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Abstract. For every group G, we show that either G has a topologically transitive action

on the line R by orientation-preserving homeomorphisms, or every orientation-preserving

action of G on R has a wandering interval. According to this result, all groups are divided

into two types: transitive type and wandering type, and the types of several groups are

determined. We also show that every finitely generated orderable group of wandering type

is indicable. As a corollary, we show that if a higher rank lattice � is orderable, then � is

of transitive type.
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1. Introduction

The theory of topological dynamical system study the orbit structure of group
actions on topological spaces. An important question in this area is classifying
“irreducible” actions up to topological conjugations. The Poincaré’s classifica-
tion theorem for minimal orientation-preserving circle homeomorphisms is the
first celebrated result toward this question; this theorem had been extended to
orientation-preserving minimal group actions on the circle by Ghys (see [9]). Like
minimality, the notion of topological transitivity is also a kind of irreducibility
for group actions, which has been intensively studied since the foundation of dy-
namical system. Many important systems are topologically transitive, such as the
Anosov automorphisms of torus, the irrational rotations on the circle, and the full
shifts on symbol spaces. Some well-known definitions of chaos such as Devaney’s
chaos and Auslander–Yorke’s chaos (Ruelle–Taken’s chaos) are based on topolog-
ical transitivity (see [1, 6]). One may consult [18] for a classification theorem about
topologically transitive Zn actions on R.
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Apart from the classification problem of topological transitive actions, the
following question is more basic: given a group G and a topological space X ,
does G have a topologically transitive action on X? Certainly, the answer to
this question depends on the algebraic structure of G and the topology of X .
In this paper, we are mainly concerned with the case that G is a discrete group
and X is the real line R (the simplest noncompact manifold). In fact, there is a
large litterature covering group actions on the line. We recommend the references
[9, 13] for more details in this area. In addition, group actions on the real line are
closely related to the study of orderable groups. It is well known that a countable
group G is orderable (that is, G admits a left-invariant total order relation) if and
only if it admits a faithful orientation-preserving action on the real line (see [14,
Proposition 2.1]). Many important groups coming from geometry and topology
are known to be orderable or nonorderable (see e.g. [3, 5, 19, 22]). Moreover,
an orderable group may possess some interesting algebraic properties (see e.g.
[12, 15, 21]).

In the next section, we recall some notions in dynamical system and group
theory, and give some examples of transitive group actions on the line. Section 3
contains the statements of the main results in the paper. In Section 4, we show
a dichotomy theorem which motivates us to divide all groups into two types:
transitive type and wandering type. Applying the dichotomy theorem, the types
of several groups are determined in Section 5 (with emphasis on solvable groups).
A necessary condition is obtained for a finitely generated orderable group to be of
wandering type in Section 6. The last section contains some properties in group
theory which are used in the previous sections.

2. Preliminaries

Let X be a topological space and let Homeo.X/ be the homeomorphism group
of X . Suppose G is a group. A group homomorphism �W G ! Homeo.X/ is
called an action of G on X ; the action is said to be faithful if � is injective. If
G is a subgroup of Homeo.X/, then the action of G on X always refers to the
inclusion homomorphism �W G ,! Homeo.X/. For brevity, we usually use gx or
g.x/ instead of �.g/.x/ for g 2 G and x 2 X . The orbit of x 2 X under the
action of G is the set Gx � ¹gxW g 2 Gº; x is called a fixed point of � or of G,
if gx D x for all g 2 G. We use Fix.G/ to denote the fixed point set of G; use
Fix.g/ to denote the fixed point set of the cyclic group hgi generated by g 2 G.
A subset Y of X is called G-invariant, if g.Y / � Y for all g 2 G.

Let � be an action of group G on a topological space X . The action � (or G)
is said to be topologically transitive, if for every nonempty open subsets U and V

of X , there is some g 2 G such that g.U / \ V 6D ;. It is well known that, when
G is countable and X is a Polish space, G is topologically transitive if and only if



Topological transitivity and wandering intervals 295

there is a point x 2 X such that the orbit Gx is dense in X . Furthermore, G is said
to be minimal if for every x 2 X the orbit Gx is dense in X ; this is equivalent to
saying that there is no proper G-invariant nonempty closed subset of X . A closed
subset Y of X is said to be minimal, if Y is G-invariant and the restriction action
GjY of G to Y is minimal. An argument using Zorn’s lemma shows the existence
of minimal sets when X is a compact metric space, but this is not true in general
when X is not compact.

Let R be the real line and let HomeoC.R/ be the orientation-preserving home-
omorphism group of R. A group homomorphism � from G to HomeoC.R/ is
called an orientation-preserving action of G on R. An open interval .a; b/ � R

is said to be a wandering interval of � or of G if, for every g 2 G, either the
restriction gj.a;b/ D Id.a;b/ or g..a; b// \ .a; b/ D ;.

For any ˛ 2 R, define L˛; M˛WR ! R by letting L˛.x/ D x C ˛ and
M˛.x/ D ˛x for every x 2 R. We use Zn to denote the free abelian group of
rank n. Now we give some examples to illustrate the above notions, which will be
used in Section 5.

Example 2.1. Every open interval .a; b/ with b � a < 1 is a wandering interval
for the Z action generated by L1.

Example 2.2. Let ˛ be an irrational number, then the Z2 action generated by L1

and L˛ on R is minimal.

Example 2.3. Let n be a positive integer. Let T D L1 and let S D Mn. Then
S�mTSm.x/ D x C n�m for all non negative integers m and all x 2 R, which
clearly implies the minimality of the action of the group G generated by S and T .

Example 2.4. Let f D L1 and let k � 2 be a positive integer. Define a
homeomorphism g on R by setting

g.x/ D .x � n/2.�1/nk�n

C n

for all integers n and all x 2 Œn; n C 1/. Then, for x 2 Œn; n C 1/, we have

fgf �1.x/ D .x � 1 � .n � 1//2.�1/n�1k�.n�1/

C .n � 1/ C 1

D .x � n/2.�1/n�1k�.n�1/

C n;

g�k.x/ D .x � n/2.�1/nC1k�nk

C n D .x � n/2.�1/n�1k�.n�1/

C n:

So fgf �1 D g�k . Since f mglf n.1
2
/ D .1

2
/2.�1/nk�nl

C n C m for all integers
m; l; n, the set ¹f mglf n.1

2
/W m; l; n 2 Zº is dense in R. This implies that the

action by the group hf; gi generated by f and g is topologically transitive.
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3. Main results

In this section, we will list the results obtained in this paper. We first give the
following dichotomy theorem.

Theorem 3.1. Let G be a group. Then either G has a topologically transi-

tive action on the line R by orientation-preserving homeomorphisms, or every

orientation-preserving action of G on R has a wandering interval.

We should note that the “dichotomy phenomenon” in Theorem 3.1 is far from
being true for group actions on spaces of dimension � 2. For example, if D is the
closed unit disk in the plane and S2 is the unit sphere in R3, then any one point
union of D and S2 admits no topologically transitive homeomorphism but admits
a homeomorphism with no wandering open set.

Theorem 3.1 motivates us to give the following definition.

Definition 3.2. A group G is of transitive type if it has a topologically transitive
action on the line R by orientation-preserving homeomorphisms; it is of wander-

ing type if every orientation-preserving action of G onR has a wandering interval.

Recall that a group G is poly-cyclic (resp. super-poly-cyclic) if it admits a
decreasing sequence of subgroups G D N0 B N1 B � � � B Nk D ¹eº for some
positive integer k such that NiC1 is normal in Ni (resp. NiC1 is normal in G) and
Ni =NiC1 is cyclic for each i � k � 1; it is called poly-infinite-cyclic (resp. super-

poly-infinite-cyclic) if Ni =NiC1 is infinitely cyclic for each i � k � 1. It is well
known that all poly-cyclic groups are solvable and all finitely generated torsion
free nilpotent groups are super-poly-infinite-cyclic. One may see the appendix for
more properties about poly-cyclic groups.

Suppose G D N0 B N1 B � � � B Nk D ¹eº is super-poly-infinite-
cyclic. Take fi 2 Ni n NiC1 such that Ni=NiC1 D hfiNiC1i for each i . Then
fifiC1NiC2f �1

i D f
ni

iC1NiC2 where ni D ˙1. We call the .k � 1/-tuple
.n0; n1; : : : ; nk�2/ the name of G. Clearly, the name of G is independent of the
choice of fi .

Baumslag–Solitar groups are examples of two-generator one-relator
groups that play an important role in combinatorial group theory and geometric
group theory. For each integer n, the solvable Baumslag–Solitar group B.1; n/ is
the group ha; b W ba D anbi; B.1; 1/ is the free abelian group of rank 2; B.1; �1/

is the fundamental group of the Klein Bottle, which is a classical example being
of orderable but non bi-orderable (see [13, Exercise 2.2.68]). One may consult [7]
for the study of quasi-isometry property of these groups.
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Theorem 3.3. The following groups are of transitive type: the nonabelian free

group Z � Z; any super-poly-infinite-cyclic group G D N0 B N1 B � � � B Nk D

¹eº having the name .n0; n1; : : : ; nk�2/ with some ni D 1; any poly-infinite-cyclic,

non super-poly-infinite-cyclic group G; the Baumslag–Solitar group B.1; n/ with

n 6D 0 and n 6D �1.

The following groups are of wandering type: finite groups; the infinite cyclic

group Z; SL.2;Z/; finite index subgroups of SL.n;Z/ with n � 3; any super-

poly-infinite-cyclic group G D N0 B N1 B � � � B Nk D ¹eº having the name

.�1; �1; : : : ; �1/; the Baumslag–Solitar group B.1; �1/.

Remark 3.4. The wandering type of finite index subgroups of SL.n;Z/ with
n � 3 in the above theorem is almost a restatement of the celebrated and difficult
result due to Witte-Morris in [22].

Recall that a group is indicable if it has a homomorphism onto the infinite
cyclic group. One may consult [2, 10, 21] for the discussions about indicability of
orderable groups.

Theorem 3.5. If G is a finitely generated nontrivial orderable group of wandering

type, then G is indicable.

A higher rank lattice is a lattice of a simple Lie group with finite center and
with real rank � 2. The 1-dimensional Zimmer’s rigidity conjecture says that every
continuous action of a higher rank lattice on the circle S1 must factor through a
finite group action. Though the conjecture is still open now, Ghys (see [8]) and
Burger and Monod (see [4]) proved independently the existence of periodic points
for such actions. This implies that 1-dimensional Zimmer’s rigidity conjecture is
equivalent to that no higher rank lattice is orderable. We get immediately the
following corollary by Theorem 3.5 and Theorem 7.5 in the appendix.

Corollary 3.6. Suppose G is a higher rank lattice. If G is orderable, then it is of

transitive type.

4. The dichotomy theorem

Lemma 4.1. Let G be a group. Suppose G has no topologically transitive action

on the line R by orientation-preserving homeomorphisms. Then, for every action

�W G ! HomeoC.R/ and for every x 2 R, Gx is countable; in particular, Gx is

nowhere dense.
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Proof. Assume to the contrary that there is some action �0W G ! HomeoC.R/

and some x0 2 R such that Gx0 is uncountable. Then, by collapsing the maximal
open intervals of R n Gx0, we get an induced topologically transitive action of
G on either Œ0; 1�, or Œ0; 1/, or .0; 1�, or .0; 1/. By removing the endpoints of the
phase space of the induced action if necessary, we get a topologically transitive
action of G on R by orientation-preserving homeomorphisms. This contradicts
the assumption. �

Proof of Theorem 3.1. Assume to the contrary that the following two items hold
simultaneously:

(a) G has no topologically transitive action on R by orientation-preserving
homeomorphisms;

(b) there is an action �W G ! HomeoC.R/ such that � has no wandering interval.

From Assumption (b) and the definition of wandering interval, there is some
x1 2 R and some g1 2 G such that x1 < �.g1/.x1/ (otherwise, �.g/ D IdR for all
g 2 G; then every open interval in R is wandering). Without loss of generality,
we suppose that ¹x1; �.g1/.x1/º � .0; 1/. Set U0 D .0; 1/. For the simplicity of
notations, we use g.x/ instead of �.g/.x/ in what follows.

Now we define inductively a sequence of open intervals Ui and gi 2 G,
i D 1; 2; : : : , such that

(1) for each i � 1, Ui�1 � Ui ;

(2) for every g 2 G and every i � 1, either g.Ui / D Ui , or g.Ui / \ Ui D ;;

(3) for every g 2 G and every i � 1, diam.g.Ui / \ Œ0; 1�/ < 1
i
;

(4) for each i � 1, Ui \ gi .Ui / D ; and Ui [ gi .Ui / � Ui�1.

For i D 1, take a sufficiently small interval V1 � .0; 1/ such that x1 2 V1,

V1 [ g1.V1/ � U0; and V1 \ g1.V1/ D ;: (4.1)

Take a sufficiently large positive integer i1 > 1 such that

1

i1
<

1

2
diam.V1/: (4.2)

Let A1 D
®

k 1
i1

W k D 0; 1; : : : ; i1
¯

and let B1 D GA1. It follows from Lemma 4.1
that B1 is a nowhere dense G-invariant closed subset of R. From (4.2) and the
definition of A1, there exists a maximal open interval U1 of R n B1 such that
U1 � V1. Then (1)–(4) hold for U1 and g1 by (4.1), (4.2), and the definition of U1.
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Suppose that for 1 � i � k we have defined Ui and gi which satisfy (1)–(4).
Then define UkC1 and gkC1 as follows. From Assumption (b), Uk is nonwan-
dering, which together with .2/ implies that there is some point xkC1 2 Uk and
some gkC1 2 G such that gkC1.xkC1/ 2 Uk and gkC1.xkC1/ > xkC1. Take a
sufficiently small open interval VkC1 such that xkC1 2 VkC1,

VkC1 [ gkC1.VkC1/ � Uk and VkC1 \ gkC1.VkC1/ D ;: (4.3)

Take a sufficiently large positive integer ikC1 > k C 1 such that

1

ikC1

<
1

2
diam.VkC1/: (4.4)

Let AkC1 D ¹k 1
ikC1

W k D 0; 1; : : : ; ikC1º and let BkC1 D GAkC1. Similar to the
case of i D 1, we get a maximal open interval UkC1 of R n BkC1 which satisfy
conditions (1)–(4).

Now we define a sequence of subsets Gi of G for i D 1; 2; : : : as follows.
Let G1 D ¹e; g1º. Assume Gi have been defined for 1 � i � k. Then let
GkC1 D Gk [ ¹ggkC1W g 2 Gkº. For each k D 1; 2; : : : , set ƒk D [g2Gk

g.Uk/,
and set ƒ D \1

kD1
ƒk . It follows from .3/ and .4/ that ƒ is homeomorphic

to the Cantor set, and, for any point x 2 ƒ, Gx � ƒ (one may see Figure 1
for the illustration of the ideas of the construction). This implies that G has a
topologically transitive orientation-preserving action on R by Lemma 4.1, which
contradicts the assumption (a). �

Figure 1

5. Types of some groups

In this section, we start to prove Theorem 3.3. From Definition 3.2, we immedi-
ately have that all finite groups and the infinite cyclic group Z are of wandering
type.
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Proposition 5.1. Suppose G D N0 B N1 B � � � B Nk D ¹eº is super-poly-

infinite-cyclic and has the name .�1; �1; : : : ; �1/. Then G is of wandering type.

Proof. By the hypothesis, we can take a sequence gi 2 Ni nNiC1 and take gk D e

such that Ni D hgi ; : : : ; gk�1i and

gigiC1NiC2 D g�1
iC1giNiC2 for each i W 0 � i � k � 2: (5.1)

Let �W G ! HomeoC.R/ be any orientation-preserving action of G on R and let
fi D �.gi / for each i . If fi D IdR for each i , then every open interval in R is
wandering by Definition 3.2. So, we may as well suppose that

R n Fix.Nk�1/ 6D ;: (5.2)

Claim A. There exists a sequence of open intervals Ji , 0 < i � k, such that

J1 � � � � � Jk , Ji � R n Fix.fi / for i < k, fi�1.Ji / \ Ji D ; and fj .Ji / D Ji for

j � i .

We prove this claim by induction. Take a maximal open interval Jk�1 in
RnFix.Nk�1/ by (5.2), and take an open interval Jk � Jk�1 such that fk�1.Jk/\

Jk D ;. Assume that, for some l � 0, we have obtained open intervals JlC1 �

� � � � Jk such that Ji � R n Fix.fi/ for each i W k > i > l , fi�1.Ji / \ Ji D ;

for i > l , and fj .Ji / D Ji for j � i . Let Ji D .˛i ; ˇi /, k � i � l C 1.
Let Jl D .˛l ; ˇl/ be the maximal open interval of R n Fix.fl /, which contains
JlC1. Since either ˛l D lim

m!C1

f m.˛lC1/ or ˛l D lim
m!�1

f m.˛lC1/, and

˛lC1 2 Fix.NlC1/, we have ˛l 2 Fix.Nl /. Similarly, ˇl 2 Fix.Nl /. So,
fj .Jl / D Jl for j � l: In addition, we have fl�1.Jl/ \ Jl D ;: Otherwise,
fl�1.Jl / D Jl since fl�1.Fix.Nl // D Fix.Nl / by (5.1). Without loss of generality,
we suppose fl .x/ > x for every x 2 Jl . Let w D ˛lC1. Then w 2 Fix.NlC1/,
and ˛l D lim

m!C1

fl�1f �m
l

.w/ D lim
m!C1

f m
l

.fl�1.w// D ˇl by (5.1), which is a

contradiction. Thus we complete the proof of Claim A.

Claim B. Jk is a wandering interval of �. In fact, for any g 2 G, �.g/ can

be expressed as �.g/ D f
n0

0 f
n1

1 : : : f
nk�1

k�1
for some integers n0; n1; : : : ; nk�1. If

�.g/.Jk/ \ Jk 6D ;, then it follows from Claim A that n0 D n1 D � � � D nk�1 D 0.

Thus �.g/ D IdR.

From Claim B, we get that G is of wandering type. �

Lemma 5.2. Let H be a normal subgroup of G such that G=H is infinite cyclic.

Then G is of transitive type provided that H is of transitive type.

Proof. Suppose G=H D haH i for some a 2 G n H . Let a act on the line by
the unit translation �.a/W x 7! x C 1. By the assumption, H has an orientation-
preserving topologically transitive action on .0; 1/, which extends to an action �
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on the interval Œ0; 1� by fixing the endpoints. Then extend this H action to G action
on the line by setting, for each j 2 Z,

�.b/.x/ D �.a�j baj /.x � j / C j (5.3)

for all x 2 Œj; j C 1� and b 2 H . Then define � on G by setting �.aib/ D

.�.a//i�.b/ for all i 2 Z and b 2 H . It is direct to check that �.g1g2/ D

�.g1/�.g2/ for arbitrary two elements g1 D al1b1 and g2 D al2b2 in G where
b1; b2 2 H . In fact, for all x 2 Œi; i C 1�, we have

�.g1g2/.x/ D �.al1b1al2b2/.x/

D �.al1Cl2a�l2b1al2b2/.x/

D �.al1Cl2/�.a�l2b1al2b2/.x/

D �.a�ia�l2b1al2b2ai /.x � i/ C i C l1 C l2;

while

�.g1/�.g2/.x/ D �.al1b1/�.al2b2/.x/

D �.al1b1/.�.a�ib2ai /.x � i/ C i C l2/

D �.a�i�l2b1aiCl2/�.a�ib2ai /.x � i/ C i C l1 C l2

D �.a�ia�l2b1al2b2ai /.x � i/ C i C l1 C l2;

as required. Thus � is an orientation-preserving action of G on the line and the
topological transitivity of � is clear. �

Proposition 5.3. Suppose G D N0 B N1 B � � � B Nk D ¹eº is super-poly-

infinite-cyclic with k � 2 and has the name .n0; n1; : : : ; nk�2/ with some ni D 1.

Then G is of transitive type.

Proof. If nk�2 D 1, then Nk�2 is isomorphic to Z2, which is of transitive type by
Example 2.2 By repeated applications of Lemma 5.2, we get that G is of transitive
type. If ni D 1 for some i < k�2, then G=NiC2 is of transitive type by the previous
argument. Since G=NiC2 is a factor of G, G is of transitive type. �

Proposition 5.4. Suppose G is poly-infinite-cyclic. If G is not super-poly-cyclic,

then G is of transitive type.

Proof. By Proposition 7.4 in the appendix, there is a decreasing sequence of
normal subgroups of G: G D N0 B N1 B � � � B Nk D ¹eº for some k > 0,
such that each Ni =NiC1 is isomorphic to Zdi for some di � 1. If every Ni =NiC1

is isomorphic to Z, then G is super-poly-cyclic, which contradicts the assumption.
So, there is some i 0 such that Ni 0=Ni 0C1 is isomorphic to Zdi0 with di 0 � 2. Let
zG D G=Ni 0C1. Since zNi 0 � Ni 0=Ni 0C1 is of transitive type by Example 2.2, zG

is of transitive type by repeated applications of Lemma 5.2 (note that zG= zNi 0 is
poly-infinite-cyclic). Then G is of transitive type since zG is a factor of G. �
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Proposition 5.5. The Baumslag–Solitar group B.1; n/ is of transitive type if and

only if n 6D 0 and n 6D �1.

Proof. .)/ Suppose B.1; n/ D ha; b W ba D anbi. If n D 0, then B.1; n/ is an
infinite cyclic group; in this case, every orientation-preserving action of B.1; n/ on
R has a wandering interval. Supppose n D �1. Let �W B.1; �1/ ! HomeoC.R/

be any orientation-preserving action of B.1; �1/ on R. Let g D �.a/ and
f D �.b/; then fg D g�1f . We wish to show that � has a wandering interval.
If Fix.g/ D R, then � factors through a cyclic group action on R, which ensures
the existence of wandering intervals. So, we may suppose that Fix.g/ 6D R.

Claim A. f .Fix.g// D Fix.g/. In fact, let x 2 Fix.g/. Then g�1f .x/ D

fg.x/ D f .x/. So, f .x/ 2 Fix.g�1/ D Fix.g/. On the other hand, g�1f �1.x/ D

f �1g.x/ D f �1.x/, which means f �1.x/ 2 Fix.g�1/ D Fix.g/.

From Claim A, we see that f permutes the maximal open intervals in the set
R n Fix.g/. Fix a maximal open interval .u; v/ in R n Fix.g/ (u may be �1, and
v may be C1).

Claim B. f ..u; v// \ .u; v/ D ;: Otherwise, f ..u; v// D .u; v/. Without loss of

generality, we suppose g.x/ > x for every x 2 .u; v/. Fix any point w 2 .u; v/,

then v D lim
i!C1

fgi .w/ D lim
i!C1

g�i .f .w// D u by the relation fg D g�1f .

This is a contradiction.

From Claim A and Claim B, we immediately get:

Claim C. Suppose f m1gn1f m2gn2 : : : f ml gml ..u; v// D .u; v/ for some integers

l , mi , and ni .1 � i � l/. Then m1 C m2 C � � � C ml D 0.

Take an open interval J � .u; v/ such that J \ g.J / D ;.

Claim D. If h.J / \ J 6D ; for some h 2 �.B.1; �1//, then h D IdR. In fact,

suppose h D f m1gn1f m2gn2 : : : f ml gml such that jm1j C jn1j C jm2j C jn2j C

� � � C jml j C jnl j attains minimum among all expressions of h by f and g. This

implies that all mi with mi 6D 0 have the same signs by the relation f �1gf D g�1.

However, this forces all mi D 0 by Claim C (noting that h..u; v// D .u; v/). Then

h D IdR, since J \ g.J / D ;.

It follows from Claim D that J is a wandering interval for �.
.(/ Since B.1; 1/ is isomorphic to Z2, it is of transitive type by Example 2.2.

If n > 1, then B.1; n/ is of transitive type by Example 2.3 (note that T and S in
Example 2.3 satisfy the relation ST D T nS ). In Example 2.4, we see that f and
g satisfy the relation fg D g�kf with k � 2, which implies that B.1; n/ is of
transitive type when n � �2. �
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From Example 2.2, we see that the free nonabelian group Z�Z has a topologi-
cally transitive action on R by orientation-preserving homeomorphisms, since Z2

is a factor of Z � Z. In fact, we can further require the action to be faithful as the
following lemma shows.

Proposition 5.6. The free nonabelian group Z � Z has a faithful topologically

transitive action on R by orientation-preserving homeomorphisms.

Proof. Let f; g 2 HomeoC.R/ be defined by f .x/ D x C 1 and g.x/ D x3 for
every x 2 R. Then for any nonempty open intervals U and V in R, we have
diam.gn.U // > 1 for some integer n, and then there is some integer m such that
f m.gn.U // \ V 6D ;. Thus the action by the group H generated by f and g is
topologically transitive. By the main result in [20], we see that H is isomorphic
to Z � Z. �

The following theorem is due to D. Witte-Morris (see [22]).

Theorem 5.7 (Witte-Morris). The group SL.2;Z/ and all finite index subgroups

of SL.n;Z/ with n � 3 are non-orderable.

Corollary 5.8. The group SL.2;Z/ and all finite index subgroups of SL.n;Z/

with n � 3 are of wandering type.

Proof. Since SL.2;Z/ is generated by elements with finite orders, any orientation
preserving action of SL.2;Z/ on R must be trivial. So, SL.2;Z/ is of wandering
type. Suppose n � 3 and H is a subgroup of SL.n;Z/ with finite index. Assume
H is of transitive type and let �W H ! HomeoC.R/ be a topologically transitive
action of H on R. By Selberg’s Lemma (see Theorem 7.6 in the appendix),
there is a torsion free normal subgroup F of H which has finite index in H . It
follows from Theorem 7.5 (see the appendix) and the topological transitivity of �

that Ker.�/ is finite, which implies that Ker.�/ \ F is trivial. So the restriction
�jF W F ! HomeoC.R/ is injective. Thus F is orderable, which contradicts
Theorem 5.7. �

Remark 5.9. Since the free non-abelian group Z � Z is a finite index subgroup
of SL.2;Z/ and Z � Z is of transitive type, Corollary 5.8 does not hold for finite
index subgroups of SL.2;Z/.

Then Theorem 3.3 follows from all the propositions in this section.



304 E. Shi and L. Zhou

6. Indicability

To prove Theorem 3.5, we need several well-known results about group actions
on R. The following lemma can be shown by the dynamical realization method
(see [13, Theorem 2.2.19] and its remark).

Lemma 6.1. Every countable nontrivial orderable group has a faithful orienta-

tion-preserving action on the line R without fixed points.

The following lemma is the combination of [13, Proposition 2.1.12] and the
remarks after it (see also [11]).

Lemma 6.2. If G is a finitely generated group acting on the line R by orientation-

preserving homeomorphisms, then G admits a nonempty minimal closed subset

ƒ of R, and ƒ has four possibilities:

(a) ƒ is a point (in this case, ƒ is a fixed point of G);

(b) ƒ is an infinite sequence .an/n2Z satisfying an < anC1 for all n and without

accumulation points in R;

(c) ƒ is locally a Cantor set;

(d) ƒ D R.

Proof of Theorem 3.5. Suppose G is a finitely generated nontrivial orderable
group of wandering type. From Lemma 6.1, we can fix a faithful action �W G !

HomeoC.R/ without fixed points. By Lemma 6.2, there is a minimal set ƒ � R.
Since � has no fixed points, ƒ cannot be a single point. By Definition 3.2 and
Lemma 4.1, we see that ƒ is countable, which together with Lemma 6.2 im-
plies that ƒ is an infinite sequence .an/n2Z satisfying an < anC1 for all n and
without accumulation points in R. Set H D ¹g 2 GW g..a0; a1// D .a0; a1/º

and fix an f 2 G with f .a0/ D a1. By the structure of ƒ, we have
H D ¹g 2 GW g.an/ D an for all nº and f .an/ D anC1 for all n. Thus H is
normal in G, and G=H D ¹f nH; n 2 Zº which is an infinite cyclic group. This
completes the proof. �

7. Appendix

In this section, we first supply some basic results about poly-cyclic groups, which
have been used in the previous sections. One may consult [16] for more details.

Proposition 7.1. Let G be a poly-cyclic group and let H be a subgroup of G.

Then H is poly-cyclic.
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Proposition 7.2 ([15]). Let G be a poly-cyclic group. Then G is poly-infinite-

cyclic if and only if G is orderable.

Since every subgroup of an orderable group is orderable, we immediately get
the following corollary by propositions 7.1 and 7.2.

Corollary 7.3. Let G be a poly-infinite-cyclic group. Then every non-trivial

subgroup of G is poly-infinite-cyclic.

Suppose G is a poly-cyclic group. Then G D N0 B N1 B � � � B Nk D ¹eº

with Ni =NiC1 cyclic for each i . The cyclic groups Ni=NiC1 are called the cyclic

factors. The Hirsch number of G is the number of infinite cyclic factors among
these Ni =NiC1. It is an invariant of polycyclic groups.

Proposition 7.4. Let G be a poly-infinite-cyclic group. Then there is a decreasing

sequence of normal subgroups of G: G D G0 B G1 B � � � B Gl D ¹eº for some

l > 0, such that Gi=GiC1 is a free abelian group of finite rank for each i .

Proof. Suppose G D N0 B N1 B � � � B Nk D ¹eº for some k > 0, where
NiC1 is normal in Ni and Ni =NiC1 is infinitely cyclic for each i � 0. Since G=N1

is abelian, the commutator group ŒG; G� � N1. So, G=ŒG; G� is isomorphic to
Zd � F for some d > 1, where F is a finite abelian group. Let � W G ! G=ŒG; G�

be the quotient homomorphism and let G1 D ��1.F /. Then G1 is a character
subgroup of G and G=G1 is isomorphic to Zd . Similarly, we can get a character
subgroup G2 of G1 (which is also a character subgroup of G) such that G1=G2

is a free abelian group of finite rank, since G1 is still poly-infinite-cyclic by
Corollary 7.3. Going on in this way, we get a sequence of character subgroups
of GW G D G0 B G1 B � � � B Gi B : : : such that Gi=GiC1 is a free abelian
group of finite rank for each i . Since the Hirsch number of G is finite, there exists
a positive integer l such that Gl D ¹eº. Thus we complete the proof. �

The following theorem is due to Margulis and Kazhdan (see e.g. [23, Theo-
rem 8.1.2]).

Theorem 7.5. Let � be a higher rank lattice and let H be a normal subgroup

of �. Then either H is finite or �=H is finite.

The following theorem is known as Selberg’s Lemma (see [17]).

Theorem 7.6. Let G be a finitely generated subgroup of GL.n;C/. Then G

contains a torsion free normal subgroup H with finite index in G.
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