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STRUCTURES OF QUASI-GRAPHS

AND ω-LIMIT SETS OF QUASI-GRAPH MAPS

JIEHUA MAI AND ENHUI SHI

Abstract. An arcwise connected compact metric space X is called a quasi-
graph if there is a positive integer N with the following property: for every
arcwise connected subset Y of X, the space Y − Y has at most N arcwise
connected components. If a quasi-graph X contains no Jordan curve, then
X is called a quasi-tree. The structures of quasi-graphs and the dynamics of
quasi-graph maps are investigated in this paper. More precisely, the structures
of quasi-graphs are explicitly described; some criteria for ω-limit points of
quasi-graph maps are obtained; for every quasi-graph map f , it is shown that

the pseudo-closure of R(f) in the sense of arcwise connectivity is contained in

ω(f); it is shown that P (f) = R(f) for every quasi-tree map f . Here P (f),
R(f) and ω(f) are the periodic point set, the recurrent point set and the ω-
limit set of f , respectively. These extend some well-known results for interval
dynamics.

1. Introduction

In the early 1960s, A. N. Sharkovskii established the famous theorem which de-
scribes the coexistence among periods of periodic points of an interval map (see
[27]). Since then, the dynamics of continuous interval maps has been intensively
studied, and many interesting results have been obtained. One may consult [2,3,25]
for a systematic introduction to some topics of this area. A natural question is to
what extent can these results be generalized beyond the interval? Some simple ex-
amples show that many results on the dynamics of interval maps do not generalize
to spaces of topological dimension ≥ 2. It is thus natural to consider the dynamical
systems on some 1-dimensional continua (a continuum is a compact connected met-
ric space). Great progress has been made in this direction. For the pioneering work
of Blokh on dynamics of graph maps, see [5–8], and for some later related works, see
[2, 9, 17, 18, 20, 21]. Very recently, periodic points, recurrent points and transitivity
of dendrite maps were studied in [1, 11, 16, 29] (a dendrite is a locally connected
continuum containing no Jordan curve). However, many remarkable results for in-
terval maps no longer hold for dendrite maps, unless some further restrictions are
made on the dendrite. In this paper, we aim to find some natural 1-dimensional
spaces to which many results on dynamics of interval maps are extended.

By a quasi-graph, we mean a nondegenerate, compact, arcwise connected metric
space X such that Y − Y has at most N arcwise connected components, for some
fixed positive integer N and for every arcwise connected subset Y of X (see also
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Definition 2.1). Recall that a topological space is said to be nondegenerate if it
contains at least two points. Clearly every graph is a quasi-graph. A quasi-tree
is a quasi-graph containing no Jordan curve. Trees and the Warsaw circle are
quasi-trees. Since the Warsaw circle is a quasi-graph but not a graph, the class of
quasi-graphs is indeed strictly larger than that of graphs.

We are mainly concerned with the ω-limit sets for quasi-graph maps. Let us first
recall some notation and definitions. Given a metric space X, denote by C0(X)
the set of all continuous maps from X to itself. Let f ∈ C0(X). For every x ∈ X,
write O(x, f) = {fn(x) : n = 0, 1, 2, · · · }, and call it the orbit of x under f . The
ω - limit set of x, denoted by ω(x, f), is the collection of all limit points of O(x, f).
The set ω(f) =

⋃
x∈X ω(x, f) is called the ω - limit set of f . A point x ∈ X is

called a periodic point of f if fn(x) = x for some positive integer n. The least
positive integer n with fn(x) = x is called the period of x. The point x is called a
recurrent point of f if x ∈ ω(x, f). It is called a nonwandering point of f if for every
neighborhood V of x there is a positive integer n such that fn(V ) ∩ V �= ∅. The
sets of periodic points, recurrent points and nonwandering points of f are denoted
by P (f), R(f) and Ω(f) respectively. We use Pn(f) to denote the set of all x ∈ X
such that fn(x) = x.

A set A ⊂ X is called f -invariant if f(A) = A. The sets P (f), R(f), ω(f) and
Ω(f) are all f -invariant. Except for Ω(f), the other three sets are not closed in
general. The following containments are well known:

(1) P (f) ⊂ R(f) ⊂ ω(f) ⊂ Ω(f).

Many refinements of (1) are known in the case of 1-dimensional dynamical systems.
We list only a few of them which are closely related to the topic of this paper. A. N.
Sharkovskii obtained the following theorem in [28], which is a very useful criterion
for ω-limit points of interval maps.

Theorem A. Let f be a continuous map on the interval [0, 1]. If every open
interval with left (or right) endpoint v contains at least 2 points of some trajectory,
then v ∈ ω(f). A point v ∈ ω(f) if and only if every open interval containing v
contains at least 3 points of some trajectory.

The following theorem is due to Sharkovskii (see [28]).

Theorem B. Let f be a continuous map on the interval [0, 1]. Then R(f) ⊂ ω(f).

The following theorem was proven by Sharkovskii in [26] (see also [15, 32]).

Theorem C. Let f be a continuous map on the interval [0, 1]. Then P (f) = R(f).

One may refer to [4,10,12,14,24] for other interesting results about ω-limit sets
for interval maps.

We remark that an analog of Theorem A was obtained for tree maps by F. P. Zeng
et al. in [33] and for graph maps by N. Chinen in [13]. Theorem B and Theorem
C were generalized to graph maps by A. M. Blokh in [6] (see also [18, 20, 31]).
Theorem C was generalized to maps on a class of dendrites by J. H. Mai and E. H.
Shi in [19], and to maps on the Warsaw circle by J. C. Xiong et al. in [30].

The aim of this paper is to generalize Theorem A, Theorem B and Theorem
C to quasi-graph maps. We first study the structures of quasi-graphs in Section
2, and give an explicit description of the structures in Theorem 2.24. Roughly
speaking, a quasi-graph is a union of a graph with finitely many inner rays. For
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example, the Warsaw circle is the union of an arc with a ray. Before going to the
dynamics of quasi-graph maps, we study some basic properties of quasi-graph maps
in Section 3, which are used in the later sections. In Section 4 and in the setting
of quasi-graph maps, we get a criterion (Theorem 4.1) for periodic points and
two criteria (Theorem 4.3 and Theorem 4.4) for ω-limit points. These generalize
Theorem A and the corresponding theorems in [33] and [13]. In Section 5, we
consider the recurrent points of quasi-graph maps and give a criterion for them in
Theorem 5.4. To generalize Theorem B to quasi-graphs, we have to introduce a
notion of pseudo-closure in the sense of arcwise connectivity (Definition 5.1). Then
we show in Corollary 5.5 that the pseudo-closure of R(f) in the sense of arcwise
connectivity is contained in ω(f). This also generalizes the corresponding theorems
in [6, 20] for graph maps. On the basis of the above results, we show in the end

that R(f) = P (f) for any quasi-tree map f . This is a generalization of Theorem C
and the corresponding theorems in [6, 30, 31].

Throughout the paper, we use the symbols R, R+, Z, Z+, and N to respectively
denote the sets of real numbers, nonnegative real numbers, integers, nonnegative
integers, and positive integers. For a set A, denote its cardinality by �(A). All the
maps appearing in this paper are assumed to be continuous. Given a metric space
X, we use B(x, r) to denote the open ball with center x ∈ X and radius r > 0. For
every nonempty subset X0 of X, ∂X0 = ∂X(X0) denotes the boundary of X0 in X,
◦
X0 = Int(X0, X) denotes the interior of X0 in X, and X0 = Clos(X0, X) denotes
the closure of X0 in X. Set B(X0, r) =

⋃
x∈X0

B(x, r).

2. Quasi-graphs

An arc is a continuum which is homeomorphic to the closed interval [0, 1]. A
graph is a continuum which is a union of finitely many arcs so that any two of these
arcs are either disjoint or intersecting only at one common endpoint. Each of these
arcs is called an edge of the graph; each endpoint of an edge is called a vertex. The
set of vertices of a graph G is denoted by V (G), and the set of edges is denoted
by E(G). The valence of a vertex x is the number of edges incident to x; if the
number is n, then one writes val(x) = val(x,G) = n. A vertex of valence 1 is also
called an endpoint of G; a vertex x with val(x) � 3 is called a branch point of G.
The set of endpoints and the set of branch points of G are denoted by End(G) and
Br(G) respectively. Note that two edges of a graph may meet at a point which is
not a branch point of the graph. If A is a single point set, then set End(A) = A. A
tree is a graph with no subset which is homeomorphic to the unit circle. A star is
either a tree having only one branch point or an arc. One can refer to [2] for more
facts about graphs.

In what follows, we assume that the metric d on a graph G has the following
property: B(x, r) is connected for every r > 0. Clearly, such a metric d always
exists for every graph G.

Definition 2.1. A nondegenerate compact arcwise connected metric space X is
called a quasi-graph if there exists N ∈ N such that Y − Y has at most N arcwise
connected components, for every arcwise connected subset Y of X. Furthermore,
if such N is minimal, i.e., if there exists an arcwise connected subset Y0 of X such
that Y 0 − Y0 has exactly N arcwise connected components, then N is called the
separation degree of X.
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Let G be a graph with n edges. Then Y − Y has at most 2n arcwise connected
components for every connected subset Y of G. So a graph G must be a quasi-
graph, but not vice versa. A quasi-graph with no subset homeomorphic to the unit
circle is called a quasi-tree. Obviously, a tree is a quasi-tree.

By Definition 2.1, we deduce the following lemma directly.

Lemma 2.2. Let X be a quasi-graph. Then every nondegenerate compact arcwise
connected subspace of X is also a quasi-graph.

Example 2.3. Let W = {(t, sin(1/t)) ∈ R2 : 0 < t � 1}. The closure W of W
in R2 is called the sin(1/t) -continuum. Clearly, W = E ∪W , where E = {(0, y) :
−1 ≤ y ≤ 1}. Take a ∈ E and take b ∈ W . Suppose that A is an arc in R2 such that
A∩ W = End(A) = {a, b}. Then A∪ W is a quasi-graph. Specifically, the Warsaw
circle is a quasi-graph. (The Warsaw circle is any continuum Q homeomorphic to
Y ∪ Z where Y is the sin(1/t) -continuum and Z is the union of three segments in
R2, one from (0,−1) to (0,−2), one from (0,−2) to (1,−2), and one from (1,−2)
to (1, sin(1)); see [23, p. 5].)

Suppose that x and y are points in a quasi-graph X. If x �= y, then let [x, y]
denote an arc in X with endpoints x and y; the notation (x, y), [x, y) and (x, y] is
analogous to similar notation in the interval case. If x = y, then let [x, y] = {x}.
Suppose that A is an arc in X, with two distinct points u, v ∈ A. Let A[u, v] be the
unique subarc of A with endpoints u and v. Let A(u, v] = A[v, u) = A[u, v] − {u}
and let A(u, v) = A(u, v]− {v}. Let A[u, v] = {u} if u = v.

Lemma 2.4. Let x1, · · · , xn be pairwise distinct points in an arcwise connected
space X. Then there exists a tree T in X such that {x1, · · · , xn} ⊂ T .

Proof. Since X is arcwise connected, there exists an arc Ai ⊂ X such that End(Ai)
= {x1, xi} for each i = 2, · · · , n. Let T2 = A2. Assume that there is a tree Ti

with {x1, · · · , xi} ⊂ Ti for some i ∈ {2, · · · , n− 1}; then there exists a point yi+1 ∈
Ti∩Ai+1 such that Ai+1[xi+1, yi+1]∩Ti = {yi+1}. Take Ti+1 = Ti∪Ai+1[xi+1, yi+1].
Then {x1, · · · , xi+1} ⊂ Ti+1. By induction, we see that the tree T = Tn is what we
need. �
Lemma 2.5. Let X be a quasi-graph and let Y be an arcwise connected subset of
X. Then for every ε > 0, there exists a tree T = Tε in Y such that Y ⊂ B(T, ε).

Proof. For every ε > 0, there exist finitely many points x1, · · · , xn in Y such that
Y ⊂ B({x1, · · · , xn}, ε) by the compactness of Y . Then there is a tree T in Y
containing {x1, · · · , xn} by Lemma 2.4. So Y ⊂ B(T, ε). �
Lemma 2.6. Let T be a tree in a quasi-graph X and let N be the separation degree
of X. Then T has at most N endpoints.

Proof. Let Y = T − End(T ). Then �(End(T )) = �(Y − Y ) � N . �
Example 2.7. For each n ∈ N, we view Rn = Rn × {0} as a subspace of Rn+1.
Define respectively the projections πn : Rn+1 → Rn and π : Rn+1 → R by πn(x, t) =
x and π(x, t) = t, for all x ∈ Rn and for all t ∈ R. Let X be a quasi-graph in Rn,
and let W be a compact connected subset of X which contains more than one point.
Assume thatW has only finitely many arcwise connected components W1, · · · ,Wm.
For each k ∈ {1, · · · ,m} and for each i ∈ N, by Lemma 2.5, there exists a tree Tk,i

in Wk such that Wk ⊂ B(Tk,i, 1/i) and Tk,i ⊂ Tk,i+1. Take m − 1 straight line
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segments Ai,1, · · · , Ai,m−1 in Rn with length 2/i such that Yi is arcwise connected,

where Yi = (
⋃

m
k=1Tk,i) ∪ (

⋃ m−1
k=1 Ai,k). Let ψ : R+ → Rn+1 be a continuous

injection such that ψ(R+) ∩ X = {ψ(0)}, π(ψ(t)) = 1/t for all t ∈ [1,∞), and
πn(ψ([i, i+1])) = Yi for all i ∈ N. Set X ′ = X ∪ψ(R+). Then it is easy to see that
X ′ is a quasi-graph.

Let S be a tree, let v ∈ S and let n ∈ N. We call S an n -star with center
v if there is a continuous injection ϕ : S → C such that ϕ(v) = 0, and ϕ(S) =
{re2kπi/n : r ∈ [0, 1], k = 1, · · · , n}. (Here, i =

√
−1.)

According to this definition, an arc is a 1 -star with either of its endpoints being
center, and is also a 2 -star with any of its interior points being center. If S is an
n -star with center v, then (S −End(S))∪ {v} is called an open n -star with center
v.

In the following, we generalize some notions such as valence, endpoint and branch
point from graphs to arcwise connected compact metric spaces.

Definition 2.8. Let X be a compact arcwise connected metric space and let
v ∈ X. The valence of v in X, denoted by val(v) or by val(v,X), is the number
max{n ∈ N : there exists an n-star with center v in X} (val(v) may be ∞); v is
called an endpoint of X if val(x) = 1; v is called a branch point of X if val(v) ≥ 3.
We still use the symbols End(X) and Br(X) to denote the endpoint set and the
branch point set of X respectively.

According to Definition 2.8, the point (0, 1) is the unique endpoint of the Warsaw
circle Q (see Example 2.3), and all the other points of Q have valence 2. So Q has
no branch point.

Lemma 2.9. Let X be a quasi-graph and let N be the separation degree of X.
Then

(1) X has no n -star for every n > N .
(2) For every arc A in X and every point v ∈ A, there exists a subarc A′ of A

such that v is an endpoint of A′ and (A′ − {v}) ∩ Br(X) = ∅.
(3) X has at most N endpoints.
(4) X has at most N−2 branch points, and

∑
{val(v)−2 : v ∈ Br(X)} � N−2.

Proof. The conclusions (1) and (3) can easily be deduced from Lemma 2.4 and
Lemma 2.6. (2) is a direct corollary of (4). Now we start to prove (4). Let
x1, · · · , xk be any k pairwise distinct branch points of X. By Lemma 2.4, we can
take a tree Y in X such that {x1, · · · , xk} ⊂ Y . By adding some arcs adjacent to
xi if necessary, we may assume further that val(xi, Y ) = val(xi, X) for each i. Since
Y is a tree, we have

∑
{val(v, Y ) − 2 : v ∈ Br(Y )} = �End(Y ) − 2. This implies∑

{val(xi, X)− 2 : i = 1, 2, · · · , k} � N − 2 by Lemma 2.6. By the arbitrariness of
k, we get

∑
{val(v)− 2 : v ∈ Br(X)} � N − 2. Since val(v)− 2 ≥ 1, we see that X

has at most N − 2 branch points. �

Let X be a quasi-graph and let x ∈ X. For every ε > 0, denote by St(x, ε) =
St(x, ε, X) the arcwise connected component of B(x, ε) containing x. By Lemma
2.9, we immediately have

Lemma 2.10. Let X be a quasi-graph, let x ∈ X and let val(x) = n. Then there
exists an ε0 > 0 such that, for all ε ∈ (0, ε0], St(x, ε) is always an open n -star
with center x. �
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Lemma 2.11. Let X be a quasi-graph and let N be the separation degree of X.
Then for any two arcwise connected subsets Y and W of X, Y −W has at most
N arcwise connected components.

Proof. Assume to the contrary that Y −W has at least N + 1 arcwise connected
components Y0, Y1, · · · , YN . Then Y ∩ W �= ∅ and W ∪ Yi is arcwise connected
from Lemma 2.9 for each i = 0, 1, · · · , N . Take w ∈ W and take xi ∈ Yi. Let Ai be

an arc in W ∪ Yi with endpoints w and xi, and let W1 =
⋃N

i=0 (Ai − {xi}). Then
W1 is an arcwise connected subset of X, and W 1 − W1 = {x0, x1, · · · , xN} has
N+1 arcwise connected components, which contradicts the fact that the separation
degree of X is N . Hence Y −W has at most N arcwise connected components. �

Corollary 2.12. Let X be a quasi-graph and let N be the separation degree of X.
Suppose that Y is an arcwise connected subset of X and W is a subset of Y with n
arcwise connected components for some n ∈ N. Then Y −W has at most N +n−1
arcwise connected components.

Proof. By Lemma 2.9 and the arcwise connectivity of Y , it is easy to see that there

are n − 1 arcwise connected sets A1, · · · , An−1 in Y such that W ∪ (
⋃n−1

i=1 Ai) is

arcwise connected, W ∩ (
⋃n−1

i=1 (Ai − End(Ai))) = ∅, and Ai is either an arc or a

single point set for each i = 1, · · · , n − 1. By Lemma 2.11, Y − (W ∪ (
⋃n−1

i=1 Ai))
has at most N arcwise connected components. Hence Y −W has at most N+n−1
arcwise connected components. �

Lemma 2.13. Let X be a compact metric space. Suppose that X1 and X2 are
two compact subspaces of X with X1 ∪ X2 = X and X1 ∩ X2 �= ∅. If X1 and
X2 are both quasi-graphs and X1 ∩ X2 has only finitely many arcwise connected
components, then X is also a quasi-graph.

Proof. Let N1 and N2 be the separation degrees of X1 and X2 respectively. Denote
by W1, · · · , Wn the arcwise connected components of W = X1∩X2 for some n ∈ N.
Let Y be an arcwise connected subset of X. If Y ∩ X1 is not arcwise connected,
then each arcwise connected component of Y ∩X1 has a nonempty intersection with
W . If the number of the arcwise connected components of Y ∩X1 is greater than
nN2, then there exist k ∈ {1, · · · , n} and N2 + 1 arcwise connected components
Y0, Y1, · · · , YN2

of Y ∩X1 with Yi ∩Wk �= ∅ for each i. By Lemma 2.9, it is easy
to see that there are pairwise disjoint arcs A0, A1, · · · , AN2

in Y ∩ X2 such that
Ai ∩W has just one point and Ai ∩ W = Ai ∩ Wk ∩ Yi = End(Ai) ∩ Wk ∩ Yi for

each i = 0, 1, · · · , N2. Let Zk = Wk ∪ (
⋃N2

i=0(Ai−End(Ai))); then Zk is an arcwise
connected set in X2. Clearly, the endpoint of Ai not in Wk is an arcwise connected
component of Zk − Zk for each i = 0, 1, · · · , N2. It follows that Zk − Zk has at
least N2+1 arcwise connected components. This contradicts Definition 2.1. So the
number of arcwise connected components of Y ∩X1 is not greater than nN2, which
implies that the number of arcwise connected components of Y ∩X1 − (Y ∩X1) is
not greater than nN2N1. Similarly, the number of arcwise connected components
of Y ∩X2 − (Y ∩X2) is not greater than nN1N2. Notice that

Y − Y = (Y ∩X1 ∪ Y ∩X2)− Y

= (Y ∩X1 − Y ) ∪ (Y ∩X2 − Y )

= (Y ∩X1 − (Y ∩X1)) ∪ (Y ∩X2 − (Y ∩X2)).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

QUASI-GRAPHS 145

This implies that the number of arcwise connected components of Y − Y is not
greater than 2nN1N2. Hence, X is a quasi-graph. Then the proof is complete. �

The assumption that X1 ∩ X2 has only finitely many arcwise connected com-
ponents is crucial for the above lemma. For example, let X = [0, 1] × {0} ⊂ R2.
For each i = 1, 2, 3, · · · , let Ai ⊂ R2 be the segment connecting points ( 1

2i−1 , 0)

and ( 1
2i−1 ,

1
2i−1 ), and let Bi ⊂ R2 be the segment connecting points ( 1

2i , 0) and

( 1
2i−1 ,

1
2i−1 ). Set Y =

⋃∞
i=1(Ai ∪ Bi) ∪ {(0, 0)}. Then X and Y are two arcs under

the relative topology, and X ∩ Y has infinitely many components. Clearly, X ∪ Y
is not a quasi-graph.

Definition 2.14. Let X be a compact metric space and let L be an arcwise
connected subset of X. Suppose that ϕ : R+ → X is a continuous injection.
Set L = ϕ(R+). Then L or ϕ is called a quasi-arc, and ϕ(0) is called an end-
point of L. We also viewed ϕ as a continuous bijection ϕ : R+ → L. For any
{s, t} ⊂ R+, denote by [s, t] the minimal connected subset of R+ containing {s, t}.
Let (s, t] = [t, s) = [s, t] − {t}. Denote x = ϕ(s) and y = ϕ(t); denote ϕ([s, t]),
ϕ((s, t]), ϕ([s, t)), ϕ((s, t)), ϕ([t,∞)) and ϕ((t,∞)) either by L[s, t], L(s, t], L[s, t),
L(s, t), L[t,∞) and L(t,∞) respectively, or by L[x, y], L(x, y], L[x, y), L(x, y),

L[y,∞) and L(y,∞) respectively. Set ω(L) = ω(ϕ) = ∩{L[m,∞) : m ∈ N}; ω(L)
(resp. ω(ϕ)) is said to be the ω - limit set of L (resp. ϕ).

From the definition, x ∈ ω(ϕ) if and only if there are positive numbers t1 <
t2 < t3 < · · · such that tn → ∞ and ϕ(tn) → x as n → ∞. Since L = ϕ([0,m]) ∪
ϕ([m,∞)) for every m ∈ N, we have that L = L ∪ ω(L). It is easy to see that
ω(L) must be nonempty and connected by the compactness of X. However, there
are simple examples showing that the ω - limit set ω(L) of a quasi-arc L may not
be arcwise connected. For example, let Q = Y ∪ Z ⊂ R2 be the Warsaw circle
defined in Example 2.3. Clearly, Y has two arcwise connected components. Then,
by Example 2.7, we can construct a quasi-graph X ′ in R3 which contains a quasi-arc
L with ω(L) = Y .

If ω(L) contains more than one point, then we call L or ϕ an oscillatory quasi-
arc. Obviously, ϕ is nonoscillatory if and only if limt→∞ϕ(t) exists. So no quasi-arc
in a graph is oscillatory.

Clearly, the circle S1 is a nonoscillatory quasi-arc. We can choose any point of S1

as the endpoint. A σ-graph is a graph homeomorphic to the subset X = {e2πit|t ∈
R} ∪ {it|1 ≤ t ≤ 2} of the complex plane. One can easily take a bijective map
ϕ : R+ → X such that ϕ(0) = 2i, ϕ(1) = i and ϕ(t) → i as t → ∞. So the σ-graph
is a nonoscillatory quasi-arc. We should note that a point of ω(L) may belong to
L, as in the example of the σ-graph. It is easy to see that the Warsaw circle is an
oscillatory quasi-arc. Since no continuous injection ϕ : R+ → [0, 1] is surjective, an
arc cannot be a quasi-arc.

Proposition 2.15. Let L be a quasi-arc in a compact metric space X, and let
ϕ : R+ → L be the corresponding continuous bijection. Suppose that A is an arc in
L. Then exactly one of the following holds.

(a) There are s, t ∈ R+ such that A = ϕ([s, t]).
(b) lim t→∞ ϕ(t) exists; there are real numbers 0 ≤ c0 ≤ c1 < c such that A =

ϕ([c,∞) ∪ [c0, c1]) and lim t→∞ ϕ(t) = ϕ(c0) or ϕ(c1); L is either a circle or a
σ-graph; if L is a σ-graph, then ϕ(0) is the unique endpoint of L.
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Proof. Let W = ϕ−1(A). Then W is a closed set in R+. Since no continuous
injection φ : [r,∞) → A is surjective, W �= [r,∞) for every r ∈ R+. Hence, if W
has only one connected component, then W must be a bounded closed interval in
R+. Thus (a) holds.

In the following, we assume that W has at least two components. If each
component of W is bounded, then there exists an infinite increasing sequence
r1 < r2 < r3 < · · · such that {r1, r2, r3, · · · } ⊂ R+ − W , and limn→∞rn = ∞.
Now, let W0 = W ∩ [0, r1] and let Wn = W ∩ [rn, rn+1] for each n ∈ N. Then ϕ(Wi)
is a bounded closed set in A for each i ∈ Z+. Thus the arc A is the union of count-
ably many pairwise disjoint proper closed subsets {ϕ(Wi) : i ∈ Z+}. However, it is
well known that a compact interval cannot be the disjoint union of its countably
many proper closed subsets. So W has an unbounded component, that is, there
is c > 0 such that [c,∞) is a connected component of W . Write W0 = [c,∞).
Since ϕ(W0) � A, there is some v ∈ A − ϕ(W0) such that limt→∞ϕ(t) = v. Let
c′ = ϕ−1(v), and let W1 be the connected component of W containing c′. Then
ϕ(W0 ∪W1) is a connected closed subset of A.

Assume that A − ϕ(W0 ∪ W1) �= ∅. Then W has more than two connected
components, which implies that A is a union of countably many pairwise disjoint
proper closed subsets. This leads to a contradiction. Hence W has exactly two
connected components W0 and W1, and there exist real numbers 0 ≤ c0 ≤ c1 < c
such that W1 = [c0, c1] and c′ ∈ {c0, c1}. So we have that A = ϕ([c,∞) ∪ [c0, c1])
and limt→∞ϕ(t) = v = ϕ(c′) ∈ {ϕ(c0), ϕ(c1)}.

If c′ = 0, then L(= ϕ([0, c])∪ϕ([c,∞))) is a circle; if c′ > 0, then L(= ϕ([0, c′])∪
ϕ([c′, c]) ∪ ϕ([c,∞))) is a σ-graph with the unique endpoint ϕ(0). �

Corollary 2.16. Let L be a quasi-arc in a compact metric space X and let ϕ :
R+ → L be the corresponding continuous bijection. Suppose that L′ is an arcwise
connected subset of L. If L is neither a circle nor a σ-graph, then ϕ−1(L′) is an
arcwise connected set in R+.

Proof. Assume to the contrary that ϕ−1(L′) is not arcwise connected; then there is
an arc A in L′ such that ϕ−1(A) is not arcwise connected. By Proposition 2.15, L
is either a circle or a σ-graph, which is a contradiction. So ϕ−1(L′) must be arcwise
connected. �

Proposition 2.17. Let X be a compact metric space and let L be a quasi-arc in
X. If there are continuous bijections ϕ : R+ → L and ψ : R+ → L such that
ϕ(0) �= ψ(0), then L is a circle.

Proof. Let r = ϕ−1(ψ(0)). Then ϕ(r) = ψ(0), and r > 0. Let a = ψ−1(ϕ(0)) and
let b = ψ−1(ϕ(2r)). Then a > 0, b > 0 and a �= b. Let A = ψ([a, b]); then A
is an arc in L with endpoints ψ(a) = ϕ(0) and ψ(b) = ϕ(2r). For any s, t ∈ R+

with s �= t, set q = max{s, t, 2r}. Then ϕ([0, q]) is an arc in L, and ϕ([s, t]) is a
subarc of ϕ([0, q]). Since the only arc with endpoints ϕ(0) and ϕ(2r) in ϕ([0, q])
is ϕ([0, 2r]), and ϕ(r) = ψ(0) /∈ A, we have that no subarc of ϕ([0, q]) is equal
to A. So ϕ([s, t]) �= A. It thus follows from Proposition 2.15 that L is either a
circle or a σ-graph. However, if L is a σ-graph, then ϕ(0) and ψ(0) should be the
unique endpoint of L by Proposition 2.15. This contradicts the assumption that
ϕ(0) �= ψ(0). Hence L is a circle. �
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Proposition 2.18. Let L be a quasi-arc in a compact metric space X. If L contains
a 3 -star Y , then L is a σ-graph.

Proof. Suppose that the center of Y is w, and the endpoints of Y are v1, v2 and
v3. Let ϕ : R+ → L be a continuous bijection, and ai = ϕ−1(vi) for i = 1, 2, 3.
Without loss of generality, we may assume that a1 < a2 < a3. Let A be the arc in
Y with endpoints v1 and v3. Similar to the proof of Proposition 2.17, we see that
ϕ([s, t]) �= A for any s, t ∈ R+. Then L is a σ-graph by Proposition 2.15. �

It follows from Proposition 2.18 that no quasi-arc in a compact metric space
contains an n -star with n ≥ 4 or contains more than one 3 -star.

From Proposition 2.15, we see that a nonoscillatory quasi-arc can only be a
half-open arc, a circle, or a σ-graph. Explicitly, we have the following.

Proposition 2.19. Let L be a nonoscillatory quasi-arc in a compact metric space
X. Suppose that ω(L) = {x} for some x ∈ X. If x /∈ L, then L∪{x} is an arc and
L is a half-open arc; if x is an endpoint of L, then L is a circle; if x ∈ L, but does
not belong to the endpoint set of L, then L is a σ-graph. �

Proposition 2.20. Let L be a quasi-arc in a compact metric space X. Suppose
that L is neither a circle nor a σ-graph. If ϕ : R+ → L and ψ : R+ → L are
two continuous bijections, then ψ−1ϕ : R+ → R+ and ϕ−1ψ : R+ → R+ are two
homeomorphisms which are inverses of each other.

Proof. Since L is neither a circle nor a σ-graph, L ∪ ω(L) is an arc when L is
nonoscillatory. In this case, the proposition obviously holds. In the following, we
assume that L is oscillatory. Let h = ψ−1ϕ : R+ → R+; then h−1 = ϕ−1ψ. By
Proposition 2.17, L has only one endpoint. Thus ϕ(0) = ψ(0), or h(0) = 0. For
every r > 0, let Ar = ϕ([0, r]). Then Ar is an arc in L with endpoints ψ(0) = ϕ(0)
and ψ(h(r)) = ϕ(r). Write Jr = ψ−1(Ar). We have

Claim 1. Jr = [0, h(r)].

In fact, if Jr �= [0, h(r)], then for any s, t ∈ R+, we have Ar �= ψ([s, t]). Thus L is
either a circle or a σ-graph by Proposition 2.15, which contradicts the assumption
that L is oscillatory. So Jr = [0, h(r)].

Since ϕ| [0,r] : [0, r] → Ar is a homeomorphism, and ψ| Jr
: Jr → Ar is also a

homeomorphism by Claim 1, we have

Claim 2. For every r > 0, h([0, r]) = [0, h(r)], and h| [0,r] : [0, r] → [0, h(r)] is a
homeomorphism.

By Claim 2, we get that h : R+ → R+ is a homeomorphism. �

It follows from Proposition 2.20 that if a quasi-arc L is neither a circle nor a
σ-graph, then the continuous bijection ϕ : R+ → L is unique up to a topological
conjugacy.

Definition 2.21. Suppose that L and K are two quasi-arcs in a compact metric
space X with the corresponding bijections ϕ : R+ → L and ψ : R+ → K respec-
tively. For every r ∈ R+, denote Lr = ϕ([r,∞)) and Kr = ψ([r,∞)). We write
L ⇒ K or ϕ ⇒ ψ if there exists m ∈ Z+ such that Km ⊂ ω(ϕ), and we write
L � K or ϕ � ψ if K ⊂ ω(L).
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Obviously we have

Lemma 2.22. Let L, K, ϕ, and ψ be as in Definition 2.21.
(1) If L ⇒ K, then L is oscillatory.
(2) For every r ∈ R+, Lr and Kr are also quasi-arcs and ω(Lr) = ω(L).
(3) L ⇒ K if and only if there is r ∈ R+ such that Lr � Kr.
(4) ψ−1(ω(L) ∩K) = ψ−1(ω(L)) is a closed set in R+. �
We study quasi-arcs in a quasi-graph in the following.

Lemma 2.23. Let L and K be quasi-arcs in a quasi-graph X and let ϕ : R+ → L
and ψ : R+ → K be the corresponding continuous bijections respectively. If L � K,
then ψ−1(ω(L) ∩K) is a bounded set in R+.

Proof. Assume to the contrary that L � K and ψ−1(ω(L)) is an unbounded set
in R+. Then there are {r1, r2, · · · } ⊂ R+ − ψ−1(ω(L)) such that 0 < r1 < r2 <
r3 < · · · , lim n→∞ rn = ∞, and [rn, rn+1] ∩ ψ−1(ω(L)) �= ∅ for all n ∈ N. Let N
be the separation degree of quasi-graph X. Since X has at most N − 2 branch
points, there is i ∈ N such that (Kri ∪ Lri) ∩ Br(X) = ∅. Let J = Kri ∩ Lri , then
J is arcwise connected. By Corollary 2.16, ϕ−1(J) and ψ−1(J) are also arcwise
connected. If ϕ−1(J) is bounded, then there exists s ≥ ri such that Ls ∩Kri = ∅,
which implies that

(Ls − Ls) ∩Kri = ω(Ls) ∩Kri = ω(L) ∩Kri

contains infinitely many arcwise connected components. Since Kri ∩ Br(X) = ∅,
Ls − Ls also has infinitely many arcwise connected components. This contradicts
the definition of quasi-graph. So ϕ−1(J) is unbounded. Then there are s > ri and
t > ri+N+1 such that Ls = Kt. Thus Ls ∩ ψ([ri, t)) = ∅, which implies that

(Ls − Ls) ∩ ψ([ri, t)) = ω(Ls) ∩ ψ([ri, t)) = ω(L) ∩ ψ([ri, t))

has at least N+1 arcwise connected components. As ψ([ri, t))∩Br(X) = ∅, Ls−Ls

also has at least N + 1 arcwise connected components. However, this contradicts
the fact that the separation degree of X is N . Hence ψ−1(ω(L) ∩ K) must be a
bounded set provided that L � K. �

Now we prove the main theorem in this section, which explicitly describes the
structures of quasi-graphs.

Theorem 2.24. A continuum X is a quasi-graph if and only if there are a graph
G and n pairwise disjoint oscillatory quasi-arcs L1, · · · , Ln in X, for some n ∈ Z+,
such that

(1) X = G∪ (
⋃n

i=1 Li), and End(X)∪ (
⋃
{St(x, ε0) : x ∈ Br(X)}) ⊂ G for some

ε0 > 0,
(2) Li ∩G = {ai} for each 1 ≤ i ≤ n, where ai is the endpoint of Li,

(3) ω(Li) ⊂ G ∪ (
⋃i−1

j=1 Lj) for each 1 ≤ i ≤ n, and

(4) if ω(Li) ∩ Lj �= ∅ for some i, j ∈ {1, · · · , n}, then ω(Li) ⊃ Lj.
In addition, if X is a quasi-graph with separation degree N , then the number n
appearing above is less than or equal to N .

Proof. Clearly, if X contains a graph G and n pairwise disjoint oscillatory quasi-
arcs L1, · · · , Ln satisfying the conditions (1) to (4), then X is a quasi-graph. We
need only prove the converse direction. Let X be a quasi-graph with separa-
tion degree N . By Lemma 2.9 and Lemma 2.4, there exists a tree T0 in X such
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that End(X)∪Br(X) ⊂ T0. By Lemma 2.10, there is an ε0 > 0 such that St(x, ε0)
is an open star for all x ∈ Br(X), and T is still a tree in X, where T = T0 ∪
(
⋃
{St(x, ε0) : x ∈ Br(X)}). If X = T , then Theorem 2.24 holds for G = T and n =

0. In the following, we assume that X �= T . By Lemma 2.11, X−T has only finitely
many arcwise connected components L1, · · · , Lm with some m ∈ {1, · · · , N}. For
each 1 ≤ i ≤ m, as Br(X) ⊂ T0 ⊂ T , we see that Li contains no branch points of
X. Thus, for any x, y ∈ Li with x �= y, there is a unique arc Li[x, y] in Li with
endpoints x and y. Since X is arcwise connected and L1, · · · , Lm are pairwise dis-
joint, we have Li ∩ T = End(Li) ∩ (End(T )− End(T )) �= ∅. As End(X) ⊂ T0 ⊂ T ,
Li contains more than one point. Since End(T )∩Br(X) = ∅, Li cannot be a circle.
If Li ∩ T contains two points, denoted by ai and bi, then Li must be an arc with
endpoints ai and bi, and T ∩ Li − {ai, bi} = ∅. So we may suppose that, for some
n ∈ {0, 1, · · · ,m}, Li ∩ T contains only one point ai for each 1 ≤ i ≤ n and Li ∩ T
contains two points for each n+1 ≤ i ≤ m. Let G = T ∪ (

⋃m
i=n+1 Li). Then G is a

graph inX, and End(G) ⊂ End(T ). If n = 0, thenX = G, and Theorem 2.24 holds.
Now assume that n ∈ {1, · · · ,m}. Then X = G ∪ (

⋃n
i=1 Li) and Li ∩G = {ai} for

each i ∈ {1, · · · , n}, where ai is an endpoint of G. Thus the conclusions (1) and
(2) of Theorem 2.24 hold.

Claim 1. For each i ∈ {1, · · · , n}, there is a continuous bijection ϕi : R+ → Li such
that ϕi(0) = ai and limt→∞ ϕi(t) does not exist.

As the long line is also an arcwise connected space without branch points (see
[22, p. 159]), Claim 1 is not that obvious. So we need to give a proof here.

Proof of Claim 1. Let ≺i be a linear ordering on Li defined by ai ≺i x ≺i y if and
only if x ∈ Li[ai, y) for any x, y ∈ Li − {ai}. If Li has a maximal element, say
bi, then Li = [ai, bi] and bi is an endpoint of X. This contradicts the fact that
Li ∩ End(X) = ∅. So Li has no maximal element with respect to the ordering
≺i. Since X is compact, for every k ∈ N, there is a finite set V ′

k in X such that
X = B(V ′

k, 2
−k−1). Thus, there is a finite set Vk in Li such that B(Vk, 2

−k) ⊃ Li.
It follows that there exists a sequence of points ai ≺i x1 ≺i x2 ≺i x3 ≺i · · ·
in Li such that Li ⊂ B(Li[ai, xk], 2

−k) for all k ∈ N. Let L′
i = ∪∞

k=1Li[ai, xk].
Evidently, there is a continuous bijection ϕi : [0,∞) → L′

i with ϕi(0) = ai and
ϕi(k) = xk for all k ∈ N. If L′

i �= Li, then there exists y ∈ Li − L′
i. Since

L has no maximal element, there is y′ ∈ Li such that y ≺i y′. Thus we have
L′
i ⊂ Li[ai, y] ⊂ Li[ai, y

′). Let δ = d(y′, Li[ai, y]). Then δ > 0 by the compactness
of Li[ai, y]. Take k ∈ N such that 2−k < δ. Then y′ /∈ B(Li[ai, y], 2

−k), which
contradicts the fact that Li ⊂ B(Li[ai, xk], 2

−k) described above. Hence, there must
be L′

i = Li. To complete the proof of Claim 1, assume that limt→∞ ϕi(t) exists and
write bi = limt→∞ϕi(t). If bi ∈ End(G), then Li ∪ {bi} is an arc with endpoints ai
and bi, and Li∪{bi} is an arcwise connected component of X−T , which leads to a
contradiction. If bi /∈ End(G), then bi is a branch point of X, and Li∩St(bi, ε0) �= ∅.
However, this contradicts the fact that Li ⊂ X − T ⊂ X − St(bi, ε0). Hence
limt→∞ ϕi(t) does not exist. This completes the proof of Claim 1.

From Claim 1, we see that L1, · · · , Ln are all oscillatory quasi-arcs. For any
i, j ∈ {1, · · · , n}, if Li ⇒ Lj , then by (3) of Lemma 2.22, there exists r ∈ R+ such
that ϕi([r,∞)) � ϕj([r,∞)). In this case, we replace G, Li and Lj by G∪ϕi([0, r])∪
ϕj([0, r]), ϕi([r,∞)) and ϕj([r,∞)) respectively. If Li � Lj and ω(Li) ∩ Lj �= ∅,
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then by Lemma 2.23 there is r ∈ R+ such that ω(Li)∩ϕj([r,∞)) = ∅. In this case,
we may replace G and Lj by G∪ϕj([0, r]) and ϕj([r,∞)) respectively. So, without
loss of generality, we always assume that L1, · · · , Ln possess the following property.

Property A. For any i, j ∈ {1, · · · , n}, if ω(Li) ∩ Lj �= ∅, then ω(Li) ⊃ Lj .

Claim 2. For every i ∈ {1, · · · , n}, Li � Li.

Proof of Claim 2. Let ϕi : R+ → Li be as in Claim 1. For every r ∈ R+, denote
Li[0, r] = ϕi([0, r]) and Li[r,∞) = ϕi([r,∞)). Note that G ∪ (

⋃n
j=1 Lj [0, r]) is a

compact set in X and is a graph. If there is i ∈ {1, · · · , n} such that Li ⇒ Li, i.e.,
ω(Li) ⊃ Li[r,∞) for some r ∈ R+, then we can choose orderly points x0 = ϕi(0),
x1 = ϕi(r+3), x2, x3, · · · in Li and positive even integers k0 = 2 < k1 < k2 < k3 <
· · · (the order of choice is k0 → x0 → k1 → x1 → k2 → x2 → k3 → x3 → · · · ) such
that

x1 ∈ Li[k0 + 1, k1], d(x1, Li[k1 + 1, k2]) < 1/3,

(2.1) xm+1 ∈ Li[km + 1, km+1] and d(xm+1, xm) < δm/3, for m = 1, 2, · · · ,
where

(2.2) δm = d(xm, Gm) with Gm = G ∪ (

n⋃

j=1

Lj [0, km−1]).

For m ∈ N, denote εm = d(xm, xm−1). It follows from (2.2) and (2.1) that

(2.3) xm−1 ∈ Gm, εm+1 < δm/3 ≤ εm/3

and

(2.4) B(xm, δm) ∩Gm = ∅.
Thus the sequence x0, x1, x2, x3, · · · converges to a point y in X with

(2.5) d(y, xm) ≤
∞∑

μ=m

d(xμ, xμ+1) =

∞∑

μ=m

εμ+1 < δm/2, for all m ∈ N.

By (2.5) and (2.4), we have y /∈ Gm for all m ∈ N. So y /∈
⋃∞

m=1 Gm = X, which is
a contradiction. Hence, for every i ∈ {1, · · · , n}, we have Li � Li. This completes
the proof of Claim 2.

According to Claim 2, we see that in the set of quasi-arcs {L1, · · · , Ln}, the
relations ⇒ and � are both strict partial orderings (see Munkres [22, p. 69]). Thus,
by adjusting the order of L1, · · · , Ln, we may assume that the following property
holds.

Property B. When 1 ≤ i ≤ j ≤ n, Li � Lj .

By Property B and Property A, we see that conditions (3) and (4) of the theorem
hold. This completes the proof of Theorem 2.24. �
Definition 2.25. Let L and K be quasi-arcs in a compact metric space X, neither
of which is a circle or a σ-graph, and let ϕ : R+ → L and ψ : R+ → K be the
corresponding continuous bijections. L and K are said to be eventually same if
there exists {s, t} ∈ R+ such that ϕ([s,∞)) = ψ([t,∞)). K is said to be eventually
homeomorphic to R+ if there exists t ∈ R+ such that ψ| [t,∞) : [t,∞) → ψ([t,∞))
is a homeomorphism.

The following two propositions can be easily deduced from Theorem 2.24.
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Proposition 2.26. Let X be a quasi-graph. Suppose that G and L1, · · · , Ln are as
in Theorem 2.24. Then for every oscillatory quasi-arc K in X, there always exists
a unique i ∈ {1, · · · , n} such that K and Li are eventually same. �
Proposition 2.27. Every oscillatory quasi-arc K in a quasi-graph X is eventually
homeomorphic to R+. �
Remark 2.28. Proposition 2.27 does not hold for general compact metric spaces. For
example, let X = R2/Z2 be the 2-torus, let π : R2 → X be the natural projection,
and let J = {(t, rt) ∈ R2 : t ∈ R+} where r is an irrational number. Then J is a ray
starting from the origin in R2. Let K = π(J). Then K is a one-way infinite helix
in X and is a quasi-arc. It is obvious that ω(K) = X ⊃ K and K is not eventually
homeomorphic to R+.

Definition 2.29. A nonoscillatory quasi-arc in a compact metric space X is called
a 0-order oscillatory quasi-arc. An oscillatory quasi-arc L is called a k-order os-
cillatory quasi-arc for some k ∈ N if ω(L) contains at least one (k − 1)-order
oscillatory quasi-arc, and ω(K) contains no (k − 1)-order oscillatory quasi-arc for
every quasi-arc K in ω(L).

From this definition, it is easy to see that for any two integers k > i ≥ 0 and any
k-order oscillatory quasi-arc L, ω(L) always contains at least one i-order oscillatory
quasi-arc and cannot contain an oscillatory quasi-arc with order ≥ k.

By Theorem 2.24 and Proposition 2.26, we have

Proposition 2.30. Let X be a quasi-graph with separation degree N . Suppose that
G and L1, · · · , Ln are as in Theorem 2.24. Then no oscillatory quasi-arc in X is of
(n+1)-order. In particular, every oscillatory quasi-arc in X has order ≤ N−1. �

Let X be a quasi-graph. From Proposition 2.26, it is easy to see that the num-
ber n appearing in Theorem 2.24 is just the maximal number of pairwise disjoint
oscillatory quasi-arcs in X. We call this number the oscillation degree of X and
denote it by n(X).

Proposition 2.31. Suppose that X is a quasi-graph with oscillation degree n(X) =
n. Then every compact connected set W in X has at most n+1 arcwise connected
components.

Proof. Let G,L1, · · · , Ln and the continuous bijections ϕi : R+ → Li, i = 1, · · · , n,
be as in Theorem 2.24. Note that 0 ≤ n ≤ N , where N is the separation degree of
X.

Claim 1. If there exist i ∈ {0, 1, · · · , n} and {ri+1, · · · , rn} ⊂ R+ such that W ⊂
X −

⋃n
j=i+1 Lj(rj ,∞), then W has at most i+ 1 arcwise connected components.

Proof of Claim 1. Let Xi = X −
⋃n

j=i+1 Lj(rj ,∞). According to Theorem 2.24,
we see that Xi is a quasi-graph in X and the maximal number of pairwise disjoint
oscillatory quasi-arcs in Xi is i. Since X0 is a graph, every connected set in X0 is
also arcwise connected. Then Claim 1 holds for i = 0.

In the following, we assume that i > 0 and W ∩ Li[t,∞) �= ∅ for all t ∈ R+.
It follows from (3) and (4) of Theorem 2.24 and the connectivity of W that there
exists ri ∈ R+ such that Li[ri,∞) ⊂ W . Note that ω(Li) is a connected closed set

contained in W ∩ (G ∪ (
⋃i−1

j=1 Lj)). Let W ′ = W − Li(ri,∞). By (3) of Theorem

2.24, we see that W ′ is a closed set. Let W1 and W2 be the connected components
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of W ′ which contain ϕi(ri) and ω(Li) respectively. Since d(Li[t1, t2],W
′) > 0 for

any t2 > t1 > ri, we have W ′ = W1 ∪ W2; that is, W ′ has no other connected
components except W1 and W2. If W1 = W2, i.e., W ′ is connected, then let
W ′′ = W ′. If W1 �= W2, then take an arc A in X such that W ′ ∪ A is connected
and W ′ ∩A = End(A); in this case, let W ′′ = W ′ ∪A. Obviously, W ′′ is a compact
connected set in Xi−1 ≡ X −

⋃n
j=i Lj (ri,∞). By induction, we can assume that

W ′′ has at most i arcwise connected components. Thus, there are two cases: if
W1 = W2, then W ′ and W also have at most i arcwise connected components; if
W1 �= W2, then W ′ and W have at most i+ 1 arcwise connected components. The
proof of Claim 1 is complete.

Proposition 2.31 follows from Claim 1 immediately. �

Theorem 2.32. A nondegenerate compact arcwise connected metric space X is a
quasi-graph if and only if Y − Y has only finitely many arcwise connected compo-
nents for every arcwise connected set Y in X.

Proof. By Definition 2.1, the necessity is obvious. Now we prove the sufficiency.
Suppose that Y −Y has only finitely many arcwise connected components for every
arcwise connected set Y in X.

Claim 1. If X has only finitely many branch points, and
∑

{val(w) : w ∈ Br(X)} <
∞, then X is a quasi-graph.

Proof of Claim 1. Suppose that X has finitely many branch points. Then the end-
point set of X is also finite. Let {v1, · · · , vn} be the branch point set of X. For
each i = 1, · · · , n, take a star Ti with center vi such that val(vi, Ti) = val(vi, X).
Then we can take a graph G in X such that (

⋃n
i=1 Ti) ∪ End(X) ⊂ G. It follows

that for every point x ∈ X \ G there are a unique vx ∈ End(G) and a unique arc
[vx, x] such that [vx, x]∩G = {vx}. Clearly, for any two distinct points x, y ∈ X \G,
exactly one of the following three cases occurs: [vx, x] ⊂ [vy, y]; [vy, y] ⊂ [vx, x];
[vx, x] ∩ [vy, y] = ∅, by the definition of G. Thus (X \ G) ∪ {vx : x ∈ X \ G} can
be partitioned into finitely many quasi-arcs (must be oscillatory) with endpoints in
End(G). So X is a quasi-graph.

Claim 2. X has only finitely many branch points, and
∑

{val(w) : w ∈ Br(X)} <
∞.

Proof of Claim 2. If Claim 2 does not hold, then exactly one of the following two
cases will occur.

Case 1. There exists w ∈ X such that val(w) = ∞. In this case, there are infinitely
many arcs A1, A2, · · · such that they share a common endpoint w: Ai ∩Aj = {w}
for any 1 ≤ i < j < ∞, and Ai+1 ⊂ B(w, d(vi, w)/2) for all i ∈ N, where vi is the
other endpoint of Ai besides w. Let S =

⋃∞
i=1(Ai−{vi}); then S−S = {vi : i ∈ N}.

Thus S−S has infinitely many connected components. This contradicts the initial
assumption. So, Case 1 does not occur.

Case 2. X has infinitely many branch points and each branch point of X has finite
valence. In this case, we claim that

(∗) there is a continuous injection ϕ : R+→X such that {ϕ(i) : i∈N}⊂Br(X).
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We postpone the proof of (∗) to the next paragraph. Now suppose (∗) holds.
Denote L = ϕ(R+), and vi = ϕ(i) for all i ∈ Z+. For each i ∈ N, take an arc
Ai with an endpoint vi such that Ai ∩ (L ∪ Br(X)) = {vi}, and Ai ∩ Aj = ∅
for any 1 ≤ i < j < ∞. Let wi be the other endpoint of Ai besides vi and let
Y = L ∪ (

⋃∞
i=1(Ai − {wi})). Then {wi : i ∈ N} ⊂ Y − Y . By the previous

assumption, Y − Y has only finitely many arcwise connected components. Thus,
there exist an arcwise connected component W of Y − Y and positive integers
i1 < i2 < i3 < · · · such that {win : n ∈ N} ⊂ W . Let W1 = W − {win : n ∈ N}.
Since win /∈ Br(X) for every n ∈ N, W1 is arcwise connected. (Otherwise, take an
arc A in W such that the two endpoints of A belong to different arcwise connected
components of W1. Then there exists k ∈ N such that wik ∈ A − End(A), which
implies that val(wik) ≥ 3. This contradicts the fact that wik /∈ Br(X).) Let
Y1 = Y ∪W1∪{wi1}. Then Y1 is arcwise connected, and Y1−Y1 = Y−Y−W1−{wi1}.
So, {win} is an arcwise connected component of Y1 − Y1 for each n ≥ 2. This
contradicts the assumption at the beginning of the proof. So, Case 2 does not
occur.

Now we start to prove (∗). This obviously holds if there exists an arc A in X
such that A contains infinitely many branch points. So, we may assume that there
is no arc in X containing infinitely many branch points. Let {xi}∞i=1 be a sequence
of branch points and let v0 = x0. Fix an arc [v0, xi] for each i. Since val(v0) < ∞
and no arc contains infinitely many branch points, there is a star Y0 with center
v0 such that val(v0, Y0) = val(v0, X) and Y0 ∩ Br(X) = {v0}. This implies that
there is an infinite set B0 ⊂ {xi}∞i=1 such that

⋂
x∈B0

[v0, x] contains an arc [v0, v1]
for some v1 �= v0. Clearly, we may take v1 to be a branch point. Similarly to the
case of v0, we can get a branch point v2 �= v1 and an infinite set B1 ⊂ B0 such
that [v0, v1] ⊂ [v0, v2] ⊂

⋂
x∈B1

[v0, x]. Going on in this way, we get a sequence of

branch points {vi}∞i=0 and a strictly increasing arc sequence [v0, v1] ⊂ [v0, v2] ⊂ · · · .
This obviously shows the existence of a continuous injection ϕ : R+ → X with
ϕ(R+) =

⋃∞
i=1[v0, vi] and vi = ϕ(i) for all i ∈ Z+.

Hence, Claim 2 holds.
It follows from Claim 2 and Claim 1 that X is a quasi-graph. �

3. Some basic properties of quasi-graph maps

A continuous map from a quasi-graph to itself is called a quasi-graph map. In
this section, we are mainly interested in quasi-graph maps.

Lemma 3.1. Let X be a quasi-graph. Suppose that G is a graph in X and f ∈
C0(X). Then f(G) contains no oscillatory quasi-arcs.

Proof. Let L be an oscillatory quasi-arc in X, and let ϕ : R+ → L be a continuous
bijection. Take x, y ∈ ω(L) with x �= y and positive numbers s1 < t1 < s2 < t2 <
s3 < t3 < · · · such that limn→∞sn = ∞, limn→∞ϕ(sn) = x, limn→∞ϕ(tn) = y,
and ϕ([s1,∞)) ∩ Br(X) = ∅. Let ε = d(x, y)/3. Assume that f(G) ⊃ L. For every
n ∈ N, take a point xn ∈ f−1(ϕ(sn)) and take a point yn ∈ f−1(ϕ(tn)). Since G is
compact and locally connected, for every δ > 0, there exist integers j > k > 0 such
that

(i) ϕ(sk) ∈ B(x, ε), ϕ(tk) ∈ B(y, ε);
(ii) there exists an arc A = A[xk, xj ] in G such that A ⊂ B(xk, δ).
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So, there is a point wk ∈ A such that f(wk) = ϕ(tk). Noting that d(wk, xk) < δ and
d(f(wk), f(xk)) = d(ϕ(tk), ϕ(sk)) > ε, we know that f is not uniformly continuous.
This is a contradiction. Hence f(G) � L. The proof is complete. �

By Lemma 3.1 and Theorem 2.24, we have

Corollary 3.2. Let X be a quasi-graph. Suppose that G is a graph in X and
f ∈ C0(X). If f(G) contains more than one point, then f(G) is also a graph in
X. �
Corollary 3.3. Suppose that L and K are both oscillatory quasi-arcs in a quasi-
graph X, ϕ : R+ → L and ψ : R+ → K are the corresponding continuous bijections,
and f ∈ C0(X). If f(L) ⊃ K, then

(1) for every r > 0, there is t = t(r) ≥ 0 such that f(L[r,∞)) ⊃ K[t,∞), and
(2) f(ω(L)) ⊃ ω(K).

Proof. (1) For every r > 0, since L[0, r] is an arc in X, f(L[0, r]) contains no
oscillatory quasi-arcs by Lemma 3.1. Hence, by Theorem 2.24, there is t = t(r) ≥ 0
such that f(L[r,∞)) ⊃ K[t,∞).

(2) For every ε > 0, take r = r(ε) > 0 such that L[r,∞) ⊂ B(ω(L), ε). Let
t = t(r) ≥ 0 be as above. Then

f(B(ω(L), ε)) ⊃ K[t,∞) ⊃ ω(K).

It follows that f(ω(L)) ⊃ ω(K) by the arbitrariness of ε. �
Proposition 3.4. Let X be a quasi-graph. Suppose that L is a k-order oscillatory
quasi-arc for some k ≥ 0 and f ∈ C0(X). Then f(L) contains no oscillatory
quasi-arcs with order > k.

Proof. When k = 0, L is a nonoscillatory quasi-arc. So L is a graph (L can only
be an arc, a circle, or a σ-graph). By Lemma 3.1, f(L) (and thus f(L)) contains
no oscillatory quasi-arcs. Hence, the proposition holds for k = 0.

In the following, we assume k > 0. By Definition 2.29, ω(L) contains oscillatory
quasi-arcs with order from 0 to k − 1, but contains no oscillatory quasi-arcs with
order > k − 1. Let K be a j-order oscillatory quasi-arc contained in f(L). If
j > k, then ω(K) contains a k-order oscillatory quasi-arc. From Corollary 3.3,
we have that f(ω(L)) ⊃ ω(K). By Proposition 2.31, ω(L) has only finitely many
arcwise connected components. So, ω(L) is a union of finitely many oscillatory
quasi-arcs with order ≤ k− 1 and finitely many graphs in X. By induction, we can
assume that the f -image of an oscillatory quasi-arc with order ≤ k − 1 contains
no oscillatory quasi-arc with order > k− 1. This together with Lemma 3.1 implies
that f(ω(L)) contains no oscillatory quasi-arcs with order greater than k − 1. We
get a contradiction. So, there must be j ≤ k. The proof is complete. �
Proposition 3.5. Let X be a quasi-graph. Suppose that L and K are k-order
oscillatory quasi-arcs in X for some k ≥ 1, ϕ : R+ → L and ψ : R+ → K are two
fixed continuous bijections, and f ∈ C0(X). If f(L) ⊃ K, then there are r, s ∈ R+

such that f(L[r,∞)) = K[s,∞), ψ−1fϕ|[r,∞) : [r,∞) → [s,∞) is continuous, and
lim t→∞ ψ−1fϕ(t) = ∞. In addition, f(ω(L)) = ω(K).

Proof. It follows from Proposition 2.27, Theorem 2.24 and Proposition 2.26 that
there exists s ∈ R+ such that ψ|[s,∞) : [s,∞) → K[s,∞) is a homeomorphism
and K[s,∞) ∩ (ω(K) ∪ Br(X)) = ∅. Let S = ϕ−1f−1ψ(s). Then S is a nonempty
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closed set in R+. Assume that S is unbounded; then by Lemma 3.1 there are
positive integers t1 < s1 < t2 < s2 < t3 < s3 < · · · such that lim i→∞ ti = ∞,
lim i→∞ ϕ(ti) = x for some x ∈ ω(L), fϕ(ti) ∈ K(s,∞), and si ∈ S for all i ∈ N.
Thus lim i→∞ fϕ(ti) = f(x) ∈ ω(K), and f(L[ti, si]) ⊃ K[ψ(s), fϕ(ti)], which
imply f(L[ti,∞)) ⊃ K[s,∞), for all i ∈ N. For every ε > 0, there is j = j(ε) ∈
N such that L[tj ,∞) ⊂ B(ω(L), ε). So we have f(B(ω(L), ε)) ⊃ f(L[ti,∞)) ⊃
K[s,∞). It follows that f(ω(L)) ⊃ K[s,∞). (Otherwise, there exist y ∈ K[s,∞)
and δ > 0 such that d(y, f(ω(L))) > δ. By the uniform continuity of f , there is an
ε > 0 such that f(B(ω(L), ε)) ⊂ B(f(ω(L)), δ). It follows that y /∈ f(B(ω(L), ε)),
which leads to a contradiction.) On the other hand, ω(L) contains no oscillatory
quasi-arcs with order > k− 1, and K[s,∞) is a k-order oscillatory quasi-arc. Thus
we have f(ω(L)) � K[s,∞) by Proposition 2.31, Lemma 3.1 and Proposition 3.4.
This is a contradiction. So S is a nonempty bounded closed set in R+. Set r =
max(S); then f(L[r,∞)) = K[s,∞). Since ψ−1|K[s,∞) : K[s,∞) → [s,∞) is
a homeomorphism, ψ−1fϕ|[r,∞) : [r,∞) → [s,∞) is continuous. For every s′ ∈
[s,∞), let S′ = ϕ−1f−1ψ([s, s′]). Similarly to the above, it can be shown that S′

is a nonempty bounded closed set in R+. Hence, we have lim t→∞ ψ−1fϕ(t) = ∞.
In addition, for every x ∈ ω(L), take {t1, t2, · · · } ⊂ [r,∞) such that lim i→∞ ti =

∞ and limi→∞ϕ(ti) = x. Let si = ψ−1fϕ(ti). Then limi→∞si = ∞ and
limi→∞ψ(si) = limi→∞fϕ(ti) = f(x), which implies that f(x) ∈ ω(K), and
f(ω(L)) ⊂ ω(K). Combining with (2) of Corollary 3.3, we have f(ω(L)) = ω(K).
This completes the proof of Proposition 3.5. �

4. Periodic points and ω-limit points of quasi-graph maps

In this section, we study the dynamical systems generated by the iteration of
quasi-graph maps and give some criteria to determine when a point is a periodic
point or a ω-limit point for a quasi-graph map.

Theorem 4.1. Let X be a quasi-graph, let f ∈ C0(X), and let v ∈ X. If
there are an arc A with an endpoint v and an arcwise connected set W such that⋃∞

i=1 f
i(W ) ⊃ A−{v},

⋃n
i=1 f

i(W ) � A−{v} for all n ∈ N, and fμ(W )∩fλ(W ) �=
∅ for some integers μ > λ ≥ 0, then v ∈ P (f).

Proof. For every subset Z of X, let c(Z) denote the number of arcwise connected
components of Z. Let Y =

⋃∞
i=1 f

i(W ), let Yn =
⋃n

i=1 f
i(W ), and let Xn = Y −Yn

for all n ∈ N. Then we have

μ ≥ max{c(Y1), · · · , c(Yμ)} ≥ c(Yμ+1) ≥ c(Yμ+2) ≥ · · · ≥ c(Y ).

It follows from Corollary 2.12 that c(Xn) < c(Y ) ·(N+c(Yn)) ≤ μ(N+μ), where N
is the separation degree of X. Since there are at most N pairwise disjoint oscillatory
quasi-arcs and Br(X) contains at most N − 2 points, there exists an integer μ′ ≥ μ
such that, for all n ≥ μ′, the largest number of pairwise disjoint oscillatory quasi-
arcs in Yn is equal to that in Yμ′ , c(Yn) = c(Yμ′) and Xμ′ ∩Br(X) = ∅. This implies
c(Xμ′) ≥ c(Xμ′+1) ≥ c(Xμ′+2) ≥ · · · . Hence, there is an integer μ′′ ≥ μ′ such that
c(Xn) = c(Xμ′′) for all n ≥ μ′′. Let k0 = c(Y ). Take k0−1 arcs A1, · · · , Ak0−1 in X

such that Y ∪ (
⋃k0−1

i=1 Ai) is arcwise connected and Y ∩ (
⋃k0−1

i=1 (Ai−End(Ai))) = ∅.
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Noting that c(Yμ′′ ∪ (
⋃k0−1

i=1 Ai)) ≤ c(Yμ′′)+k0− 1, we get from Corollary 2.12 that

c(Xμ′′) = c(Y − Yμ′′)

= c((Y ∪ (

k0−1⋃

i=1

Ai))− (Yμ′′ ∪ (

k0−1⋃

i=1

Ai)))

≤ N + c(Yμ′′) + k0 − 2

≤ N + 2μ− 2.

Set k = c(Xμ′′). For n ≥ μ′′, let Ln1, · · · , Lnk be the arcwise connected components
of Xn. Since Xn+1 ⊂ Xn, we may assume that L(n+1)i ⊂ Lni for each i = 1, · · · , k.
In addition, we may as well assume that Lμ′′1∩A �= ∅ and (

⋃k
i=2 Lμ′′i)∩(A−{v}) =

∅.
Claim 1. For each i = 1, · · · , k, there are an integer m = mi ≥ μ′′, a continuous
injection ϕi : R+ → Lmi and real numbers 0 = rmi ≤ r(m+1)i ≤ r(m+2)i ≤ · · · such
that limn→∞rni = ∞, and ϕi((rni,∞)) ⊂ Lni ⊂ ϕi([rni,∞)) for all n ≥ m.

Proof of Claim 1. Note that Lni is an arcwise connected set containing no branch
points of X for all n ≥ μ′′. If Lμ′′i contains an oscillatory quasi-arc, then set
m = mi = μ′′ and set rmi = 0. By Theorem 2.24, we see that there is a continuous
injection ϕi : R+ → Lmi such that ϕi((0,∞)) ⊂ Lmi ⊂ ϕi([0,∞)). For n ≥ m,
since the largest number of pairwise disjoint oscillatory quasi-arcs in Xn is equal
to that in Xm, Lni also contains an oscillatory quasi-arc. Hence, there is rni ∈ R+

such that ϕi((rni,∞)) ⊂ Lni ⊂ ϕi([rni,∞)). As L(n+1)i ⊂ Lni, we know that

r(n+1)i ≥ rni. Since
⋂∞

n=m Lni = ∅, limn→∞rni = ∞.

If Lμ′′i contains no oscillatory quasi-arcs, then Lμ′′i is an arc and Lμ′′i ⊃ Lμ′′i−
End(Lμ′′i). As

⋂∞
n=μ′′ Lni = ∅, it is easy to see that there exists m ≥ μ′′ such that,

for every n ≥ m, Lmi − Lni contains at most one connected component, and there
exist a continuous injection ϕi : R+ → Lmi and real numbers 0 = rmi ≤ r(m+1)i ≤
r(m+2)i ≤ · · · satisfying the conditions of the claim.

Thus the proof of Claim 1 is complete.
Let q = max{m1, · · · ,mk}. By Claim 1, for every n ≥ q and every λ ∈

{1, · · · , k}, Lnλ is either a quasi-arc or a quasi-arc without its endpoint. For any
i, j ∈ {1, · · · , k}, define Lqi ⇒ Lqj if there is n′ ≥ q such that f(Lni) ⊃ Ln′j

for every n ≥ q. It is easy to see that ⇒ so defined is a transitive relation on
{Lq1, · · · , Lqk}. Suppose that Lqi is ai-orderly oscillatory. Then a1 = 0. We may
as well assume that ak ≥ ak−1 ≥ · · · ≥ a2 ≥ a1. By Propositions 3.4 and 3.5, we
have

Claim 2. If Lqi ⇒ Lqj , then ai ≥ aj .

Claim 3. If Lqi ⇒ Lqj and Lqi ⇒ Lqj′ with j �= j′, then ai > max{aj , aj′}.
Noting that f(Xn) ⊃ Xn+1 for all n ≥ q, we have

Claim 4. For every j ∈ {1, · · · , k}, there exists at least one i ∈ {1, · · · , k} such
that Lqi ⇒ Lqj .

When Lqi ⇒ Lqj , we say that Lqi can flow to Lqj under f , or Lqj can be filled
with Lqi.

Claim 2, Claim 3 and Claim 4 show that if some Lqi flows to two different Lqj

and Lqj′ , then it can only flow to the one with lower oscillatory order, and it can
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only be filled with some Lqi′ with equal or greater oscillatory order. In the end,
there must be some Lqi′′ which cannot be filled with any Lqi′′′ . This leads to a
contradiction. Hence, we have

Claim 5. If Lqi ⇒ Lqj and Lqi ⇒ Lqj′ , then j = j′ and ai = aj .

By Claim 4 and Claim 5, we have

Claim 6. There is a unique bijection ζ : {1, · · · , k} → {1, · · · , k} such that Lqi ⇒
Lqj if and only if j = ζ(i), for all i ∈ {1, · · · , k}.

It is known by Claim 6 that there exists λ ∈ {1, · · · , k} such that ζλ(1) = 1.
Thus we have

Claim 7. For every n ≥ q, there is n′ ≥ q such that fλ(Ln1) ⊃ Ln′1.

From Claim 7, we have v ∈ Ln′1 ⊂ fλ(Ln1). Since diam(Ln1) → 0 and
diam(fλ(Ln1)) → 0 as n → ∞, we have fλ(v) = v. The proof of Theorem 4.1
is complete. �

Corollary 4.2. Let X be a quasi-graph. Suppose that W is an arcwise connected
closed set in X, v ∈ W , f ∈ C0(X), and Y =

⋃∞
n=1 f

n(W ). If Y ∩ St(v, ε) �= ∅ for
every ε > 0, and fμ(W ) ∩ fλ(W ) �= ∅ for some integers μ > λ ≥ 0, then v ∈ Y .

Proof. By the conditions of the corollary, we see that Y has at most μ arcwise
connected components, and there exists an arc A in X with v being one of its
endpoints and with A − {v} ⊂ Y . For every n ∈ N, write Yn =

⋃n
i=1 f

i(W ). If
A−{v} � Yn for every n ∈ N, then v is a periodic point of order m for some m ∈ N
by Theorem 4.1, which implies that v = fm(v) ∈ fm(W ) ⊂ Y . If there is some
n ∈ N such that A− {v} ⊂ Yn, then we also have v ∈ Yn ⊂ Y by the closedness of
Yn. �

Theorem 4.3. Let X be a quasi-graph, let f ∈ C0(X), and let v ∈ X. If there is
an arc A in X with v being one of its endpoints, such that for every x ∈ A − {v}
there exist yx ∈ A[x, v) and nx ∈ N such that fnx(yx) ∈ A[x, v), then v ∈ ω(f).
Furthermore, if v ∈ ω(f) \P (f), then there exist w ∈ A−{v} and positive integers
m1 < m2 < m3 < · · · such that {fmi(w) : i ∈ N} ⊂ A− {v} and limi→∞fmi(w) =
v.

Proof. If v ∈ P (f), then v ∈ ω(f). So we may assume that v /∈ P (f) in what
follows. For any x, y ∈ A, if y ∈ A(x, v), then we write x < y < v. Thus we get
naturally a linear ordering < on A. Assume that Br(X)∩A−{v} = ∅. (Otherwise,
take a subarc of A instead of A.)

Claim 1. For any w0 ∈ A−{v}, there exist {x0, y0, w1} ⊂ A−{v} and m1 ∈ N such
that w0 ≤ x0 < y0 < w1, d(w1, v) < d(w0, v)/2, and fm1(A[x0, y0]) = A[w1, v].

Proof of Claim 1. Set W = A[w0, v], Y =
⋃∞

i=1 f
i(W ), Yn =

⋃n
i=1 f

i(W ), and
μ = min{nx : x ∈ W}. Then fμ(W ) ∩W �= ∅, and thus Y has at most μ arcwise
connected components. So there exists u ∈ A(w0, v) such that A[u, v) ⊂ Y by the
conditions of the theorem. Then it follows from Theorem 4.1 and the assumption
v /∈ P (f) that there exists m ∈ N such that A[u, v) ⊂ Ym. Since Ym is closed,
A[u, v] ⊂ Ym. If for every i ∈ {1, · · · ,m} and every x ∈ W ∩ f−i(v) there is εix > 0
such that f i(B(x, εix) ∩ W ) ∩ A[u, v] = {v}, then there is u′ ∈ A[u, v) such that
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A[u′, v) ∩ Ym = ∅, which is a contradiction. Hence there exists m1 ∈ Nm and
z ∈ W ∩ f−m1(v) such that

(4.1) fm1(B(z, ε) ∩W ) ∩A[u, v) �= ∅ for every ε > 0.

Take ε0 > 0 such that ε0 + diam(fm1(B(z, ε0))) < d({z, w0}, v)/2. By (4.1),
we know that there exist {x0, y0} ⊂ B(z, ε0) ∩ W and w1 ∈ A[u, v) such that
{fm1(x0), f

m1(y0)} = {w1, v} and fm1(A[x0, y0]) = A[w1, v]. The proof of Claim 1
is complete.

According to Claim 1, there exist {wi, xi, yi : i ∈ Z+} ⊂ A − {v} and integers
0 = m0 < m1 < m2 < m3 < · · · such that w0 ≤ x0 < y0 < w1 ≤ x1 < y1 < w2 ≤
x2 < y2 < w3 ≤ · · · , limi→∞d(wi, v) = 0 and

fmi+1−mi(A[xi, yi]) = A[wi+1, v] for all i ∈ Z+.

Take an arbitrary point w from
⋂∞

i=0 f
−mi(A[xi, yi]). Then w together with m1,

m2, m3 · · · meets the requirements of the theorem. Thus the proof of Theorem 4.3
is complete. �

Theorem 4.4. Let X be a quasi-graph, let f ∈ C0(X), and let v ∈ X with val(v) =
k. If for every n ∈ N, there exist yn ∈ St(v, 1/n) and positive integers m1n < m2n <
· · · < mkn such that {fmin(yn) : i = 1, · · · , k} ⊂ St(v, 1/n), then v ∈ ω(f).

Proof. Take c > 0 such that St(v, c) ∩ Br(X) − {v} = ∅. Let m0n = 0. Write
yin = fmin(yn). We may as well assume that {yin : i = 0, · · · , k, and n ∈
N} ⊂ St(v, c). Suppose that w1, · · · , wk are k endpoints of St(v, c). Let M =
{n ∈ N : there are λ ∈ {1, · · · , k} and i �= j ∈ {0, · · · , k} with {yin, yjn} ⊂ [wλ, v)}.
If M is an infinite set, then Theorem 4.4 holds by Theorem 4.3. So, we assume
that M is a finite set in what follows. For convenience, we may further assume
that M = ∅. Thus, for every n ∈ N, we have v ∈ {yjn : j = 0, · · · , k} and
[wi, v) ∩ {yjn : j = 0, · · · , k} contains just one point for every i ∈ {1, · · · , k}.

Let M1 = {n ∈ N : v �= ykn}. If M1 is an infinite set, then v ∈ R(f) ⊂ ω(f) by
the fact that {ykn : n ∈ M1} ⊂ O(v, f), and the theorem holds. So we may assume
that M1 is a finite set. For convenience, we may further assume that M1 = ∅, that
is, ykn = v for every n ∈ N. In addition, we may also assume that y(i−1)n ∈ [wi, v)
for all i ∈ {1, · · · , k} and for all n ∈ N.

If v ∈ R(f), then the theorem holds. Now assume that v /∈ R(f). Then
d(v,O(f(v), f)) > 0. We may as well assume that c < d(v,O(f(v), f)). Let
μin = mkn − min. Then for every n ∈ N and every i ∈ {0, · · · , k − 1}, there
is jin ∈ [0, · · · , k − 1] such that fμin([yin, v]) ⊃ [wjin , v]. It follows that, for every
n ∈ N, there exist in ∈ {0, · · · , k−1} and μn ∈ N such that fμn([yinn, v]) ⊃ [win , v].
Thus, we get

Claim 1. There is q ∈ {0, · · · , k − 1} such that for any u0 ∈ [wq, v) there exist
{x0, y0, u1} ⊂ [wq, v) and β1 ∈ N satisfying x0 ∈ [u0, y0), y0 ∈ (x0, v), d(u1, v) <
d(u0, v)/2, and fβ1([x0, y0]) = [u1, v].

Similarly to the proof of Theorem 4.3, it can be deduced from Claim 1 that
v ∈ ω(f). Thus Theorem 4.4 is proved. �
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According to Theorem 4.3 and Theorem 4.4, we have

Corollary 4.5. Let X be a quasi-graph. Suppose that f ∈ C0(X) and v ∈ X −⋃
{ω(L) : L is an oscillatory quasi-arc in X} with val(v) = k. Then the following

three items are equivalent.
(i) v ∈ ω(f).
(ii) At least one of the following two items holds:

(a) v ∈ P (f).
(b) For every ε > 0, there exist an arc A in B(v, ε) with v being an endpoint

and a point x ∈ A− {v} with O(f(x), f) ∩A− {v} �= ∅.
(iii) For every ε > 0, there exist an x ∈ B(v, ε) and positive integers m1 < m2 <

· · · < mk such that {fmi(x) : i = 1, · · · , k} ⊂ B(v, ε). �
By Corollary 4.5, we have

Corollary 4.6. Let X be a quasi-graph, let f ∈ C0(X), and let L1, · · · , Ln be as
in Theorem 2.24. Suppose that each oscillatory quasi-arc Li is of ki-order, km =
km+1 = · · · = kn for some m ∈ {1, · · · , n}, and v ∈

⋃n
i=m Li. Then val(v) = 2 and

the conditions (i), (ii) and (iii) in Corollary 4.5 are equivalent. �
Theorem 4.7. Suppose that G is a graph, f ∈ C0(G), and v ∈ G with val(v) = k.
Then the conditions (i), (ii) and (iii) in Corollary 4.5 are equivalent. �

We remark that Chinen proved in [13] that conditions (iii) and (i) of Theorem
4.7 are equivalent, and part (b) of condition (ii) implies (i).

For a quasi-graph map f : X → X, each of Theorem 4.3 and Theorem 4.4 gives
a sufficient condition for a point v to be in ω(f). However, these conditions are not
necessary in general as the following example shows.

Example 4.8. Suppose that S1 = {eiθ : θ ∈ R} is the unit circle in the complex
plane C. Let H = {(e2πit, 1/t) : t ∈ [1,∞)} be a helical curve in C×R. Then H =
H∪S1. Let A be an arc in C×R such that A∩H = End(A) = {(1+0i, 1), (1+0i, 0)}.
Then X = A ∪H is a quasi-graph. Let p : C × R → R, (s, t) �→ t, be the natural
projection. Obviously, there exists a homeomorphism h : X → X satisfying the
following two conditions:

(i) Fix(h) = A.
(ii) For every x ∈ H −A, p(h(x)) < p(x).
It is easy to show that ω(h) ⊂ S1 ∪ A, ω(h) − A �= ∅, and for every point

v ∈ ω(h) − A(⊂ S1 − A) there always exists εv > 0 such that {n ∈ Z : hn(y) ∈
St(v, εv)} = {0} for every y ∈ St(v, εv).

The following corollary can be deduced immediately from Theorem 4.7, which
was given by Blokh in [6] (see also [20]).

Corollary 4.9. Let G be a graph and let f ∈ C0(G). Then the set of accumulation
points of Ω(f) is contained in the ω - limit set of f , and hence ω(f) is a closed set
in G. �

From Corollary 4.9, we know that P (f) ⊂ R(f) ⊂ ω(f) = ω(f) for every graph
map f . However, it does not hold for general quasi-graph maps as the following
example shows.

Example 4.10. Let J = [−1, 1]. Suppose that A0 = {0}×J , An = {(t, cos(π/t)) ∈
R2 : 1/(n+1) ≤ t ≤ 1/n} for all n ∈ N, and Y =

⋃∞
i=0 Ai. Then Y is homeomorphic
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to the sin(1/t)-continuum. Take an arc A in R2 such that A ∩ Y = End(A) =
{(0,−1), (1,−1)}. Let X = Y ∪ A. Then X is a Warsaw circle. Set a0 = −1, a1 =
0, a2 = 1/4, a3 = 1/2, and a4 = 1. For each i ∈ Z+, let ϕi : J → J be the map such
that ϕi(a0) = −1, ϕi(a4) = 1, ϕi(a3) = 0, ϕ0(a1) = ϕ0(a2) = 1, ϕi(a1) = ϕi(a2) =
1− 2−i, and ϕi|[aj−1, aj ] is linear for each j = 1, · · · , 4 (see Figure 1).

Figure 1

For every i ∈ Z+, define a homeomorphism hi : Ai → J by

hi(r, s) = s, for all (r, s) ∈ Ai.

Define a map f : X → X by f(x) = x for every x ∈ A and f |Ai = h−1
i ϕihi for

every i ∈ Z+. Then f is continuous. It is easy to verify that h−1
i (0) ∈ Pi+1(f)∩Ai

for all i ∈ N, h−1
0 (0) = lim i→∞ h−1

i (0) ∈ P (f) ∩ A0, and h−1
0 (0) /∈ ω(f). Hence,

the closures of R(f) and P (f) are not contained in ω(f), the set of accumulation
points of Ω(f) is not contained in the ω - limit set of f , and ω(f) is not a closed set.

5. Recurrent points of quasi-graph maps

As a slight modification of the notion of limit points, we introduce the following.

Definition 5.1. LetX be a metric space. A point v inX is said to be a connectivity
limit point (resp. arcwise connectivity limit point) of a point sequence x1, x2, · · · in
X if for every ε > 0 and every m ∈ N there exists a connected set (resp. arcwise
connected set) Wε such that v ∈ Wε ⊂ B(v, ε) and Wε ∩ {xm, xm+1, · · · } �= ∅.
Similarly, a point v in X is said to be a connectivity limit point (resp. arcwise
connectivity limit point) of a subset Y ofX if for every ε > 0 there exists a connected
set (resp. arcwise connected set)Wε such that v ∈ Wε ⊂ B(v, ε) and Y ∩Wε−{v} �=
∅.

Obviously, if X is a locally connected (resp. locally arcwise connected) space,
then there is no difference between the notion of connectivity limit point (resp.
arcwise connectivity limit point) and the notion of limit point. Specifically, this is
the case when X is a graph.
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A point sequence x1, x2, · · · is said to be connectedly (resp. arcwise connect-
edly) convergent if there exists a unique limit point of the sequence in the sense of
connectivity (resp. arcwise connectivity).

A connectivity (resp. arcwise connectivity) limit point of a set Y is also called
a connectivity (resp. arcwise connectivity) accumulation point of Y . Denote by
Clp(Y ) (resp. Aclp(Y )) the set of all accumulation points of Y in the sense of
connectivity (resp. arcwise connectivity). Write

Cpclos(Y ) = Y ∪ Clp(Y ) and Acpclos(Y ) = Y ∪ Aclp(Y ).

The set Cpclos(Y ) (resp. Acpclos(Y )) is called the pseudo-closure in the sense of
connectivity (resp. arcwise connectivity) of Y . If Acpclos(Y ) = Y , then Y is called
a pseudo-closed set in the sense of arcwise connectivity. Obviously, for any Y ⊂ X,
Acpclos(Y ) is always pseudo-closed in the sense of arcwise connectivity.

In Example 4.8, observe that for every v ∈ ω(h)−A, there is an x ∈ X such that
the sequence x, h(x), h2(x), · · · is contained in the oscillatory quasi-arc H, and v is
a limit point of this sequence. But there is no y ∈ X such that v is a connectivity
limit point of the sequence y, h(y), h2(y), · · · . So, for a general quasi-graph map f ,
“(a) or (b)” in Corollary 4.5 (ii) is only a sufficient condition but not a necessary
condition for v ∈ ω(f).

Definition 5.2. Let X be a quasi-graph. Suppose that L is an oscillatory quasi-
arc in X and ϕ : R+ → L is the corresponding continuous bijection. A point
sequence x1, x2, x3, · · · in X is said to be cofinal with L if there exist m ∈ N and
positive numbers t0 < t1 < t2 < · · · such that xm+i = ϕ(ti) for all i ∈ Z+ and
lim i→∞ti = ∞.

Obviously, we have

Lemma 5.3. Let L be an oscillatory quasi-arc in a quasi-graph X and let Y be
an arcwise connected set in X. If Y has an infinite point sequence cofinal with L,
then Y ⊃ L[x,∞) for some x ∈ L. �
Theorem 5.4. Let X be a quasi-graph and let f ∈ C0(X). Then for every v ∈ X
the following three items are equivalent:

(i) v ∈ R(f).
(ii) There is ε0 > 0 such that, for every ε ∈ (0, ε0], B(v, ε) ∩ O(f(v), f) =

St(v, ε) ∩O(f(v), f) �= ∅.
(iii) v is an arcwise connected limit point of the point sequence v, f(v), f2(v), · · · .

Proof. (ii)⇒(iii)⇒(i) is obvious.
Suppose that the graph G, the quasi-arcs L1, · · · , Ln, and the corresponding

bijections ϕi : R+ → Li, i = 1, · · · , n, are as in Theorem 2.24 and its proof. If (i)⇒
(ii) does not hold, then there exist v ∈ R(f)− P (f), μ0 ∈ {1, · · · , n}, and integers
m1 < m2 < m3 < · · · greater than n such that fm1(v), fm2(v), fm3(v), · · · is co-
final with Lμ0

and lim i→∞fmi(v) = v. For every i ∈ Z+, denote vi = f i(v). For
j = 1, · · · , n, by Lemma 3.1, there exists μj ∈ {1, · · · , n} such that the sequence
vm1−j , vm2−j , vm3−j , · · · has a convergent subsequence cofinal with Lμj

. For con-
venience, we may as well assume that the sequence vm1−j , vm2−j , vm3−j , · · · itself
is cofinal with Lμj

and converges to a point v−j . Obviously, f j(v−j) = v and
v−j ∈ ω(f). Let kj be the oscillatory order of quasi-arc Lμj

for j = 1, · · · , n, and
let k be the oscillatory order of quasi-arc Lμ0

. It follows from Proposition 3.4 that
kj ≥ k. If kj > k, then use v−j in place of v. Thus, we may as well assume that
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kj = k for j = 1, · · · , n. So, for 0 ≤ i < j ≤ n, we get from Proposition 3.5 and
Corollary 3.2 that there exists a graph Gij in X such that

(5.1) f j−i(Lμj
) ⊂ Lμi

∪Gij .

Since {μ0, μ1, · · · , μn} ⊂ {1, · · · , n}, there are 0 ≤ i0 < j0 ≤ n with μj0 = μi0 . Let
q = j0 − i0. By (5.1), we have μq = μ0 and

(5.2) fq(Lμ0
) ⊂ Lμ0

∪G0q.

Because fq(Lμ0
) contains a sequence vm1

, vm2
, vm3

, · · · cofinal with Lμ0
, there is

w ∈ Lμ0
such that fq(Lμ0

) ⊃ Lμ0
[w,∞). Thus fq(ω(Lμ0

)) = ω(Lμ0
[w,∞)) =

ω(Lμ0
) by Proposition 3.5, which together with v ∈ ω(Lμ0

) implies that O(v, fq) ⊂
ω(Lμ0

) and O(v, f) ⊂ Y , where Y =
⋃q−1

i=0 f i(ω(Lμ0
)). On the other hand, by

Definition 2.29 and Proposition 3.4, we know that Y contains no quasi-arc with
order > k−1. So Y cannot contain the sequence vm1

, vm2
, vm3

, · · · cofinal with the
k-order quasi-arc Lμ0

, which contradicts the initial assumption. Hence (i) implies
(ii). This completes the proof of Theorem 5.4. �

Theorem 5.4 shows that if v is a recurrent point of f on a quasi-graph X, then
the orbit O(v, f) can only pass through the “arcwise connected component neigh-
borhood” St(v, ε) of v (not an oscillatory quasi-arc of X) to return to a sufficiently
small neighborhood of v.

By Theorem 5.4 and Theorem 4.3, we immediately get

Corollary 5.5. Let X be a quasi-graph, let f ∈ C0(X), and let v ∈ X. If for every
ε > 0, St(v, ε) ∩ R(f) �= ∅, then v ∈ ω(f), that is, the pseudo-closure in the sense
of arcwise connectivity of R(f) is contained in ω(f).

Let X be a quasi-graph. Denote ω(X) = ∪{ω(L) : L is an oscillatory quasi-arc
in X}. From Corollary 5.5, we get the following corollary whose special case was
given by Blokh in [6] (see also [20]).

Corollary 5.6. Let X be a quasi-graph and let f ∈ C0(X). Then R(f)− ω(X) ⊂
ω(f). Specifically, if f is a graph map, then R(f) ⊂ ω(f). �

It is well known that P (f) = R(f) if f is an interval map (see [15,26,32]), a tree
map (see [6,31]), or a Warsaw circle map (see [30]). In the following, we will prove

that P (f) = R(f) when f is a quasi-tree map. First, we have

Proposition 5.7. Let X be a metric space, let f ∈ C0(X), and let v ∈ R(f).
Suppose that there is no Jordan curve containing v in X, there exists an arc A with
v being an endpoint and with O(v, f) ∩ A ∩B(v, ε)− {v} �= ∅ for every ε > 0, and

there is no 3-star in X with center in A− {v}. Then v ∈ P (f).

Proof. Let w be the endpoint of A other than v. For every i ∈ Z+, denote vi =

f i(v). If v /∈ P (f), then there exists ε ∈ (0, d(w, v)/2] such that B(v, 2ε) ∩ P (f) =
∅, and there exist integers n > k > 0 such that vk ∈ B(v, ε) ∩ A − {v} and
vn ∈ A(v, vk) ⊂ B(v, ε). Let Y = (

⋃∞
i=0 f

ki(A[v, vk]))∪ (
⋃∞

i=0 f
i(n−k)([vk, vn]))∪A.

Then Y is arcwise connected. For every x ∈ A(v, vk], let Yx1 and Yx2 be the arcwise
connected components of Y containing v and w respectively. Since X has no Jordan
curve containing v and has no 3-star with center in A−{v}, we have that Yx1 �= Yx2

and they are the only two arcwise connected components of Y − {x}. Let Yv2 be
the arcwise connected component of Y − {v} containing w.
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Claim 1. For every i ∈ N, we have vik+k ∈ Yvk2.

In fact, if Claim 1 does not hold, then there exists i ∈ N such that vik ∈
Yvk2 ∪ {vk} and vik+k ∈ Yvk1. For j = 1, 2, let

Xj = {x ∈ A[v, vk] : f
ik(x) ∈ Yxj}.

Then v ∈ X2, vk ∈ X1, and X1 and X2 are both open subsets of A[v, vk] (with
respect to the topology of A[v, vk]). Thus A[v, vk]−X1−X2 �= ∅ and f ik(y) = y for
every y ∈ A[v, vk]−X1−X2. This contradicts the assumption that A[v, vk]∩P (f) ⊂
B(v, 2ε) ∩ P (f) = ∅. So Claim 1 holds.

By Claim 1, we get

Claim 2. For every i ∈ N, vik ∈ Yv2.

Similarly to the proof of Claim 1, we get from Claim 2 that

Claim 3. For every i ∈ N and every x ∈ A[v, vk], f
ik(x) ∈ Yx2.

Similarly to Claim 3, we have

Claim 4. For every j ∈ N and every x ∈ A[vk, vn], f
j(n−k)(x) ∈ Yx1.

Applying Claim 3 and Claim 4 to x ∈ [vk, vn], i = n − k and j = k, we obtain
simultaneously that fk(n−k)(x) ∈ Yx2 and fk(n−k)(x) ∈ Yx1. This is a contradiction.

Hence we must have v ∈ P (f). The proof is complete. �
By Proposition 5.7 and Theorem 5.4, we immediately get

Proposition 5.8. Let X be a quasi-graph. Suppose that G0 =
⋃
{C : C is a Jordan

curve in X} and f ∈ C0(X). Then R(f) − G0 ⊂ P (f), and hence R(f) − G0 =

P (f) − G0. Specifically, if the oscillatory quasi-arcs L1, · · · , Ln in X are as in

Theorem 2.24, then R(f)∩ (
⋃n

i=1 Li) ⊂ P (f), and hence R(f)∩ (
⋃n

i=1 Li) = P (f)∩
(
⋃n

i=1 Li). �

Theorem 5.9. If f is a quasi-tree map, then R(f) = P (f). �
Noting that the Warsaw circle is a quasi-tree, we immediately get the following

corollary, which was first given by Xiong et al. in [30].

Corollary 5.10. Let f be a continuous self-map on the Warsaw circle. Then
R(f) = P (f). �

Acknowledgement

The first author was supported by the Special Foundation of National Prior
Basis Researches of China (Grant No. G1999075108). The second author was
supported by PAPD, NSF grants of Jiangsu Province (No. BK2011275) and NSFC
(No. 11271278). The authors are grateful to the referee for patience and very
helpful comments.

References

[1] G. Acosta, R. Hernandez-Gutierez, I. Nagmouchi and P. Oprocha, Periodic points and tran-
sitivity on dendrites, arXiv:1312.7426[math. DS] (2013).
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Funktsĭı Funktsional. Anal. i Prilozhen. 47 (1987), 67–77, DOI 10.1007/BF01094721; English
transl., J. Soviet Math. 48 (1990), no. 6, 668–674. MR916445 (89i:58056)

[8] A. M. Blokh, Dynamical systems on one-dimensional branched manifolds. III (Russian),
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