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ABSTRACT. We establish two rigidity theorems for non-left-orderable group actions on
dendrites. Explicitly, letting X be a dendrite without infinite order points, we show that if
Γ is a non-virtually-left-orderable small group, then no Γ-action on X is almost free; and
if Γ is a higher rank lattice, then every Γ-action on X is a highly proximal extension of an
almost finite action.

1. INTRODUCTION

The notion of left-orderable group is closely related to the study of rigidity for higher
rank lattice actions. Recall that a group is left-orderable if it admits a total ordering which
is invariant by left translations; and is a higher rank lattice if it is an irreducible lattice
in a connected real semisimple Lie group with finite center, no compact factors and with
R-rank at least two. It was conjectured that every continuous action on the circle by a
higher rank lattice must factor through a finite group action (the so called 1-dimensional
Zimmer’s rigidity conjecture); this is equivalent to saying that every orbit of such actions
is finite. Burger-Monod, and Ghys proved independently the existence of finite orbits
for higher rank lattice actions on the circle ([5, 12]). This translates the conjecture into
an equivalent form: no higher rank lattice is left-orderable. The latter was answered
positively by Witte-Morris in [31] for finite index subgroups of SLn(Z) with n ≥ 3 and
by Deroin-Hurtado for any higher rank lattice in [7]. Recently there has been a great
progress on the Zimmer program for smooth higher rank lattice actions on manifolds
with dimensions ≥ 2. We do not plan to list all the related results here and just suggest
the readers to consult [4, 11] for the surveys.

A dendrite is a Peano curve containing no simple closed curves. There has been in-
tensively studied around group actions on dendrites very recently. One motivation is that
dendrites can appeare as the limit sets of some Klein groups, the structures of which
are closely related to the geometric properties of 3-dimensional hyperbolic manifolds
(see e.g. [3, 21]). Also, the compactifications of the Cayley graphs of free groups are
dendrites, which are important for understanding the algebraic properties of free group-
s. Group actions on the circle have been systematically investigated during the past few
decades [13, 23]. However, group actions on general curves lack of the same depth of
understanding. Dendrites and the circle lie on two opposite ends of Peano curves in
topologies. So, studying group actions on dendrites is a starting point for better under-
standing group actions on curves or continua of higher dimensions. Some people studied
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the Ghys-Margulis’ alternative for group actions on dendrites ([25, 18, 10]) and on totally
regular curves ([26]). One may consult [1, 14, 27] for the discussions around the struc-
tures of minimal sets for group actions on dendrites. The algebraic structures of dendrite
homeomorphism groups were investigated in [9].

The aim of the paper is to investigate the rigidity phenomena for non-left-orderable
group actions on dendrites. However, even for higher rank lattice actions on dendrites,
the exact analogy to the rigidity results by Witte-Morris and Deroin-Hurtado mentioned
above do not hold anymore. In fact, every countable infinite group can act faithfully
on a starlike dendrite of infinite order and every residually finite group admits a faithful
action on a dendrite without infinite order points (see Section 7 for examples). Despite
of these, the results we obtained indicate that if Γ is either a non-virtually-left-orderable
small group or a higher rank lattice and X is a dendrite without infinite order points, then
the actions of Γ on X are still very restrictive (a small group is a group containing no free
non-abelian subgroups).

Now, we start to introduce the main results explicitly. We call an action of a group G
on a topological space X is almost free if for every g∈G\{eG}, the fixed point set Fix(g)
of g is totally disconnected. A group G is virtually left-orderable if there is a finite index
subgroup of G that is left-orderable.

Theorem 1.1. Let Γ be a finitely generated small group and X be a nondegenerate den-
drite without infinite order points. If G is not virtually left-orderable, then Γ does not
admit an almost free action on X.

The proof of Theorem 1.1 relies on the existence of finite orbits for small group actions
on dendrites by Malyutin [18], Duchesne-Monod [10], and Glasner-Megrelishvili [14]
etc. and on the the following proposition which characterizes the left-orderability of a
finitely generated group via its actions on dendrites.

Proposition 1.2. Let Γ be a finitely generated group. Then Γ is left-orderable if and only
if it admits an almost free action on a nondegenerate dendrite leaving an end point fixed.

Duchesne-Monod proved the existence of finite orbits for higher rank lattice actions on
dendrites ([10]). Based on this result, we further describe the structures of higher rank
lattice actions on dendrites without infinite order points. We say a group action is almost
finite if it is the inverse limit of an inverse system consisting of finite actions (see Section
2.1 for the definition).

Theorem 1.3. Let Γ be a higher rank lattice acting on a nondegenerate dendrite X with
no infinite order points. Then there exists a nondegenerate subdendrite Y which is Γ-
invariant and satisfies the following items:

(1) There is an inverse system of finite actions {(Yi,Γ) : i = 1,2,3, . . .} with monotone
bonding maps φi : Yi+1→ Yi and with each Yi being a dendrite, such that (Y,Γ|Y ) is topo-
logically conjugate to the inverse limit (lim

←−
(Yi,Γ),Γ); particularly, the action is almost

finite.
(2) The first point map r : X→Y is a highly proximal extension; that is, for each y ∈Y ,

there is a sequence gi ∈ Γ with diam(gir−1(y))→ 0. In addition, if x ∈ X \Y , then r(x) is
an end point of Y with infinite orbit.
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The strategy to prove Theorem 1.3 is to analyze the semilinear left preoders on the
acting groups. It is known that the topology on R is determined by the unique complete
separable continuous linear order on it. Fixing an end point on a dendrite X , there is
a canonical semilinear order on X derived by the linear order on each arc connecting
the fixed end point. While every semilinear order with a countable dense subset and
supremum for each chain has a completion isomorphic to a dendrite ([9, Theorem 5.19]).
The definition of semilinear order and the relation with dendrites can be seen in [9, Section
5] for details. So, considering the group actions on dendrites, it will naturally lead to study
the semilinear order on groups. This helps us establish the following local property that
is crucial in proving Theorem 1.3.

Proposition 1.4. Let Γ be a higher rank lattice acting on a nondegenerate dendrite X. If
Γ fixes some end point z of X, then there is another point s ∈ X such that Γ fixes the arc
[z,s] pointwise.

We will prove Proposition 1.4 for Γ being a finite index subgroup of SLn(Z) with n≥ 3
and being a general higher rank lattice respectively. Though the former is only a special
case of the latter, the proofs rely on distinct techniques which have their own interests.

As a byproduct, we also get the following result on groups which generalizes a theorem
of Kopytov in [17, Theorem 2.7] that a group admitting a semilinear left partial order is
left-orderable.

Proposition 1.5. Let G be a group admitting a semilinear left preorder. Then there is
a canonical associated quotient group of G which is left orderable. In particular, if G
admits a semilinear left partial order, then G is left-orderable.

The paper is organized as follows. In section 2, we introduce some notions and results
around the structures of dendrites and orderings on groups. In section 3, we first give a
new characterization of left-orderability of a group via its actions on dendrites and then
by which afford a proof of Theorem 1.1. In section 4, assuming Proposition 1.4, we
prove Theorem 1.3. In section 5, inspired by some key ideas of Witte-Morris in [31],
we show Proposition 1.4 for finite index subgroups of SLn(Z) with n ≥ 3. In section 6,
we first study some properties of groups admitting semilinear left preorders and establish
Proposition 1.5. Then we show Proposition 1.4 in general case and complete the proof of
Theorem 1.3. Finally, in section 7, we give some examples for better understanding the
theorems obtained and restate some related open questions.

2. PRELIMINARIES

In this section, we will recall some notions and results around group actions, dendrites,
and left-orderability of a countable group. Particularly, we will introduce the dynamical
realization technique which is very useful in proving the left-orderability of a group.

2.1. Notions around group actions. Let G be a group and X be a topological space.
Recall that an action of G on X is a group homomorphism φ : G→ Homeo(X), where
Homeo(X) denotes the homeomorphism group of X ; we use the pair (X ,G) to denote this
action and use gx or g.x to denote φ(g)(x) for g ∈ G and x ∈ X . If ker(φ) = eG, we say
the action (X ,G) is faithful. We also call the action (X ,G) a system. For x ∈ X , the set
Gx := {gx : g ∈G} is called the orbit of x; a subset A of X is called G-invariant if Gx⊂ A
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for any x ∈ A; if Gx = {x}, then x is called a fixed point of G; we use Fix(G) to denote
the fixed point set of G. Suppose A is closed and G-invariant. Then we naturally have a
restriction action of G on A, which is denoted by (A,G|A) and is called a subsystem of
(X ,G). If φ(G) is finite, we say the action (X ,G) is finite. For two actions (X ,G) and
(Y,G), if there is a continuous surjection φ : X → Y with φ(gx) = gφ(x) for each g ∈ G
and x ∈ X , then φ is said to be a factor map or an extension map and (Y,G) is said to be a
factor of (X ,G) or (X ,G) is an extension of (Y,G); if φ is additionally a homeomorphism,
then φ is called a topological conjugation, and (X ,G), (Y,G) are called topologically
conjugate. An extension φ : (X ,G)→ (Y,G) is highly proximal if for each y ∈ Y , φ−1(y)
is contractible; that is, there is a sequence g1,g2, . . . in G such that diam(giφ

−1(y))→ 0
as i→ ∞.

If (Xi,G), i = 0,1,2, . . . , is a sequence of G actions associated to each i a factor map
φi : Xi+1 → Xi, then we say that these (Xi,G) together with φi’s form an inverse system
and call each φi a bonding map. The inverse limit of this inverse system is defined to be
the set

lim
←−

(Xi,G) :=

{
(x0,x1, . . .) ∈

∞

∏
i=0

Xi : φi(xi+1) = xi, for each i

}
together with a specified action by G: g.(x0,x1, . . .) = (gx0,gx1, . . .) for each g ∈ G; we
use (lim

←−
(Xi,G),G) to denote this specified action. It is known that if each Xi is a compact

metric space, then so is lim
←−

(Xi,G). We call a group action (X ,G) being almost finite if

it is topologically conjugate to an inverse limit (lim
←−

(Xi,G),G) with each (Xi,G) being a
finite action.

2.2. Dendrites and fixed point properties. By a continuum we mean a connected com-
pact metrizable space. A continuum is nondegenerate if it is not a single point. An
(nondegerate) arc is a continuum homeomorphic to the closed interval [0,1]. A den-
drite is a continuum that is locally connected and contains no simple closed curve. In
the case of a dendrite X , the Menger-Urysohn order (order for short) of a point x ∈ X
is just the cardinality of the set of connected components of X \ {x}, which is denoted
by ordX(x). A point of X is an end point, regular point, and branch point if its order is
one, two, and ≥ 3, respectively. If the orders of all points in X have an uniform upper
bound, then we say X is of finite order. For a,b ∈ X , we use [a,b] to denote the unique
arc (may be degenerate) connecting a and b; and use [a,b),(a,b],(a,b) to denote the sets
[a,b] \ {b}, [a,b] \ {a}, [a,b] \ {a,b} respectively. It is known that the end point set of a
nondegenerate dendrite X is nonempty; the regular point set of X is dense and uncount-
able. If Y is a subdendrite of X , then for each x ∈ X , there is a unique r(x) ∈ Y with
[x,r(x)]∩Y = {r(x)}; the map r so defined is called the first point map from X to Y . One
may refer to [22, Chapter X] for more details around dendrites.

Lemma 2.1. Let X be a nondegenerate dendrite and h : X → X be a homeomorphism. If
h fixes an end point e ∈ X, then h fixes another point o 6= e.

Proof. Take a point u 6= e ∈ X . Since e is an end point, h([e,u])∩ [e,u] = [e,v] for some
v 6= e ∈ X . Then there is w ∈ [e,v] such that either h(w) = v or h−1(w) = v. WLOG, we
assume that h(w) = v. Then [e,w]⊂ [e,h(w)]⊂ [e,h2(w)]⊂ ·· · . Let o = lim

i→∞
hi(w). Then

o 6= e and h(o) = o. �
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The following proposition will be used later.

Proposition 2.2. Let G be a finitely generated nilpotent group acting on a nondegenerate
dendrite X. Suppose that G fixes an end point z of X. Then G has another fixed point.

Proof. Take a subnormal series G=G0DG1D · · ·DGnDGn+1 = {e} such that Gi/Gi+1
is cyclic for each i. Take gi ∈ Gi \Gi+1 such that Gi/Gi+1 ∼= 〈giGi+1〉. Thus Gi =
〈gi, · · · ,gn〉 for each i = 0,1, · · · ,n.

By Lemma 2.1, there is a point in X \ {z} which is fixed by Gn. Now assume that
there is a point x ∈ X \ {z} fixed by Gi for some i ∈ {1, · · · ,n}. Since z is an end point,
there is y ∈ X \{z} such that gi−1([z,x])∩ [z,x] = [z,y]. Then there is some w ∈ [z,y] such
that either gi−1(w) = y or g−1

i−1(w) = y. WLOG, we may assume that gi−1(w) = y. Then
[z,w]⊂ [z,gi−1(w)]⊂ [z,g2

i−1(w)]⊂ ·· · . Let u = lim
k→∞

gk
i−1(w). Then u is fixed by gi−1.

We claim that u is fixed by Gi and hence is fixed by Gi−1. We may assume that
gi−1(x) 6= x, otherwise u = y = x is fixed by Gi. Since gi−1 normalizes Gi, the image
of any Gi-fixed point under gi−1 is also fixed by Gi. By the definition of y, it is the point
that the arc [z,gi−1(x)] branching away from the arc [z,x]. Now that z,x,gi−1(x) are fixed
by Gi, so is y. Further, each gk

i−1(w) is fixed by Gi and hence u is fixed by Gi.

By induction, there is some point in X \{z} fixed by G. �

The following theorem is due to Duchesne-Monod ([10]).

Theorem 2.3. Let Γ be a higher rank lattice acting on a dendrite X. Then either Γ has a
fixed point or has an invariant arc.

2.3. Ordering relations on groups. Recall that a binary relation � on a set X is a pre-
order if it satisfies that

(O1) x� x for any x ∈ X ;
(O2) if x� y and y� z then x� z for any x,y,z ∈ X .

If, in addition, � satisfies that

(O3) if x� y and y� x then x = y for any x,y ∈ X ,

then � is a partial order on X .

A preorder (resp. partial order) on X is called a total preorder (resp. total order) on X
if

(O4) any x,y ∈ X are comparable; that is either x� y or y� x.

Let G be a group with e being the unit. A preorder/ partial order/ total order � on G is
said to be left-invariant if

(O5) for any x,y ∈ X and g ∈ G, gx� gy whenever x� y.

Finally, we say � is a semilinear left preorder (resp. semilinear left partial order) if it
satisfies (O1), (O2), (O5) (resp. (O1),(O2),(O3),(O5)) and

(O6) for any x ∈ G, any two elements of {y ∈ G : y� x} are comparable;
(O7) for any x,y ∈ G, there is some z ∈ G with z� x and z� y.
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2.4. Topologies on left-ordering spaces. We recall the topology on the ordering space
of a countable group introduced by Sikora in [28]. Let Γ be a countable group and let
∆ = {(γ,γ) : γ ∈ Γ}. A total order relation ≺ on Γ corresponds to a unique point ϕ ∈
{−1,1}Γ×Γ\∆ satisfying

(R) (Reflexivity) ϕ(g,h) =−ϕ(h,g);
(T) (Transitivity) if ϕ( f ,g) = ϕ(g,h) = 1, then ϕ( f ,h) = 1;

by setting ϕ(g,h) = 1 whenever g� h. Then the set O(Γ) of total orders on Γ corresponds
to a subset of {−1,1}Γ×Γ\∆. Taking the discrete topology on {−1,1} and endowing
{−1,1}Γ×Γ\∆ with the product topology, the subset consisting of ϕ satisfying (R) and
(T) is closed; this leads to a compact metrizable topology on O(Γ). Furthermore, for
ϕ ∈ O(Γ), if it satisfies additionally that

(L) (Left-invariance) ϕ( f g, f h) = ϕ(g,h) for any f ,g,h ∈ Γ with g 6= h,
then the ordering ≺ corresponding to ϕ is left invariant, which is called a left-ordering
on Γ. According to the condition (L), the space L O(Γ) of left-orderings on Γ forms a
closed subspace of O(Γ). Clearly, Γ is left-orderable if and only if L O(Γ) 6= /0.

2.5. Dynamical realizations. The following proposition is a dynamical characterization
of left-orderability (see e.g. [13, 23]).

Proposition 2.4. Let Γ be a countable group. Then Γ is left-orderable if and only if it
admits a faithful action on the real line R by orientation-preserving homeomorphisms.

The proof of the necessity part of Proposition 2.4 uses the dynamical realization tech-
nique, which will be used later. So, we outline the construction process here.

Suppose Γ is a left-orderable group with a left-ordering�. We enumerate Γ as {g1,g2, ...}.
Define a map t : Γ→R by the induction process: let t(g1)= 0 and suppose that t(g1), ..., t(gn)
have been defined; if gn+1 is greater than (resp. smaller than) t(g1), ..., t(gn), then let
t(gn+1) = max{t(g1), ..., t(gn)}+1 (resp. min{t(g1), ..., t(gn)}−1); if gn+1 lies between
gi,g j and gi,g j are adjacent for some i 6= j∈{1, ...,n}, then let t(gn+1)= (t(gi)+t(g j))/2.
For g ∈ Γ, define the action of g on t(Γ) by letting gt(g′) = t(gg′) for each g′ ∈ G; then
extend this action to the closure t(Γ) and extend further to the whole line by mapping
affinely on the maximal intervals in R \ t(Γ). Thus we obtain an orientation-preserving
faithful action of Γ on R. This construction process is called the dynamical realization.

2.6. Some facts on groups.

Lemma 2.5. Let H be a subgroup of G of finite index. Then there is a normal subgroup
K of G that is contained in H and has finite index in G. Further, if [G : H] ≤ k for some
k > 0, then we can assume [G : K]≤ k!.

Proof. Assume that the index of H in G is n > 0. Then the canonical action of G on
the coset space G/H induces a homomorphism φ : G→ Sym(n), where Sym(n) denotes
the permutation group of n elements. Then ker(φ) ≤ H and ker(φ) E G. Further, [G :
ker(φ)]≤ n!≤ k!. Thus ker(φ) is just what we are looking for. �

Lemma 2.6. [8, Proposition 5.11] Let G be a finitely generated group. For any n ∈ N,
there are finitely many subgroups of G with indices less than n.
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The following is the well-known Margulis’ Normal Subgroup Theorem (see e.g. [19,
Chapter IV] or [32, Theorem 8.1.2]).

Theorem 2.7. Let G be a connected real semisimple Lie group with finite center and no
compact factors, let Γ be an irreducible lattice of G. Assume that R-rank(G) ≥ 2. Then
every normal subgroup of Γ either is contained in the center of G and hence is finite or
has finite index in Γ.

The following theorem is due to Deroin-Hurtado ([7]).

Theorem 2.8. No higher rank lattice is left-orderable. (This is equivalent to saying that
every orientation-preserving action on [0,1] by a higher rank lattice is trivial.)

Finally, note that higher rank lattices are finitely generated since they have Kazhdan’s
Property (T) (see [16, Proposition 5.7]).

3. LEFT-ORDERABILITY AND GROUP ACTIONS ON DENDRITES

In this section, we will give a characterization of the left-orderability for a group Γ

through its actions on dendrites, by which we give the proof of Theorem 1.1.

3.1. Local conditions for left-orderability. Let Γ be a countable group and B be a
nonempty subset of Γ. If ϕ ∈ {−1,1}Γ×Γ\∆ satisfying

(RB) ϕ(g,h) =−ϕ(h,g), for any g,h ∈ B with g 6= h;
(TB) if ϕ( f ,g) = ϕ(g,h) = 1, then ϕ( f ,h) = 1, for any f ,g,h ∈ B with f 6= g, f 6=

h,g 6= h;
then ϕ defines a total ordering �ϕ on B by setting g �ϕ h if and only if ϕ(g,h) = 1 for
any g 6= h ∈ B. Then the set

O(Γ;B) :=
{

ϕ ∈ {−1,1}Γ×Γ\∆ : ϕ satisfies RB,TB

}
is closed in {−1,1}Γ×Γ\∆ with respect to the topology given in Section 2.4. If (Bn)

∞
n=1 is

an increasing sequence of subsets of Γ with Γ =
⋃

∞
n=1 Bn, then

⋂
∞
n=1 O(Γ;Bn) = O(Γ).

Now, let F,B,B′ be nonempty subsets of Γ with B⊂ B′ and FB⊂ B′, where FB = { f b :
f ∈ F,b ∈ B}. For ϕ ∈ O(Γ;B′), we say ϕ is (F,B)-invariant, if it satisfies
(LF,B) ϕ( f g, f h) = ϕ(g,h) for any f ∈ F and g 6= h ∈ B.

Then the set

LFO(Γ;B,B′) :=
{

ϕ ∈ {−1,1}Γ×Γ\∆ : ϕ satisfies RB′,TB′,LF,B

}
is also closed in {−1,1}Γ×Γ\∆.

Let LFO(Γ) denote the set of total orderings on Γ that are invariant under the left
translations of F , i.e.,

LFO(Γ) =
{

ϕ ∈ {−1,1}Γ×Γ\∆ : ϕ satisfies R,T,LF,Γ

}
,

where the conditions R and T are as in Section 2.4. It is clear that LFO(Γ) is also closed
in {−1,1}Γ×Γ\∆ and

L O(Γ) =
⋂
{LFO(Γ) : F is a finite subset of Γ}.
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If (Bn)
∞
n=1 is a sequence of subsets of Γ satisfying FBn∪Bn ⊂ Bn+1 for each n≥ 1 and

Γ =
⋃

∞
n=1 Bn, then

LFO(Γ) =
∞⋂

n=1

LFO(Γ;Bn,Bn+1).

According to the above discussion, we have

Lemma 3.1. Let Γ be a countable group. Suppose F is a nonempty finite subset of Γ

and (Bn)
∞
n=1 is a sequence of subsets of Γ satisfying FBn ∪Bn ⊂ Bn+1 for each n ≥ 1

and Γ =
⋃

∞
n=1 Bn. If for each n ≥ 1, there is a total ordering �n on Bn+1 that is (F,Bn)-

invariant, i.e., f g �n f h whenever g �n h for any f ∈ F and g,h ∈ Bn, then there is an
F-invariant total ordering on Γ. Further, if, for each finite subset E of Γ, there is an
E-invariant total ordering on Γ, then Γ is left-orderable.

3.2. Characterizations of left-orderability via actions on dendrites. In this section,
we will give an equivalent characterization of left-orderability for a finitely generated
group through its actions on dendrites. Then we complete the proof of the first main
theorem by using this characterization.

Proposition 3.2. Let Γ be a finitely generated group. Then Γ is left-orderable if and only
if it admits an almost free action on a nondegenerate dendrite with an end point fixed.

Proof. (=⇒) Let� be a left-ordering on Γ and numerate Γ as {g1,g2,g3, . . .}. Then by the
dynamical realization as in Section 2.5, we get an orientation-preserving faithful action of
Γ on R. Extending this action to the two points compactification I := {−∞}∪R∪{+∞}
by letting −∞ and +∞ fixed by each g ∈ Γ, we get an action of Γ on the arc I.

We claim that this extended action on I is almost free. Otherwise, there is some
g 6= e ∈ Γ with the fixed point set Fix(g) of g not totally disconnected; so, it contains
a nondegenerate arc J. By the definition of dynamical realization, we see that there is
some maximal open interval (a,b) of R\ t(Γ) with J ⊂ [a,b], where t is as in Section 2.5.
Since g fixes a and b, {a,b}∩ t(Γ) = /0. Thus a and b are accumulation points of t(Γ).
Take g′,g′′ ∈ Γ with 0 < a− t(g′) < (b− a)/3 and 0 < t(g′′)− b < (b− a)/3. Suppose
g′= gm and g′′= gn for some indices m,n. Let k = max{n,m} and let n′,m′ ∈ {1,2, . . . ,k}
be such that t(gm′) is maximal in {t(g1), t(g2), . . . , t(gk)} ∩ (−∞,a) and t(gn′) is min-
imal in {t(g1), t(g2), . . . , t(gk)} ∩ (b,+∞) respectively. Let i be the first index so that
i > max{m′,n′} and gm′ ≺ gi ≺ gn′ . Then t(gi) = (t(gm′)+ t(gn′))/2 ∈ (a,b), which is a
contradiction.

Thus the action of Γ on the arc I is almost free and I is also a nondegenerate dendrite
with an end point fixed by each g ∈ Γ.

(⇐=) Let z∈ X be an end point of X fixed by Γ. Let {g±1 , . . . ,g
±
k } be a set of generators

for Γ. By Lemma 2.1, for each i ∈ {1, . . . ,k}, there is a point ti ∈ X \{z} fixed by gi. Let
T be the smallest subcontinuum of X containing {z, t1, . . . , tn}, which is a subtree of X .
Let I denote the intersection of all arcs [z, ti], i = 1, . . . ,k. Since z is an end point, the arc I
is not reduced to a point. We write I = [z, t] and give a canonical ordering < on [z, t] with
t > z.

Fix a finite subset F of Γ. Choose a sequence (Bn)
∞
n=1 of finite subsets of Γ satisfying

FBn∪Bn ⊂ Bn+1 for each n≥ 1 and Γ = ∪∞
n=1Bn. It is clear that such sequence exists.
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Given n≥ 1, there is a point s ∈ (z, t) such that g([z,s])⊂ [z, t) for each g ∈ Bn+1. Now
choose a dense sequence (xi)

∞
i=1 in (z,s). For each pair of two distinct g,h ∈ Bn+1, define

g≺ h if the smallest j ≥ 1 for which g(x j) 6= h(x j) is such that g(x j)< h(x j) with respect
to the canonical ordering < on [z, t]. Indeed, such j exists by the almost freeness of the
Γ-action. It is easy to verify that ≺ is a total ordering defined on Bn+1. Note that for each
g ∈ Bn+1, the restriction of f to (z,s) is increasing with respect to < on [z, t]. Thus for
every f ∈ F and g,h ∈ Bn, we have f g ≺ f h whenever g ≺ h. Hence the ordering � on
Bn+1 is (F,Bn)-invariant.

According to Lemma 3.1, we conclude that G is left-orderable. �

3.3. Proof of Theorem 1.1. Now, we are ready to prove the first main theorem of the
paper. We need the following alternative for the group actions on dendrites.

Lemma 3.3. [10, 18, 25] Let G be a countable group acting on a dendrite X. Then either
G preserves an arc (which may degenerate to a singleton) or G contains a non-abelian
free subgroup.

Proof of Theorem 1.1. Assume to the contrary that the action (X ,Γ) is almost free. Ac-
cording to Lemma 3.3, Γ either has a fixed point or preserves a nondegenerate arc, since
Γ is a small group.

We discuss it into two cases:

Case 1. Γ preserves a nondegenerate arc I. Fix an orientation on I. Then there is a
subgroup Γ′ of Γ with index at most two such that the restriction of Γ′ to I preserves the
orientation of I. Let φ : Γ′→ Homeo+(I) be the restriction of the Γ′-action on I, where
Homeo+(I) be the orientation preserving homeomorphism group of I. If the φ is faithful
then Γ′ is left-orderable by Proposition 2.4, which is a contradiction. Otherwise, the
kernel ker(φ) is nontrivial and every element in ker(φ) fixes I pointwise. This contradicts
the almost freeness of the action (X ,Γ).

Case 2. Γ has a fixed point z ∈ X . Since the order of z is finite, there are finitely many
connected components of X \{z}. Fix a connected component C of X \{z}. Let Γ′′ be the
subgroup of Γ that preserves C, i.e.

Γ
′′ = {γ ∈ Γ : γ(C) =C}.

Then Γ′′ has finite index in Γ. Consider the restriction action of Γ′′ to Y = C = C∪{z}.
Noting that z is an end point of Y fixed by Γ′′ and Γ′′ is finitely generated, Γ′′ is left-
orderable by Proposition 3.2. This contradicts our assumption that Γ is not virtually left-
orderable. �

Here, we give some remarks on the virtual left-orderability condition in Theorem 1.1.
One may wonder that whether there are finitely generated small groups that are not vir-
tually left-orderable. The answer is yes. Indeed, the Tarski monster group is such an
example, which is an infinite simple group and every element of which is a torsion. How-
ever, we do not know whether there exist such examples of torsion-free. We should note
that a finitely generated torsion-free solvable group is virtually left-orderable. This can be
seen as follows. On the one hand, a solvable group G is left-orderable if and only if it is
locally indicable, which means that every nontrivial finitely generated subgroup of G has
a homomorphism onto Z ([6, Theorem A]). On the other hand, every finitely generated
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solvable group is either finite or has a finite index subgroup that has a homomorphism
onto Z ([2, Lemma 5.3]). Combining these two aspects, if a finitely generated solvable
group is torsion-free, then it has a finite index subgroup that is left-orderable.

4. PROOF OF THEOREM 1.3

In this section, we prove Theorem 1.3 assuming Proposition 1.4. We need the following
simple lemma.

Lemma 4.1. Let Γ be a higher rank lattice acting on a dendrite X. Then the fixed point
set Fix(Γ) of Γ is a subdendrite of X.

Proof. We first claim that Fix(Γ) 6= /0. If not, Γ leaves an arc I invariant by Theorem
2.3. Then there is γ ∈ Γ and a subgroup Γ′ ≤ Γ such Γ = Γ′ ∪ γΓ′ and Γ′ preserves the
orientation of I. By Theorem 2.8, the restriction action of Γ′ to I is trivial. Note that γ has
a fixed point p in I, which is then a fixed point of Γ. Thus the claim holds.

Now we show that Fix(Γ) is connected. Let p,q be two points in Fix(Γ). Then the arc
[p,q] is preserved by Γ. It follows from Theorem 2.3 that [p,q]⊂ Fix(Γ). Thus Fix(Γ) is
connected.

Clearly, Fix(Γ) is closed. Therefore, Fix(Γ) is a subdendrite of X . �

Proof of Theorem 1.3. In the following, we will define, for each i = 0,1,2, . . . , a subden-
drite Xi of X and a normal subgroup Γi of Γ with finite index, satisfying that:

(1) {p}= X0 ⊂ X1 ⊂ X2 ⊂ ·· · with p ∈ Fix(Γ), and Γ = Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ ·· · ;
(2) For each i≥ 1, Xi = Fix(Γi) that is a nondegenerate Γ-invariant subdendrite of X ,

and (Xi,Γ|Xi) is a finite action;
(3) The first point map φi : Xi+1→ Xi is a factor map from (Xi+1,Γ|Xi+1) to (Xi,Γ|Xi);
(4) For each i≥ 0, the image of X \Xi+1 under the first point map ri+1 : X → Xi+1 is

contained in Xi+1 \{x ∈ Xi : ordX(x)≤ i+1}.

First, according to Lemma 4.1, we can take a fixed point p of Γ. Let X0 = {p} and let
Γ0 = Γ; then X0 is Γ0-invariant. Since the order of p is finite, the number of connected
components of X \ {p} is finte; thus there is a finite index normal subgroup Γ1 of Γ

which leaves each component of X \{p} invariant. For each such component C, applying
Proposition 1.4 to (C∪{p},Γ1|C∪{p}), there is a point sC ∈C such that the arc [p,sC] is
fixed pointwise by Γ1 (note that p is an end point of C∪{p}).

Let X1 = Fix(Γ1). Then, by Lemma 4.1, X1 is a nondegenerate subdendrite of X .
Since Γ1 is normal in Γ, X1 is Γ-invariant. Thus the action of Γ on X1 factors through
Γ/Γ1 action, which is finite. It is clear that the first point map φ0 : X1 → X0 satisfies
φ0(gx) = gφ0(x) = p for each g ∈ G and x ∈ X1.

Now suppose that we have defined X0, . . . ,Xm and Γ = Γ0 D Γ1 D · · · D Γm, for some
positive integer m, satisfying (1)-(4) above. Let Bm = {x ∈ Xm : ordX(x)≤ m+1} and let
rm : X → Xm be the first point map. Since Xm is a nondegenerate subdendrite of X , there
must be some point x ∈ Xm with ordX(x) = 2 and hence Bm 6= /0. For each point x ∈ Bm,
the preimage Yx := r−1

m ({x}) is a sub-dendrite of X and has a unique intersecting point x
with Xm. By assumption, every x ∈ Xm is fixed by Γm. For each x ∈ Bm, the cardinality
of the set Comp(Yx− x) of components of Yx \ {x} is no greater than m+ 1. Thus there
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is a finite index subgroup Γm,x of Γm such that Γm,x leaves each component of Yx \ {x}
invariant and [Γm : Γm,x] ≤ m+ 1. By Lemma 2.5, for each x ∈ Bm, there is a subgroup
Γ′m,x ≤ Γm,x which is normal in Γm and [Γm : Γ′m,x]≤ (m+1)!. Applying Lemma 2.6, the
subgroup Γm+1 =

⋂
x∈Bm

Γ′m,x ≤ Γm has finite index in Γ and is normal in Γ.

By the definition of Γm+1, Xm is contained in the fixed point set Fix(Γm+1) of Γm+1.
Let Xm+1 be the connected component of Fix(Γm+1) that contains Xm. Since p ∈ Xm+1 is
fixed by Γ and Γm+1 is normal in Γ, we have that Γ leaves Xm+1 invariant. By Proposition
1.4, Xm+1 satisfies (4). It is clear that (1)-(3) hold for Xm+1.

In such way, we inductively define the desired sequence X0 ⊂ X1 ⊂ ·· · and Γ = Γ0 D
Γ1 D · · · satisfying (1)-(4). Let Y = ∪∞

i=0Xi. Then Y is a Γ-invariant dendrite and topolog-
ically conjugate to the inverse limit (lim

←−
(Xi,Γ),Γ)) by [22, Theorem 10.36]. Since each

(Xi,Γ|Xi) is a finite action, (Y,Γ) is almost finite.

It remains to show that the first point map r : X → Y is a highly proximal extension. It
is obvious in case of Y = X . So we suppose that Y 6= X .

Claim 1. For each m ≥ 1 and x ∈ Xm+1 \Xm, there are two distinct connected com-
ponents C,C′of X \ {rm(x)} and g ∈ Γm such that x ∈ C,g(x) ∈ C′ and C∪C′ ⊂ X \Xm,
where rm : X → Xm is the first point map.

Proof of Claim 1. Since x∈Xm+1\Xm and Xm =Fix(Γm), we have [x,rm(x))∩Fix(Γm)=
/0. This together with Proposition 1.4 implies that there exists g∈Γm such that g[x,rm(x))∩
[x,rm(x)) = /0. Let C and C′ be the components of X \ {rm(x)} containing x and g(x) re-
spectively. Clearly, C 6=C′ and C∪C′ ⊂ X \Xm, since Xm = Fix(Γm).

Claim 2. For any x ∈ X \Y , the orbit of r(x) is infinite.

Proof of Claim 2. By the definition of Xm and Proposition 1.4, we see that r(x) ∈ Y \
∪∞

i=0Xi. From Property (4), there is a subsequence (m j) with rm j+1(x)∈Xm j+1 \Xm j , where
rm j+1 : X → Xm j+1 is the first point map. It follows from Claim 1 that there are gm j ∈ Γm j

and Cm j 6=C′m j
∈ Comp(X \{rm j(x)}) such that rm j+1(x) ∈Cm j and gm j(rm j+1(x)) ∈C′m j

.
Note that Cm1 ⊃Cm2 ⊃Cm3 ⊃ ·· · and C′m j

⊂Cm j−1 for each j. Thus we have

rm j+1(x) ∈Cm j ,

gm jrm j+1(x) ∈C′m j
⊂Cm j−1,

gm j−1gm jrm j+1(x) ∈C′m j−1
⊂Cm j−2,

· · · · · · · · ·
gm1gm2 · · ·gm jrm j+1(x) ∈C′m1

,

which imply that the arcs

[r(x),rm j+1(x)], gm j [r(x),rm j+1(x)], . . . ,gm1gm2 . . .gm j [r(x),rm j+1(x)]

are mutually disjoint. In particular,

r(x),gm jr(x),gm j−1gm jr(x), . . . ,gm1gm2 · · ·gm jr(x)

are pairwise distinct. By the arbitrariness of j, we see that the orbit of r(x) is infinite.

Noting that any sequence of mutually disjoint subcontinua of a dendrite forms a null
sequence (see [30, V.2.6]), it follows from Claim 2 that r : X →Y is highly proximal. �
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5. PROOF OF PROPOSITION 1.4 FOR FINITE INDEX SUBGROUPS OF SLn(Z)

Let G be a countable group. Recall that a left total preorder � on G is a binary relation
on G satisfying

(1) for any g,h ∈ G, either g� h or h� g;
(2) for any f ,g,h ∈ G, if f � g and g� h, then f � h;
(3) for any f ,g,h ∈ G, if g� h, then f g� f h.

Let � be a left total preorder on G and g,h ∈ G. We say g� h if either gk � h for all
k ∈ Z or gk � h−1 for all k ∈ Z. We write g� h if g 6� h. By (1), there is no element g ∈G
satisfying g� g.

The following lemma is similar to Lemma 3.2 in [31].

Lemma 5.1. Let � be a left total preorder on a group G. If a,b,c ∈ G satisfies [a,b] =
a−1b−1ab = cr for some r ∈ Z\{0} and c commutes with both a and b, then either c� a
or c� b.

Proof. By the definition of the relation�, for any g,h ∈G, g� h is equivalent to g±1�
h±1. Thus we may assume that e := eG � a,b,c and r > 0; and assume to the contrary that
c 6� a and c 6� b. Thus there are some p,q ∈ Z+ such that cp � a and cq � b. According
to the left invariance, we have

e≺ a−1cp, e≺ b−1cq.

Noting that e� a, e� b, e� c, we have for sufficiently large positive integer m:

e ≺ (b−1cq)m(a−1cp)mambm

= [bm,am]cm(p+q)

= c−m2r+m(p+q)

� e.

This is a contradiction. �

Lemma 5.2. Suppose that Γ is a finite index subgroup of SL3(Z). If Γ acts on a nonde-
generate dendrite X and fixes an end point z, then there is a point s ∈ X \ {z} such that
the arc [z,s] is fixed by Γ pointwise.

Proof. Since Γ has finite index in SL3(Z), there is some positive integer r such that Γ

contains the following six elements

a1 =

1 r 0
0 1 0
0 0 1

 , a2 =

1 0 r
0 1 0
0 0 1

 , a3 =

1 0 0
0 1 r
0 0 1

 ,
a4 =

1 0 0
r 1 0
0 0 1

 , a5 =

1 0 0
0 1 0
r 0 1

 , a6 =

1 0 0
0 1 0
0 r 1

 .
Let Γi = 〈ai−1,ai,ai+1〉 for each i ∈ Z/6Z. A straightforward verification shows that

[ai,ai+1] = e and [ai−1,ai+1] = a±r
i for each i ∈ Z/6Z. Now, by Lemma 2.2, there is a

point si different from z that is fixed by Γi for each i ∈ Z/6Z.
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For each i ∈ Z/6Z, fix a linear order ≤[z,si] on [z,si] with z < si. For every x ∈ (z,si),

define a left total preorder �(i)
x on Γi by setting

γ1 �
(i)
x γ2 if and only if γ1(x)≤[z,si] γ2(x), for any γ1,γ2 ∈ Γi.

Set I =∩6
i=1[z,si) and take a point y 6= z ∈ I such that a±1

j [z,y]⊂ I for each j ∈ {1, · · · ,6}.
By Lemma 5.1, for each i,

either ai�(i)
y ai−1 or ai�(i)

y ai+1.

Claim. ai(y) = y for each i ∈ {1, · · · ,6}.
Proof of the Claim. To the contrary, we may assume that a1(y) 6= y. Note that either

a1�
(1)
y a6 or a1�

(1)
y a2. We discuss into two cases.

Case 1. a1�
(1)
y a2. Then, by definition, either ak

1 �
(1)
y a2 for all k ∈ Z or ak

1 �
(1)
y a−1

2
for all k ∈ Z. In either case, we have ak

1(y) ≤[z,s1] max{a2(y),a−1
2 (y)}, for all k ∈ Z. If

a2(y) = y then a1(y) = y as well; this contradicts the assumption. Thus we have that
a2(y) 6= y and hence a2(y) 6= a−1

2 (y). So a2 6�
(2)
y a1. Further we have that a2 �

(2)
y a3.

Similarly, if a3(y) = y then a2(y) = y, which implies that a1(y) = y; this is a contradiction.
Thus a3(y) 6= y and then a3 6�

(3)
y a2. Inductively, we have

a1�
(1)
y a2�

(2)
y a3�

(3)
y a4�

(4)
y a5�

(5)
y a6�

(6)
y a1.

By the definitions of these quasi-orders and the choice of y, we have

sup
k∈Z

ak
1(y)≤I max{a2(y),a−1

2 (y)} ≤I max{a3(y),a−1
3 (y)} ≤I max{a4(y),a−1

4 (y)}

≤I max{a5(y),a−1
5 (y)} ≤I max{a6(y),a−1

6 (y)} ≤I max{a1(y),a−1
1 (y)},

where≤I is the natural linear order on I with respect to which z is minimal. Thus we have
a1(y) = y, which contradicts our assumption. So the claim holds in this case.

Case 2. a1�
(1)
y a6. Similar to Case 1, we have

a1�
(1)
y a6�

(6)
y a5�

(5)
y a4�

(4)
y a3�

(3)
y a2�

(2)
y a1,

and hence

sup
k∈Z

ak
1(y)≤I max{a6(y),a−1

6 (y)} ≤I max{a5(y),a−1
5 (y)} ≤I max{a4(y),a−1

4 (y)}

≤I max{a3(y),a−1
3 (y)} ≤I max{a2(y),a−1

2 (y)} ≤I max{a1(y),a−1
1 (y)}.

We also have a1(y) = y and the claim holds in this case.

Let Γ′ = 〈a1,a2,a3,a4,a5,a6〉. By a result of Tits in [29] (also refer to [20]), we know
that Γ′ has finite index in Γ. Note that the claim holds for any y ∈ I with a±1

j [z,y] ⊂ I
for each j ∈ {1, · · · ,6}. Thus there is a t ∈ X \ {z} such that the arc [z, t] is fixed by Γ′

pointwise. Now the set Γ[z, t] = {γ[z, t] : γ ∈ Γ} consists of finitely many arcs. Since z is
an end point fixed by Γ, there is some s ∈ X \ {z} with [z,s] = ∩Γ[z, t]; and [z,s] is then
fixed by Γ pointwise. �

Now we can prove Proposition 1.4 for a class of special lattices. We restate it as follow.
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Proposition 5.3. Suppose that Γ is a finite index subgroup of SLn(Z) with n≥ 3. If Γ acts
on a nondegenerate dendrite X and fixes an end point z, then there is a point s ∈ X \{z}
such that the arc [z,s] is fixed by Γ pointwise.

Proof. Let ui, j be the matrix in SLn(Z) with 1’s along the diagonal and at the entry (i, j)
and 0’s elsewhere. Since Γ has finite index in SLn(Z), there is an `∈Z+ such that u`i, j ∈ Γ

for each i, j ∈ {1, · · · ,n}, i 6= j. Given 1≤ i < j ≤ n−1, let

a1 = u`i, j, a2 = u`i, j+1, a3 = u`j, j+1, a4 = u`j,i, a5 = u`j+1,i, a6 = u`j+1, j.

A straightforward check shows that they also satisfy that [ai,ai+1] = e and [ai−1,ai+1] =
a±r

i for each i ∈ Z/6Z. Applying the proof of Lemma 5.2 to the group Γi, j = 〈a1, · · · ,a6〉,
there is some si, j ∈ X \ {z} such that Γi, j fixes the arc [z,si, j] pointwise. Let t ∈ X \ {z}
be such that [z, t] =

⋂
1≤i< j≤n−1[z,si, j]. Then the arc [z, t] is fixed pointwise by Γi, j, for

each 1 ≤ i < j ≤ n− 1. Now let Γ′ = 〈u`i, j : 1 ≤ i, j ≤ n, i 6= j〉. Then [z, t] is fixed by Γ′

pointwise, by noting that Γ′ = 〈Γi, j : 1≤ i < j ≤ n−1〉. Recall that Γ′ has finite index in
SLn(Z) and hence in Γ (see [29] or [20]). Thus the set Γ[z, t] = {γ[z, t] : γ ∈ Γ} consists of
finitely many arcs. Since z is an end point fixed by Γ, there is some s ∈ X \{z} such that
[z,s] = ∩Γ[z, t] and [z,s] is fixed by Γ pointwise. �

6. PROOF OF PROPOSITION 1.4 FOR GENERAL CASE

6.1. Some basic facts of semilinear left preorder. The following characterization of
semilinear left preorder is similar to [17, Theorem 1.1]. Recall the definition of semilinear
left preorder is given in section 2.3.

Proposition 6.1. Let � be a semilinear left preorder on a group G. Then the positive
cone P := {g ∈ G : e� g} of � has the following properties:

(P1) P is a semigroup;
(P2) P∩P−1 is a subgroup of G;
(P3) G = P−1 ·P;
(P4) P ·P−1 ⊆ P∪P−1.

If � is further a partial order, then
(P2’) P∩P−1 = {e};

is further a total preorder, then
(P5) G = P∪P−1.

Conversely, a subset P of G satisfying (P1)-(P4) (resp. (P1)(P2’)(P3)(P4)) determines a
semilinear left preorder (resp. semilinear left partial order) on G.

Proof. (=⇒) (P1) and (P2) are direct from the definition of semilinear left preorder.

To prove (P3), let g ∈ G. Take u ∈ G with u� e and u� g by (O7). Then g = u(u−1g)
and e� u−1g. So, G⊂ P−1 ·P. The inclusion P−1 ·P⊂ G is clear.

To prove (P4), let x,y ∈ P. Then x−1 � e and y−1 � e. From (O6), either x−1 � y−1 or
y−1 � x−1, which implies xy−1 ∈ P∪P−1.

(P2’) and (P5) are clear.

(⇐=) Define x� y if x−1y ∈ P. We only check (O6) and (O7), the others are direct.
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For (O6), let x,y,z ∈ G be such that x � z and y � z. Then x−1z ∈ P and z−1y ∈ P−1.
By (P4), x−1y = x−1z · z−1y ∈ P∪P−1. This means either x� y or y� x.

For (O7), let x,y ∈ G. By (P3), we have x−1y = a ·b, where a ∈ P−1 and b ∈ P. Then
a� e and a� x−1y, which implies xa� x and xa� y.

�

According to Proposition 6.1, we also say that a subsemigroup P of G satisfying (P1)-
(P4) is a semilinear left preorder on G.

Lemma 6.2. Let P be a semilinear left preorder on G.
(1) For any q ∈ P, we have q(P∪P−1)q−1 ⊂ P∪P−1.
(2) For any g ∈ G, we have {x ∈ G : x� g}= gP−1.
(3) Let w be a nontrivial word composed by some elements of P. If w is in P∩P−1

then every letter occurring in w is in P∩P−1.

Proof. (1) For any x ∈ P, we have qxq−1 ∈ qPq−1 ⊂ P ·P−1 ⊂ P∪P−1 by (P4). For any
x ∈ P−1, we have xq−1 ∈ P−1. Thus qP−1q−1 ⊂ P ·P−1 ⊂ P∪P−1.

(2) If x� g then g−1x ∈ P−1 and hence x = g(g−1x) ∈ gP−1. For any y ∈ P−1, we have
gy� g. Thus (2) holds.

(3) Set H = P∩P−1 and w = g1 · · ·gn with g1, · · · ,gn ∈ P. To the contrary, assume that
gi /∈ H for some i ∈ {1, · · · ,n}. Then gi � e and

w = g1 · · ·gn � g1 · · ·gn−1 � ·· · � g1 · · ·gi

� g1 · · ·gi−1 � e.

This contradicts that w is in H. Hence each gi is in H. �

6.2. Left orderability and semilinear left preorders.

Definition 6.3. Let � be a semilinear preorder on a set X . A subset F ⊂ X is coinitial if
for any x ∈ X there is some y ∈ F with y� x.

For a subset S of a group G, we use sgr(S) to denote the semigroup generated by S. It
was shown in [17, Theorem 2.7] that a group admitting a semilinear left partial order is
left-orderable. Now we generalize it to the case of preorder.

Proposition 6.4. Let G be a group admitting a semilinear left preorder � and let P be its
positive cone. Set H = P∩P−1 and H̃ =

⋃
p∈P

⋂
q−1�p−1 q−1Hq. Then

(1) H̃ is a normal subgroup of G;
(2) if G is finitely generated and H 6= G, then H̃ 6= G;
(3) the quotient G/H̃ is left-orderable.

Proof. (1) From (P2), H is a subgroup of G; thus x ∈ H̃ implies x−1 ∈ H̃ by the definition.
Let x,y∈ H̃. Suppose that x∈

⋂
q−1�p−1

1
q−1Hq and y∈

⋂
q−1�p−1

2
q−1Hq for some p1, p2 ∈

P. Since p−1
1 and p−1

2 are comparable by (O6) in section 2.3, we may assume that p−1
1 �

p−1
2 . Thus y∈

⋂
q−1�p−1

2
q−1Hq⊆

⋂
q−1�p−1

1
q−1Hq and hence xy∈

⋂
q−1�p−1

1
q−1Hq⊂ H̃.

So H̃ is a subgroup of G.
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For each p ∈ P and g ∈ G, from Lemma 6.2 (2),

g
(
∩q−1�p−1q−1Hq

)
g−1 = g

(
∩x∈p−1P−1xHx−1

)
g−1

= ∩x∈p−1P−1gxH(gx)−1 = ∩x∈gp−1P−1xHx−1

= ∩x�gp−1xHx−1 ⊂ ∩x�y−1xHx−1

⊂ H̃,

where y−1 is some element in P−1 with y−1 � gp−1. Thus H̃ is normal in G.

(2) Suppose that G is finitely generated and {g1, · · · ,gn} is a finite set of generators. To
the contrary, assume that G = H̃. Then, for each i ∈ {1, · · · ,n}, there is some pi ∈ P such
that gi ∈ ∩q−1�p−1

i
q−1Hq. Take some p ∈ P with p−1 � p−1

i for each i ∈ {1, · · · ,n}. Then
we have

{g1, · · · ,gn} ⊂ ∩q−1�p−1q−1Hq⊂ p−1H p.

Thus G⊂ p−1H p and hence G = H. So (2) holds.

(3) We may assume that H 6= G; otherwise, H̃ = G and the conclusion is trivial.

Claim 1. For any finitely many x1, · · · ,xn ∈ G\ H̃, there are some ε1, · · · ,εn ∈ {−1,1}
such that

sgr(xε1
1 , · · · ,xεn

n )∩ H̃ = /0.

We show the Claim 1 by induction on n. Given x ∈ G \ H̃, suppose that there is a
positive integer k such that xk ∈ H̃. Then xk ∈

⋂
q−1�p−1 q−1Hq, by the definition of

H̃, for some p ∈ P with p−1 � x. Let q−1 � p−1 be given. Then q−1 � x and hence
qxq−1 ∈ P∪P−1 by (P4). WLOG, we may assume that qxq−1 ∈ P. Then qxkq−1 ∈ H
implies that qxq−1 ∈ H, by Lemma 6.2 (3). Thus x ∈

⋂
q−1�p−1 q−1Hq whence x ∈ H̃.

This contradicts the assumption. So the Claim 1 holds for n = 1.
Now assume that n ≥ 2 and the Claim 1 holds for any y1, · · · ,ym ∈ G \ H̃ with m < n.

By (O7), there is some p ∈ P with

p−1 � x1, · · · , p−1 � xn.

Then qx1, · · · ,qxn ∈ P, for each q−1 � p−1. According to (P4) in Proposition 6.1, we
have {qx1q−1, · · · ,qxnq−1} ⊂ P∪P−1. Thus there are some~ε(q) = (ε1(q), · · · ,εn(q)) ∈
{−1,1}n such that {qxε1(q)

1 q−1, · · · ,qxεn(q)
n q−1}⊂P. For each~ε =(ε1, · · · ,εn)∈{−1,1}n,

let
Q(~ε) =

{
q−1 � p−1 : {qxε1

1 q−1, · · · ,qxεn
n q−1} ⊂ P

}
.

Then {q−1 : q−1 � p−1}=
⋃
~ε∈{−1,1}n Q(~ε).

Let P++ = {g ∈ G : g � e} and P−− = {g ∈ G : g ≺ e} be the strictly positive and
negative cones respectively. Now we discuss into two cases.

Case 1. There is an~ε = (ε1, · · · ,εn) ∈ {−1,1}n and a coinitial set Q⊂ Q(ε) such that
for any q−1 ∈ Q,

{qxε1
1 q−1, · · · ,qxεn

n q−1} ⊂ P++.
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Noting that any word composed of qxε1
1 q−1, · · · ,qxεn

n q−1 will lie in P++ for any q−1 ∈ Q
and Q is a coinitial set, the semigroup sgr(xε1

1 , · · · ,xεn
n ) has empty intersection with H̃.

Then the Claim holds.

Case 2. For any~ε = (ε1, · · · ,εn) ∈ {−1,1}n, there is some p−1(~ε)� p−1 such that for
any q−1 ∈ {q−1 ∈ Q(~ε) : q−1 � p−1(~ε)}, we have{

i ∈ {1, · · · ,n} : qxεi
i q−1 ∈ H

}
6= /0.

Thus, for each q−1 ∈ Q(~ε), there is a partition {1, · · · ,n}= A(q,ε)∪B(q,ε) such that

{qxεi
i q−1 : i ∈ A(q,ε)} ⊂ H and {qxεi

i q−1 : i ∈ B(q,ε)} ⊂ P++.

Since H 6= G by the assumption, we have P++ = P \H 6= /0 and hence P++ is in-
finite. Note that there are only finitely many partitions of {1, · · · ,n}. So there is an
~ε = (ε1, · · · ,εn) ∈ {−1,1}n, a coinitial set Q ⊂ Q(~ε) and a partition {1, · · · ,n} = A∪B
with A 6= /0,B 6= /0 such that

{qxεi
i q−1 : i ∈ A} ⊂ H and {qxεi

i q−1 : i ∈ B} ⊂ P++,

for each q−1 ∈Q. WLOG, we may assume that A = {1, · · · ,k} and B = {k+1, · · · ,n} for
some k ∈ {1, · · · ,n−1}.

Now by the induction hypothesis, there is some ~η = (η1, · · · ,ηk) ∈ {−1,1}k such that

sgr(xη1
1 , · · · ,xηk

k )∩ H̃ = /0.

Then we conclude that (η1, · · · ,ηk,εk+1, · · · ,εn) ∈ {−1,1}n satisfies

sgr(xη1
1 , · · · ,xηk

k ,xεk+1
k+1 , · · · ,x

εn
n )∩ H̃ = /0.

Indeed, let w be a word composed of xη1
1 , · · · ,xηk

k ,xεk+1
k+1 , · · · ,x

εn
n . If xεk+1

k+1 , · · · ,x
εn
n do not

occur in w, then the choice of ~η implies that w is not in H̃. If there are some letters of
xεk+1

k+1 , · · · ,x
εn
n occur in w, then for each q−1 ∈Q, qwq−1 ∈ P++ and hence w is not in H̃ by

the coinitiality of Q. Thus we complete the proof of the Claim 1.

Now (3) is followed from some standard arguments (see [15, Lemma 2.2.3]). For
convenience of the readers, we afford a detailed proof here.

By the principe of compactness, the Claim 1 implies the following directly.

Claim 2. There is a map ε : G\H̃→{−1,1} such that for any finite g1, · · · ,gn⊂G\H̃,
sgr
(

gε(g1)
1 , · · · ,gε(gn)

n

)
∩ H̃ = /0.

Let P̃ = {g ∈G\ H̃ : ε(g) = 1}. Then it is easy to verify that P̃ is a subsemigroup of G
and G = P̃∪ H̃ ∪ P̃−1.

Claim 3. P̃ = H̃P̃H̃.

First P̃= eP̃e⊂ H̃P̃H̃. To show the converse, we conclude that for any h∈ H̃ and q∈ P̃,
hq ∈ P̃. Otherwise, ε(hq) = −1. Then h−1 ∈ sgr((hq)−1,q)∩ H̃, which contradicts the
choice of ε . Similarly, qh ∈ P̃. Thus for any h1,h2 ∈ H̃ and q ∈ P̃, h1qh2 ∈ P̃ and hence
H̃P̃H̃ ⊂ P̃. Thus Claim 3 holds.

We define an order ≤ on the quotient group G/H̃ = {gH̃ : g ∈ G} by

f H̃ < gH̃ if and only if f−1g ∈ P̃.



18 E. Shi and H. Xu

It is well defined by Claim 3 and is a total order by the equality G = P̃∪ H̃ ∪ P̃−1. It is
obvious that ≤ is G-invariant, i.e. for any g,x,y ∈ G, gxH̃ < gyH̃ whenever xH̃ < yH̃.
Thus the quotient G/H̃ is left-orderable.

�

6.3. Existence of pointwise fixed arcs. Now we are ready to prove Proposition 1.4 for
any higher rank lattices.

Proof of Proposition 1.4. Now take a finite set {g1, · · · ,gn} of generators of Γ. For each
i ∈ {1, · · · ,n}, by Lemma 2.1, we can take xi ∈ X \{z} fixed by gi. Let t be the point such
that [z, t] = ∩n

i=1[z,xi]. Define a positive cone P of Γ by

P =
{

g ∈ Γ : g−1(t) ∈ [z, t]
}
.

Then P leads to a preorder � on Γ. Let H = P∩P−1 and H̃ =
⋃

p∈P
⋂

q−1�p−1 q−1Hq.
Note that H is just the stabilizer of t in Γ.

Claim. There is some point s ∈ (z, t] fixed by Γ.

We discuss into two cases for the proof of the Claim.

Case 1. There is a sequence ( fi) in P−1 such that fi(t)→ z as i→∞. Then P gives rise
to a semilinear left preorder � on Γ: for g,h ∈ Γ,

g� h if and only if [z,g(t)]⊂ [z,h(t)].

By Proposition 6.4, Γ admits a left-orderable quotient Γ/H̃. By Lemma 2.7, either H̃ is
contained in the center of G or Γ/H̃ is a finite group, where G is the ambient Lie group
of Γ. In the former case, Γ/H̃ is also a higher rank lattice, which contradicts Deroin-
Hurtado’s theorem in [7]. In the latter case, Γ/H̃ is a finite group. Then the orderability
implies that it is trivial and hence H̃ = Γ. Then we have H = Γ, by Proposition 6.4 (2).
Thus t is fixed by Γ and take s = t.

Case 2. There is no sequence ( fi) in P−1 with fi(t)→ z as i→ ∞.
Fix a canonical ordering < on [z, t] with z< t. Let s= infg−1∈P−1 g(t). Then s∈ (z, t] and

we claim that s is fixed by Γ. Indeed, let g−1 ∈ P−1 be given. Suppose that s = lim
n→∞

γ−1
n (t)

for some sequence (γ−1
n ) in P−1. Then g−1(s)≥ s with respect to the canonical ordering

< on [z, t]. If g−1(s) 6= s then g−1γ−1
n (t) > γ−1

n (t), for all sufficiently large n. Then
gγ−1

n (t)< γ−1
n (t)≤ t and hence gγ−1

n ∈ P−1. Thus

s≤ lim
n→∞

gγ
−1
n (t)≤ lim

n→∞
γ
−1
n (t) = s.

So g(s) = s and hence g−1(s) = s. This contradiction shows that s is fixed by each element
in P. Since for each i, either gi ∈ P or g−1

i ∈ P, s is fixed by Γ.

Thus the Claim holds. Now, by Theorem 2.8, Γ fixes the [z,s] pointwise. �
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7. EXAMPLES AND QUESTIONS

As supplements to the main theorems, we give some examples in this section.

Example 7.1. For each i 6= 0 ∈ Z, let θi = sgn(i)(1− 1
2|i|)π; and let Ii be the arc in

the complex plane defined by Ii = {reiθi : 0 ≤ r ≤ 1
|i|}. Let X = ∪i∈Z\{0}Ii and take the

subspace topology of C. Then X is a dendrite of infinite order. If G is a countably infinite
group, then it can act on the end point set of X transitively and freely. We then extend
this action to X by letting g map Ii affinely to Ig(i) for each g ∈ G and i 6= 0 ∈ Z. Clearly,
the extended action is almost free. So, the condition “with no infinite order points” in
Theorem 1.1 cannot be removed.

The following example indicates that the exact analogy to the Zimmer’s rigidity for
higher rank lattice actions on the circle does not hold for higher rank lattice actions on
dendrites of finite order. Although we construct the action for SLn(Z), it holds for any
residually finite groups.

Example 7.2. Let Γ = SLn(Z) with n ≥ 3. Fix a prime number p. For each positive
integer α , let φα : SLn(Z)→ SLn(Z/pαZ) denote the canonical homomorphism and let
Γα = ker(φα). Then Γα is a finite index subgroup of Γ, the so called principal congruence
subgroup of Γ. It is known that for each α the index

[Γα : Γα+1] = pn2−1.

Set Γ0 = Γ. The sequence (Γα)
∞
α=0 forms a group chain of Γ:

Γ0 > Γ1 > Γ2 > · · · .
Thus we get a sequence of finite sets {Γ/Γα : α = 0,1,2, · · ·} on which G acts by left
translations.

Now we associate to each α a finite combinatorial tree Yα whose end point set is Γ/Γα ,
and a finite action of G on Yα whose restriction to Γ/Γα coincides with the left translation
action. Precisely, let Y0 = {V0}= Γ/Γ0 and let Γ act on it trivially. Assume that for each
0≤ β ≤ α , Yβ and the finite action of G on it is defined. We let Yα+1 be the union of Yα

and the set of edges:

{(γΓα ,γγ1Γα+1),(γΓα ,γγ2Γα+1), · · · ,(γΓα ,γγpn2−1Γα+1) : γΓα ∈ Γ/Γα},

where γ1, · · · ,γpn2−1 is a set of coset representatives of Γα+1 in Γα . Then we extend the
action of G from Yα to Yα+1 by letting g.γΓα+1 = (gγ)Γα+1 for any g,γ ∈ Γ.

For each α , let Tα be the geometric realization of Yα , which is a finite topological tree.
Then G induces a finite action on each Tα in a canonical way. Let ψα : Tα+1→ Tα be a
continuous surjective map defined by

(1) ψα |Tα
= idTα

;
(2) for each arc [u,v] with u ∈Vα ,v ∈Vα+1, ψα maps the whole arc [u,v] to u.

From the definition, we see that ψα(gx) = gψα(x) for x ∈ Tα and g ∈ Γ. Thus we get
an inverse system {(Tα ,Γ) : α = 0,1,2, · · ·} with bonding maps ψα . Since each ψα is
monotone and onto, lim

←−
(Tα ,Γ) is a dendrite by [22, Theorem 10.36], which is of finite

order by the construction. Clearly, the inverse limit (lim
←−

(Tα ,Γ),Γ) is almost finite.
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The following example shows that there does exist a non-almost-finite action by SLn(Z)
with n≥ 3 on a dendrite of finite order.

Example 7.3. Let (X ,Γ) be the system constructed in Example 7.2. Since dendrites are
planar continua, we may assume that X is contained in R2×{0} ⊂R3. Fix an end point e
of X and label its orbit Γe as {ei : i = 1,2, · · ·}. Suppose the coordinate of ei is (xi,yi,0).
Let Ii = {(xi,yi, t) : 0≤ t ≤ 1/i} for each i, and let Z = X ∪ (∪∞

i=1Ii). Then Z is a dendrite
of finite order contained in R3. Extend the action of Γ from X to Z by letting g map Ii to
I j affinely if e j = gei, for each g ∈ Γ. Then we get an action (Z,Γ), which is not almost
finite.

Finally, we recall the following open questions.

Question 1. Let Γ be a countable group having Kazhdan’s Property (T).
(1) Does every action of Γ on a dendrite admit a finite orbit?
(2) Is every action of Γ on S1 finite (i.e., every orbit is finite)?

If the above questions both have positive answers, then we can also establish Theorem
1.3 for countable groups having Kazhdan’s Property (T). The item (1) above is proposed
in [9, 10]. Duchesne and Monod also show that the item (1) does not hold for some Polish
groups having strong Kazhdan’s property (T) but it still open for countable groups. The
item (2) is answered positively by Navas in [24] for every C1+τ action with τ > 1

2 but is
still open for continuous actions.
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