closed sets, where m is the maximal number of pairwise disjoint circles in G. Suppose

that Y (i) has ki connected components. Then we have n ≤ ∑ n
i=1 ki ≤ m .

If R( f )−P( f ) 6⊂
⋃n

i=1Y (i) , then there is a point x ∈ R( f )−P( f )−
⋃ n

i=1Y (i) . By

Lemma 3.5 and Proposition 3.6, there exists a component-cyclic f -invariant closed

set Y such that x ∈ Y ⊂ G−EP( f ) . For each i ∈ Nn , since ω( f |Y )−ω( f |Y (i)) ⊃

R( f |Y )−Y (i) ⊃ {x} 6= /0, by Corollary 3.7 we have Y ∩Y (i) = /0 . So Y , Y (1), · · · , Y (n)

are n+ 1 pairwise disjoint component-cyclic strongly f -invariant closed sets in G−

EP( f ) . But this will leads to a contradiction. Hence we must have R( f )−P( f ) ⊂
⋃n

i=1Y (i) .

For each i ∈ Nn, let X (i) be the component-cyclic strongly f -invariant closed set

contained in Yi and let Gi1, · · · ,Giki
be the connected components of X (i) (see (1) of

Proposition 3.6). Set Ui j = Ab(Gi j, f ki), Ui =
⋃ki

j=1Ui j, and U =
⋃n

i=1Ui. Then, by
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(2) of Proposition 3.6 and by Lemma 2.4, each Ui is an f -invariant open set, f (Uiki
)⊂

Ui1 and f (Ui j) ⊂ Ui , j+1 for 1 ≤ j < ki, and U i −Ui ⊂
⋃ki

j=1(U i j −Ui j) ⊂ EP( f ki) =

EP( f ). So, U −U ⊂
⋃n

i=1(U i −Ui) ⊂ EP( f ). From the definition of Ui j, we see that

Ui j ∩P( f ) = /0, which means that P( f )∩U = /0. Thus P( f )⊂ G−U . Let U0 = G−U .

Then R( f )−U0 ⊂ R( f )−P( f ). Since R( f )−P( f ) ⊂
⋃n

i=1Y (i) ⊂ U = G−U0 , we

have R( f )−U0 ⊃ R( f )−P( f ). So, R( f )−U0 = R( f )−P( f ). Thus (1), (2), and (3)

are proved except for the relation Ω( f )−U0 = R( f )−U0.

As in the statement of the theorem, for each i ∈ Nn and j ∈ Nki
, let Wi = R( f )∩Ui

and Wi j = Wi ∩Ui j. From (3) and (4) of Proposition 3.6, we have Wi and Wi j are

the unique minimal sets of f |Ui and f ki |Ui j respectively, and there exist circles Ci j

with Wi j ⊂ Ci j ⊂ Gi j ⊂ Ui j. This together with (2) and the strong invariance of X (i)

implies that f (Wiki
) =Wi1, f (Giki

) = Gi1, and f (Wi j) =Wi , j+1 and f (Gi j) = Gi , j+1 for

1 ≤ j < ki. Thus (4) and (5) are proved. The conclusions of (6) follow from (4) of

Theorem 3.1, which clearly implies the equation Ω( f )−U0 = R( f )−U0 =
⋃n

i=1Wi.

Thus the proof of (2) is complete. �

4. APPLICATIONS OF THE MAIN THEOREM

As applications of Theorem 3.8, we will prove several propositions part of which

improve or reprove some known results.

The following theorem is also implied by [7, Theorem 4].

Theorem 4.1. Let f : G → G be a graph map, and let m be the greatest number

of pairwise disjoint circles in G. Then there exist minimal sets M1 , · · · , Mn of f in

G−EP( f ) with 0 ≤ n ≤ m such that R( f ) = P( f )∪
(

⋃ n
i=1 Mi

)

.

Proof. By [22, Theorem 2.1], we get R( f ) = R( f )∪P( f ) = P( f )∪
(

R( f )−P( f )
)

. If

R( f )−P( f ) = /0 then we can put n = 0. Otherwise, R( f )−P( f ) 6= /0 . Let n , Ui and

the minimal sets Wi be the same as in Theorem 3.8. Then, by Theorem 3.8, we have

1 ≤ n ≤ m and

R( f )−P( f ) =
⋃ n

i=1

(

R( f )∩Ui

)

=
⋃ n

i=1Wi ⊂ G−EP( f ) .

Hence, writing Mi for Wi, we obtain R( f ) = P( f )∪
(

⋃ n
i=1 Mi

)

. �
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The following proposition indicates that, for a graph map f : G → G and x ∈ G,

if every neighborhood of x contains both a recurrent point and an eventually periodic

point of f , then every neighborhood of x must contain a periodic point.

Proposition 4.2. Let f be a graph map. Then R( f ) ∩ EP( f ) = P( f ).

Proof. By [22, Theorem 2.1] we get R( f ) = R( f )∪P( f ) = P( f )∪
(

R( f )−P( f )
)

,

and by Theorem 3.8 we get R( f )−P( f ) ⊂ G−EP( f ) . Hence

(

R( f )∩ EP( f )
)

− P( f )=
(

R( f )− P( f )
)

∩ EP( f )=
(

R( f )− P( f )
)

∩ EP( f ) = /0 .

In addition, R( f )∩ EP( f ) ⊃ P( f ) follows from R( f ) ⊃ P( f ) and EP( f ) ⊃ P( f ).

Thus we have R( f ) ∩ EP( f ) = P( f ) . �

Example 4.3. For special graph maps, by Theorem 3.8 or Theorem 4.1 we can obtain

some further detailed information. For example, let S1 be the unit circle in the complex

plane C. For n ∈ N , let Tn = {z ∈ C : zn ∈ [0,2n]} and let Gn = S1∪Tn . Then any

two circles in Gn intersect. Hence, from Theorem 3.8 we see that, for any f ∈C0(Gn) ,

if R( f ) 6= P( f ) then there exist a unique connected component U of G−EP( f ) , a

unique strongly f -invariant connected closed set X, a circle C in G and a unique

minimal set M of f such that U ∩ R( f ) 6= /0 and M ⊂C ⊂ X ⊂U. By Theorem 4.1,

we have R( f ) = P( f )∪M. By Theorem 3.1, this minimal set M is totally minimal.

Noting that AP( f ) =
⋃

{M : M is a minimal set of f } and P( f )⊂ AP( f )⊂ R( f ) , by

Theorem 4.1, we get R( f )⊂AP( f )∪ P( f )⊂ R( f ) . Then we have

Theorem 4.4. Let f : G → G be a graph map. Then R( f ) = AP( f )∪P( f ) .

For any graph map f , Hawete showed that R( f ) = AP( f ) (see [17, Lemma 3.1]) . In

general, if X is topological space and f ∈ C0(X) , then from the relation P( f ) ⊂

AP( f ) ⊂ R( f ) we can easily get that the condition R( f ) = AP( f )∪ P( f ) implies

R( f ) = AP( f ) and R( f ) = R( f )∪P( f ) . The following examples show that neither

R( f ) = AP( f ) nor R( f ) = R( f )∪P( f ) implies R( f ) = AP( f )∪P( f ) . Thus Theorem

4.4 is an essential improvement of [17, Lemma 3.1] and [22, Theorem 2.1].

Example 4.5. (1) In [25, Example 3.3] the authors constructed an isometric homeo-

morphism f from a complex Hilbert space X to itself, which satisfies R( f ) = X and



STRUCTURES OF R( f )−P( f ) FOR GRAPH MAPS f 19

AP( f ) = /0 . For this f , we have R( f ) = R( f )∪ P( f ) but have neither R( f ) =

AP( f )∪P( f ) nor R( f ) = AP( f ) .

(2) Let g : [0,1] → [0,1] be the tent map defined by g(x) = min{2x,2− 2x} for

all x ∈ [0,1] , and let h : S1 → S1 be an irrational rotation. Put X = [0,1]×S1. Then

X is a cylinder. Define f : X → X by f (x,y) =
(

g(x),h(y)
)

for any (x,y) ∈ X. Then

P( f ) = /0 , and both AP( f ) and X −R( f ) are dense subsets of X. For this f , we have

R( f ) = AP( f ) but have neither R( f ) = AP( f )∪P( f ) nor R( f ) = R( f )∪P( f ) .

From [22, Theorem 2.1] , we know that R( f )− P( f ) =
(

R( f )∪ P( f )
)

− P( f ) =

R( f )−P( f ) . By Theorem 4.1, R( f )−P( f ) =
⋃ n

i=1 Mi which is closed. Hence we

have

Proposition 4.6. Let f : G → G be a graph map. If P( f ) 6= /0 and R( f )−P( f ) 6= /0 ,

then the distance d
(

R( f )−P( f ) , P( f )
)

= d
(

R( f )−P( f ) , P( f )
)

> 0 .

The following theorem is first given by Zhang, Liu and Qin in [30], which can be

also obtained as a corollary of Proposition 4.6 .

Theorem 4.7. ([30, Theorem 2.8]) Let f : G → G be a graph map. If R( f ) = G and

P( f ) 6= /0 , then P( f ) = G.

Proof. Assume to the contrary that P( f ) 6= G. Then, by Proposition 4.6 , there will be

a neighborhood U of P( f ) in G such that U−P( f ) 6= /0 and U∩
(

R( f )−P( f )
)

= /0 .

But these will imply that R( f ) 6= G. This is a contradiction. �

By Theorem 3.8, for any x ∈ R( f )−P( f ) = R( f )−P( f ) , there exist a component-

cyclic strongly f -invariant closed set Xi ⊂ G−EP( f )⊂G−P( f ) and a circle Ci j ⊂ Xi

such that x ∈ Ci j. Then, we obtain the following

Proposition 4.8. Let f : G → G be a graph map and W be a subset of G−P( f ) . If

W ∩ C = /0 for any circle C ⊂ G−P( f ) , then W ∩ R( f ) = /0 . Specially, if W is a

connected component of G−P( f ) which contains no circle, then W∩ R( f ) = /0 ; if

G−P( f ) contains no circle, then R( f ) = P( f ) .

From Proposition 4.8 we can directly derive the following theorem, which is first

given by Ye in [29] .
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Theorem 4.9. ([29, Theorem 2.6]) Let f : T → T be a tree map. Then R( f ) = P( f ) .

Proposition 4.10. Let f : G → G be a graph map, and A = [x,y] be an arc in G.

(1) If (x,y)A ∩ Br(G) = /0 and A ∩ P( f ) 6= /0 , then (x,y)A ∩
(

R( f )−P( f )
)

= /0 .

(2) If x ∈ P( f ) and y ∈ R( f )−P( f ) , then (x,y]A ∩ Br(G) 6= /0 .

Proof. (1) Under the given conditions, for any circle C⊂ G−P( f ) , we have (x,y)A ∩

C = /0 . Let W = (x,y)A −P( f ) . By Proposition 4.8 , we have W ∩ R( f ) = /0 . This

means that (x,y)A ∩
(

R( f )−P( f )
)

= /0 .

(2) If x ∈ P( f ) and (x,y]A ∩ Br(G) = /0 , then y /∈C for any circle C ⊂ G−P( f ) ,

and it follows from Proposition 4.8 that y /∈ R( f )−P( f ) . Therefore, if x ∈ P( f ) and

y ∈ R( f )−P( f ) then we must have (x,y]A ∩ Br(G) 6= /0 . �

Example 4.11. Let Gn = S1∪ Tn ⊂ C be the same as in Example 4.3 , and let f ∈

C0(Gn) . If the origin 0 ∈ P( f ) , and S1 ∩ P( f ) 6= /0 , then Gn −P( f ) contains no

circle, and from Proposition 4.8 we get R( f ) = P( f ) .

Theorem 4.12. Let f : G → G be a graph map, and U be a connected component of

G−EP( f ) with U ∩ R( f ) 6= /0 . Then there exists k ∈ N such that f k(U)⊂ U, and

f k |U is topologically semi-conjugate to an irrational rotation of the unit circle S1 .

Proof. Use the all notations in Theorem 3.8. From Theorem 3.8 we see that there

exist i ∈ Nn and j ∈ Nki
such that U = Ui j = Ab(Xi j, f ki) . Let k = ki and write

X = Xi j. Then f k(X) = X and f k(U) ⊂ U . By Theorem 3.1 , f k |X is topologically

semi-conjugate to some irrational rotation h : S1 → S1, that is, there is a continuous

surjection ϕ : X → S1 such that hϕ = ϕ f k |X . By means of ϕ we define a map

ψ : U → S1 as follows. For any x ∈ U , taking an n ∈ Z+ such that f kn(x) ∈ X ,

and then we put ψ(x) = h−n ϕ f kn(x) . Write xn = f kn(x) . For any i ∈ N , we have

h−n−i ϕ f kn+ki(x) = h−n−i ϕ f ki(xn) = h−n−i h i ϕ(xn) = h−n ϕ f kn(x) . This means

that the definition of ψ(x) is independent of the choice of n . So we obtain a map

ψ : U → S1. This ψ is surjective, since ϕ = ψ |X is surjective. By (3) of Lemma

2.5, for any x ∈U , there exist an m ∈ N and an open neighborhood Z of x in U such

that f km(Z) ⊂ X , which implies that ψ |Z = h−m ϕ f km |Z is continuous. Thus ψ is

continuous. From hψ(x) = hh−n ϕ f kn(x) = h−n+1 ϕ f kn−k( f k(x)) = ψ f k(x) we get
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hψ = ψ f k |U . Hence f k |U is topologically semi-conjugate to the irrational rotation

h : S1 → S1. Thus the theorem is proven. �

Remark 4.13. Theorem 4.12 and (5) of Theorem 3.1 seem similarly, but there are

some differences between them. In (5) of Theorem 3.1, since the graph map f : G→G

has no periodic point, there exist a unique strongly f -invariant compact set X and an

n∈N∪{0} such that f n(G)⊂X . However, in Theorem 4.12, if f has periodic points,

then the f k-invariant set U is open in G and is not compact, and there is no n ∈N such

that f kn(U) is contained in the strongly f k-invariant compact set X = Xi j.
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[3] L. Alsedà, F. Gautero, J. Guaschi, J. Los, F. Mañosas, and P. Mumbrú, Patterns and minimal
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