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Let G be a subgroup of Homeo+(R) without crossed elements. We show the 
equivalence among three items: (1) existence of G-invariant Radon measures on 
R; (2) existence of minimal closed subsets of R; (3) nonexistence of infinite towers 
covering the whole line. For a nilpotent subgroup G of Homeo+(R), we show that G
always has an invariant Radon measure and a minimal closed set if every element of 
G is C1+α(α > 0); a counterexample of C1 commutative subgroup of Homeo+(R)
is constructed.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In the theory of dynamical systems, the following two facts are well known:
(1) if G is a group consisting of homeomorphisms on a compact metric space X, then G has a minimal set 

K in X, that is K is minimal among all nonempty G-invariant closed subsets with respect to the inclusion 
relation on sets;

(2) if G is an amenable group consisting of homeomorphisms on a compact metric space X, then G has 
an invariant Borel probability measure on X.

In general, these two results do not hold if X is not compact. However, if the topology of X is very 
constrained and the acting group G possesses some specified structures, then the existence of invariant 
Radon measures (Borel measures which are finite on every compact set) or minimal sets can still be true, 
even if X is noncompact.
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When X is the real line R and Γ is a finitely generated virtually nilpotent group, Plante obtained the 
following theorem in [7].

Theorem 1.1. If Γ is a finitely generated virtually nilpotent subgroup of Homeo+(R), then Γ preserves a 
Radon measure on the line.

Here, Homeo+(R) means the orientation preserving homeomorphism group on R. More generally, for 
every finitely generated subgroup of Homeo+(R) without crossed elements, there always exists an invariant 
Radon measure (see Prop. 2.2.45 in [5]). Note that the condition having crossed elements implies the 
existence of free sub-semigroup (see Lemma 2.2.44 in [5]). In particular, a nilpotent group has no crossed 
elements, since it contains no free sub-semigroup. In [8] V. Solodov obtained an alternative that for a finitely 
generated subgroup of Homeo+(R), either it preserves a Radon measure or it contains a free sub-semigroup 
on two generators.

Considering the existence of minimal set, the following theorem is well known which can be seen in A. 
Navas’ book (see Prop. 2.1.12 in [5]).

Theorem 1.2. Every finitely generated subgroup of Homeo+(R) admits a nonempty minimal invariant closed 
set.

In [1], L. Beklaryan obtained the following relation between the existences of invariant Radon measure 
and minimal set.

Theorem 1.3 (Theorem B [1]). If G is a subgroup of Homeo(R), there exists a G-invariant Radon measure 
if and only if there exists a nonempty minimal set and the quotient group G/HG does not contain a free 
sub-semigroup on two generators. Here HG is a subgroup of G canonically defined in [1].

In this paper, we are interested in non-finitely generated subgroups of Homeo+(R) and get the following 
theorem.

Theorem 1.4. Let G be a subgroup of Homeo+(R) without crossed elements. Then the following items are 
equivalent:

(1) there exists a G-invariant Radon measure;
(2) there exists a nonempty closed minimal set;
(3) there does not exist any infinite tower {(Ii, fi)}∞i=1 such that 

⋃∞
i=1 Ii = R.

For a nilpotent group G of Homeo+(R), if it does not preserve any Radon measures, we can construct 
a better infinite tower. This together with a beautiful generalization of Kopell’s Lemma due to A. Navas 
implies the following theorem.

Theorem 1.5. For every α > 0, every nilpotent C1+α subgroup of Homeo+(R) has an invariant Radon 
measure and has a nonempty minimal closed invariant set.

We should note that there is no requirement of finite generation or even countability for the group 
appearing in Theorem 1.4 and Theorem 1.5. This is the key point that differs from Theorem 1.1 and 
Theorem 1.2. In [4], N. Guelman and C. Rivas obtained the following criterion for the existence of invariant 
Radon measure the similar ideas of which will be used frequently in this paper.
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Proposition 1.6. Let G be a subgroup of Homeo+(R) locally of subexponential growth. If there is g ∈ G

having no fixed points, then G preserves a Radon measure on the line.

As a supplement of Theorem 1.5, we construct in Section 5 a C1 commutative subgroup of Homeo+(R), 
which has neither invariant Radon measure nor minimal closed set. Finally, we remark that in [6], Navas 
showed that there exists a subgroup of Diff1

+([0, 1]) having intermediate growth but does not exist a subgroup 
of Diff1+α

+ ([0, 1]) having intermediate growth, for any α > 0.

2. Notions and auxiliary lemmas

In this section, we give some definitions and lemmas which will be used in the proof of the main theorems.

Let G be a subgroup of Homeo+(R). For x ∈ R, we denote the orbit of x by Gx ≡ {g(x) : g ∈ G}. For 
g ∈ G, we denote by Fix(g) the set of fixed points of g and denote by Fix(G) the set of global fixed points 
of G, i.e. Fix(G) = {x ∈ R : ∀g ∈ G, g(x) = x}.

Definition 2.1. Tow elements f, g ∈ Homeo+(R) are called crossed if there exists an interval (a, b) such that 
one of f, g, saying f , Fix(f) ∩ [a, b] = {a, b} while g sends either a or b into (a, b). Here we allow the cases 
a = −∞ or b = +∞.

We recall the following facts which will be used frequently.

Fact 2.2. Let G be a subgroup of Homeo+(R) and F = {f ∈ G : Fix(f) �= ∅}. Then for any f ∈ F and 
g ∈ G, gfg−1 ∈ F .

Proof. For any x ∈ Fix(f), (gfg−1)(g(x)) = g(f(x)) = g(x). Thus g(x) ∈ Fix(gfg−1) and hence gfg−1 ∈
F . �
Fact 2.3. Let f and g be in Homeo+(R) which are not crossed and Fix(f) ∩ [α, β] = {α, β}. If g(α) > α or 
g(β) < β, then g((α, β)) ∩ (α, β) = ∅.

Fact 2.4. Let G be a subgroup of Homeo+(R). For any x ∈ R, set

α := inf{Gx}, β := sup{Gx}.

Then either α = −∞ (resp. β = +∞) or α ∈ Fix(G) (resp. β ∈ Fix(G)).

Proof. We may assume that α �= −∞. Then for any g ∈ G,

g(α) ≥ α, and g−1(α) ≥ α =⇒ g(α) ≤ α.

Hence g(α) = α. It is similar for β. �
Definition 2.5. If {Ii}∞i=1 is a sequence of closed intervals such that I1 � I2 � ... , and {fi}∞i=1 is a sequence 
of orientation preserving homeomorphisms on R such that Fix(fi) ∩ Ii = End(Ii) for each i, where End(Ii)
denotes the endpoint set of interval Ii, then we call the sequence of pairs {(Ii, fi)}∞i=1 an infinite tower.

Lemma 2.6. Let H be a subgroup of Homeo+(R) without crossed elements. Suppose H has no infinite tower 
{(Ii, fi)}∞i=1 such that 

⋃∞
Ii = R. If for every f ∈ H, Fix(f) �= ∅, then Fix(H) �= ∅.
i=1
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Proof. Assume to the contrary that Fix(H) = ∅. Choose an f1 �= id in H. Then ∅ �= Fix(f1) � R. Take a 
connected component (α1, β1) of R \ Fix(f1).

We claim that −∞ < α1 < β1 < +∞. In fact, since Fix(f1) �= ∅, at least one of α1, β1 is finite. We may 
assume that α1 ∈ R. Since Fix(H) = ∅, by Fact 2.4, there exists f2 ∈ H\{f1} such that f2(α1) > max{α1, 2}. 
Since f1 and f2 are not crossed, f2((α1, β1)) ∩ (α1, β1) = ∅ by Fact 2.3. Therefore, β1 ≤ f2(α1) < +∞.

Set α2 = inf{f i
2(α1) : i ∈ Z} and β2 = sup{f i

2(α1) : i ∈ Z}. Then either α2 �= −∞ or β2 �= +∞ by 
the assumption that Fix(f) �= ∅ for every f ∈ H. Similar to the argument of the previous claim, we have 
α2 ∈ R and β2 ∈ R. Then α2 < α1 < β1 < β2 and Fix(f2) ∩ [α2, β2] = {α2, β2} and β2 > 2.

Similar to the above arguments, we get α3, β3 ∈ R and f3 ∈ H such that α3 < α2 < β2 < β3, and 
Fix(f3) ∩ [α3, β3] = {α3, β3}, and α3 < −3.

Continuing this process, we obtain a nested closed intervals [α1, β1] � [α2, β2] � · · · and a sequence 
f1, f2, · · · ∈ H such that

Fix(fi) ∩ [αi, βi] = {αi, βi}, i = 1, 2, ...,

and α2i−1 < −(2i − 1) and β2i > 2i for each i > 0. Set Ii = [αi, βi]. Then {(Ii, fi)}∞i=1 is an infinite tower 
such that 

⋃∞
i=1 Ii = R, which contradicts the hypothesis. �

Lemma 2.7. Let F be a subset of Homeo+(R) and let H = 〈F 〉 be the group generated by F . Suppose H has 
no crossed elements. If for every f ∈ F , Fix(f) �= ∅, then Fix(g) �= ∅ for every g ∈ H.

Proof. Since H is generated by F , we need only to prove that for any g1 �= g2 ∈ H, if Fix(g1) �= ∅ and 
Fix(g2) �= ∅, then Fix(g1g2) �= ∅. Otherwise, Fix(g2) ⊂ R \ Fix(g1) and Fix(g1) ⊂ R \ Fix(g2). This clearly 
implies the existence of crossed elements in H, which is a contradiction. �

Recall that a subgroup H of Homeo+(R) is said to act on R freely, if every non-identity element of H
has no fixed points.

Lemma 2.8 (Hölder [5] Proposition 2.2.29). Every group acting freely by homeomorphisms of the real line 
is isomorphic to a subgroup of (R, +).

Lemma 2.9. Let G be a subgroup of Homeo+(R) and let Γ = {f ∈ G : Fix(f) �= ∅}. Suppose Γ is a normal 
subgroup of G. If Fix(Γ) is uncountable, then there exist a G-invariant Radon measure on R and a nonempty 
minimal closed subset of R.

Proof. If G = Γ, then each point x in Fix(Γ) is minimal and the Dirac measure δx is a G-invariant Radon 
measure on R. So, we may suppose that Γ is a proper subgroup of G.

Let ϕ be the map on R defined by collapsing the closure of each component of R \ Fix(Γ) into a point. 
Then the space ϕ(R) is homeomorphic to an interval K (with or without endpoints). Since Γ is normal in 
G, g(Fix(Γ)) = Fix(Γ) for every g ∈ G. Thus G/Γ naturally acts on K by letting gΓ.ϕ(x) = ϕ(g(x)).

If p is an end point of K, then p is G/Γ-invariant and hence ϕ−1(p) is a connected G-invariant closed 
set J in R. Let q be a boundary point of J . Then q is G-fixed, which contradicts the assumption that Γ is 
properly contained in G. So, ϕ(R) ∼= R.

We claim that the action of G/Γ on ϕ(R) is free. Otherwise, there is some g ∈ G \ Γ and y ∈ ϕ(R)
such that gΓ(y) = y. Then ϕ−1(y) is a g-invariant closed interval, and hence each point of the boundary of 
ϕ−1(y) is g-fixed. This is a contradiction.

By the claim and Hölder’s Lemma 2.8, this G/Γ action on ϕ(R) is conjugate to translations on the 
line. We may as well assume that G/Γ are translations on R. Then the Lebesgue measure λ on R is a 
G/Γ-invariant Radon measure.
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Since ϕ is increasing and continuous, it is well known that there is a unique continuous Radon measure 
� on R such that

�([a, b]) = ϕ(b) − ϕ(a) = λ(ϕ([a, b])).

The G-invariance of � can be seen from

�(g[a, b]) = λ(gΓϕ([a, b])) = λ(ϕ([a, b])) = �([a, b]).

Then � is the required Radon measure on R.

To prove the existence of minimal sets, we discuss in two cases.

Case 1. The G/Γ-action on R is minimal.
Set K = R \

⋃
x∈R int(ϕ−1(x)). Firstly, K is nonempty, since ϕ is monotonic and ϕ(R) ∼= R. Furthermore, 

for any x ∈ K, ϕ−1(ϕ(x)) has at most two points. We claim that K is a minimal closed subset for G. For 
any x, y ∈ K, by the minimality of the G/Γ-action, there exists a sequence (gn)∞n=1 in G such that

gnΓ · ϕ(x) = ϕ(gnx) → ϕ(y), as n → ∞.

If ϕ−1(ϕ(y)) = {y}, then there is a subsequence of (gnk
)∞k=1 such that gnk

(x) → y as k → ∞. If ϕ−1(ϕ(y)) =
{y, y′}, then we may assume that y < y′ and that the choice of (gn) satisfying that ϕ(gnx) tends to ϕ(y)
from left. Then there is also a subsequence of (gnk

)∞k=1 such that gnk
(x) → y as k → ∞. Therefore, K is a 

nonempty minimal closed subset for G.

Case 2. The G/Γ-action on R is not minimal.
Noting that the action of G/Γ on R consists of translations, Λ ≡ {gΓ(0) : g ∈ G} is discrete and minimal 

in this case. Take x ∈ ϕ−1(Λ) ∩ Fix(Γ) and let E = Gx. For any y ∈ E, there is an ε > 0 such that if 
d(gx, y) < ε then ϕ(gx) = ϕ(y) by the discreteness of Λ. Supposed that there exist g, g′ ∈ G such that 
ϕ(gx) = ϕ(g′x). Then gΓ · ϕ(x) = g′Γ · ϕ(x). Hence gΓ = g′Γ, by the freeness of the G/Γ-action. Thus 
g(x) = g′(x), since x ∈ Fix(Γ). Therefore, Gx ∩ ϕ−1(z) has at most one point, for every z ∈ R. Thus we 
have gx = g′x for any g, g′ ∈ G with d(gx, y) < ε and d(g′x, y) < ε. This forces y = g(x) for some g ∈ G. 
Thus E = Gx is only a single orbit, which is clearly a nonempty minimal closed subset. �
3. Proof of Theorem 1.4

In this section, we will prove Theorem 1.4. We prove the theorem by showing (1) ⇐⇒ (3) and (2) ⇐⇒ (3).

Claim ((1) =⇒ (3)). For any subgroup G of Homeo+(R) without crossed elements, if there exists a G-
invariant Radon measure, then there does not exist an infinite tower covering the line.

Let μ be a G invariant Radon measure on R. If there exists an infinite tower {(Ii, fi)}∞i=1 such that ⋃∞
n=1 In = R, then there is N ∈ N+ such that μ(int(IN )) > 0. Let B = int(IN ). By the definition of infinite 

tower and Fact 2.3, we see that B, fN+1(B), f2
N+1(B), ... are pairwise disjoint and are all contained in IN+1. 

Since μ is G-invariant, we have

μ(B) = μ(fN+1(B)) = μ(f2
N+1(B)) = · · ·

and then
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μ(IN+1) ≥
∞∑
i=0

μ(f i
N+1(B)) = ∞,

which contradicts the assumption that μ is a Radon measure.

Claim ((2) =⇒ (3)). For any subgroup G of Homeo+(R) without crossed elements, if there exists a nonempty 
minimal closed subset, then there does not exist an infinite tower covering the line.

Assume that Λ is a nonempty closed minimal subset of R. Fix a point x ∈ Λ. If there exists an infinite tower 
{(Ii, fi)}∞i=1 such that 

⋃∞
n=1 In = R, then there exists N ∈ N+ such that x ∈ int(IN ). Write IN = [a, b]. We 

may assume that fN (x) > x, otherwise replace fN by f−1
N . Then limn→+∞ fn

N (x) = b. Then b ∈ Fix(fN ) ∩Λ. 
Since Λ is minimal, there must be some g ∈ G sending b to (a, b). Then fN and g are crossed, which 
contradicts the hypothesis.

Claim ((3) =⇒ (1) + (2)). For any subgroup G of Homeo+(R) without crossed elements, if G has no infinite 
tower covering the line, then there exists a G-invariant Radon measure and a nonempty minimal closed 
subset.

Case 1 Fix(G) �= ∅. Then take any fixed point x ∈ Fix(G), the Dirac measure δx is a G invariant Radon 
measure and {x} is a minimal closed subset.

Case 2 Fix(G) = ∅. Let F = {f ∈ G : Fix(f) �= ∅} and let Γ = 〈F 〉. By Lemma 2.6 and Lemma 2.7, 
Fix(Γ) �= ∅. Hence Γ = F and Γ is a proper normal subgroup of G, by Fact 2.2. Thus Fix(Γ) is G-invariant.

Subcase 2a Γ = {id}. In this case, the G-action is free. By Hölder’s Lemma 2.8, this action is conjugate to 
translations on the line. Note that the Lebesgue measure is translation invariant and there always exists a 
minimal closed subset M for any group consisting of translations. Pulling back the Lebesgue measure and 
the minimal subset M by the conjugation, we obtained a G-invariant Radon measure and a minimal closed 
subset.

Subcase 2b Γ is nontrivial and Fix(Γ) is uncountable. This case has been proved in Lemma 2.9.

Subcase 2c Γ is nontrivial and Fix(Γ) is countable. Choose g ∈ G \ Γ and x0 ∈ Fix(Γ). We may assume 
that g(x) > x for any x ∈ R. Set xn = gn(x0), n ∈ Z. Since Fix(g) = ∅, {xn : n ∈ Z} has no accumulating 
points. Set

X = [x−1, x2], Y = Fix(Γ) ∩ [x−1, x2].

Then Y and Y ∩ [x0, x1] are countable compact nonempty subsets of X.

Define Y0 to be the set of isolated points in Y , which is nonempty since Y is countable and com-
pact. Moreover, Y0 ∩ [x0, x1] is nonempty. Set Y1 = Y \ Y0 which is a proper closed subset of Y . 
Define Y2 = Y1 \ {isolated points in Y1 under the subspace topology}. For an ordinal β, suppose that 
we have defined the nonempty closed subsets Yα for all α < β. If β = α + 1, define Yβ = Yα \
{isolated points in Yα under subspace topology}. If β is a limit ordinal, then define Yβ =

⋂
α<β Yα, which 

is nonempty by compactness. Since Y is countable, there must exist a countable ordinal γ such that

Yγ ∩ [x0, x1] �= ∅, and Yγ+1 ∩ [x0, x1] = ∅.

Thus every point of Yγ ∩ [x0, x1] is isolated in Yγ under the subspace topology.
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Take y ∈ Yγ ∩ [x0, x1]. We claim that Gy is a closed subset of R without accumulating points. Otherwise, 
there exist fn ∈ G such that fn(y) → z ∈ Fix(Γ) as n → ∞. Let k ∈ Z be such that z ∈ [xk, xk+1]. Then 
g−kfn(y) ∈ (x−1, x2), for sufficiently large n and g−kfn(y) → g−k(z) ∈ [x0, x1] as n → ∞. Then Yγ has an 
accumulating point in [x0, x1] which is a contradiction (note that for any α ≤ γ, x ∈ Yα∩ [x0, x1] and f ∈ G, 
if f(x) ∈ [x0, x1] then f(x) ∈ Yα ∩ [x0, x1], since f is a homeomorphism). Thus Gy is a discrete sequence 
(yn)n∈Z which is unbounded in both directions. Let μ =

∑
n∈Z δyn

. Then μ is a G-invariant Radon measure 
and Gy is a minimal closed subset.

4. Proof of Theorem 1.5

For a nilpotent subgroup of Homeo+(R), if it does not have an invariant Radon measure, then we can 
construct an infinite tower which is available for us to deal with the smooth case. Precisely, we have the 
following lemma. (We use N+ to denote the set of positive integers.)

Lemma 4.1. Let G be a nilpotent subgroup of Homeo+(R). If there does not exist G-invariant Radon measure 
of R, then there exist subgroups A, B of G, a closed interval I0 and an infinite tower (Ii, hi)∞i=1 such that

(1) for any i ∈ N+, Ii is a closed interval and Ii is contained in the interior of Ii+1;
(2) ∀j ∈ N+, Fix(hj) ∩ Ij = End(Ij);
(3) I0 ⊆ int(I1) and Fix(A) ∩ I0 = End(I0);
(4) A � B, [B, B] ≤ A, and hj ∈ B, ∀j ∈ N+.

Proof. Let H be a subgroup of G generated by the elements that have fixed points. Then, by Lemma 2.7, 
every element of H has fixed points and H is a normal subgroup of G, by Fact 2.2.

Claim 1. H �= {e}.
If H = {e}, then the action of G is free. Thus, by Hölder’s Theorem 2.8, we may assume that G consists 

of the translations of the line. Then the Lebesgue measure is an invariant Radon measure, which contracts 
the hypothesis of the lemma.

Claim 2. Fix(H) = ∅.
If Fix(H) �= ∅, then we conclude that G have an invariant Radon measure and a minimal subset by 

Lemma 2.9 for case that Fix(H) is uncountable and by Subcase 2c in the proof of Theorem 1.4 for the case 
that Fix(H) is countable. Thus we get a contraction again.

Since H is nilpotent, there exist a finite normal series {e} = H0 � H1 � · · · � Hn = H of H, for some 
positive integer n, such that [H, Hi+1] ≤ Hi, for any i = 1, · · · , n − 1. Since Fix(H) = ∅ by Claim 2, we can 
take m ∈ {1, · · · , n} to be the least integer such that Fix(Hm) = ∅.

Case 1. m = 1.
In this case, take a nontrivial element h0 ∈ H1. Then take a connected component (a0, b0) of R \Fix(h0). 

We claim that a0, b0 ∈ R. In fact, at least one of a0, b0 is finite, since h0 is nontrivial. We may assume 
that a0 ∈ R. By the assumption that Fix(H1) = ∅, there exists some h ∈ H1 such that h(a0) > a0. Note 
that H1 is commutative. Thus we have h(a0) ∈ Fix(h0), and then b0 ≤ h(a0). Therefore, a0, b0 ∈ R and 
Fix(h0) ∩ [a0, b0] = {a0, b0}.

Take h1 ∈ H1 such that h1(b0) > b0. Then h1((a0, b0)) ∩ (a0, b0) = ∅, by the commutativity of H1. Thus 
Fix(h1) ∩ [a0, b0] = ∅. Let (a1, b1) be the connected component of R \ Fix(h1) containing [a0, b0]. By the 
similar arguments as above, we have a1, b1 ∈ R and Fix(h1) ∩ [a1, b1] = {a1, b1}. Proceeding in this way, we 
obtain an infinite tower ([ai, bi], hi)∞i=1 in the end.
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Take A = 〈h0〉, B = H1, Ii = [ai, bi], and hi to be as above. Then A, B, I0 and (Ii, hi)∞i=1 such defined 
satisfy the requirements.

Case 2. m > 1.
In this case, we take A = Hm−1 and B = Hm. Take a connected component (a0, b0) of R \ Fix(A). 

By similar arguments as above, we have a0, b0 ∈ R and Fix(A) ∩ [a0, b0] = {a0, b0} (note that Fix(A) is 
B-invariant, since A is normal in B).

Since Fix(B) = ∅, there exists h1 ∈ B such that h1(b0) > b0, which implies that h1(a0, b0) ∩ (a0, b0) = ∅. 
Thus Fix(h1) ∩ [a0, b0] = ∅. Let (a1, b1) be the connected component of R \Fix(h1) containing [a0, b0]. Then 
a1, b1 ∈ R and Fix(h1) ∩ [a1, b1] = {a1, b1}. Moreover, a1, b1 ∈ Fix(A), since hi

1(a0), hi
1(b0) ∈ Fix(A) for all 

i, and limi→−∞ hi
1(a0) = a1, limi→+∞ hi

1(b0) = b1.
Now b1 ∈ Fix(A) ∩Fix(h1). Then we can take h2 ∈ B such h2(b1) > b1 by Fix(B) = ∅. Similarly, we can 

take an interval [a2, b2] such that [a1, b1] ⊆ (a2, b2) and Fix(h2) ∩ [a2, b2] = {a2, b2}. Since [B, B] ⊂ A, the 
group 〈A, h1〉 is normal in B. Then we have further {a2, b2} ⊂ Fix(A) ∩ Fix(h1) ∩ Fix(h2). Inductively, we 
can obtain an infinite tower ([ai, bi], hi)∞i=1 which satisfies

(i) ∀i ∈ N+, [ai, bi] ⊆ (ai+1, bi+1),
(ii) ∀i ∈ N+, hi ∈ B, and Fix(hi) ∩ [ai, bi] = {ai, bi},
(iii) ∀i ∈ N+, {ai, bi} ⊂ Fix(A) ∩ Fix(〈h1, · · · , hi〉).

Thus we complete the proof by taking A = Hm−1, B = Hm Ii = [ai, bi], and hi to be as above. �
To prove Theorem 1.5, we need the following version of generalised Kopell Lemma.

Lemma 4.2 ([6] Proposition 2.8). Given an integer k ≥ 3, let {Ll1,··· ,lk : (l1, · · · , lk) ∈ Zk} be a family 
of closed intervals with disjoint interiors and disposed on [0, 1] respecting the lexicographic order, that is, 
Ll1,··· ,lk is to the left of Ll′1,··· ,l′k if and only if (l1, · · · , lk) is lexicographically smaller that (l′1, · · · , l′k). Let 
h1, · · · , hk be C1 diffeomorphisms of [0, 1] such that for each j ∈ {1, · · · , k} and each (l1, · · · , lk) ∈ Zk one 
has

hj(Ll1,··· ,lj−1,lj ,··· ,lk) = Ll1,··· ,lj−1,l′j ,··· ,l′k ,

for some (l′j , l′j+1, · · · , l′k) ∈ Zk−j+1 satisfying l′j �= lj. If α > 0 satisfies

α(1 + α)k−2 ≥ 1,

then h1, · · · , hk−1 cannot be simultaneously contained in Diff1+α
+ ([0, 1]).

Proof of Theorem 1.5. Let G be a nilpotent subgroup of Diff1+α
+ (R), for some α > 0. By Theorem 1.4, it 

suffices to show that there exists an invariant Radon measure.

To the contrary, if there does not exist any invariant Radon measure, then, by Lemma 4.1, there exist 
subgroups A, B of G, a closed interval I0 and an infinite tower (Ii, hi)∞i=1 satisfying the properties (1) − (4)
in Lemma 4.1. Moreover, we may assume that hi(x) > x, for any i ∈ N+ and any x ∈ I0; otherwise, we can 
replace it by its inverse. Take a positive integer k ≥ 3 such that α(1 + α)k−2 ≥ 1 and set

L = {g(I0) : g ∈ 〈A ∪ {h1, · · · , hk}〉}.

Claim. For each L ∈ L, L is contained in the interior of Ik and there exists a unique (l1, · · · , lk) ∈ Zk such 
that L = hl1

1 · · ·hli
i · · ·hlk(I0).
k
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In fact, we set Γ = 〈A ∪ {h1, · · · , hk}〉. Since Γ ≤ B and [B, B] ≤ A, we have that A � Γ and Γ/A is an 
Abelian group with finite rank. Note that Homeo+(R) is torsion-free. Thus, for any g ∈ Γ, there exists a 
unique (l1, · · · , lk) ∈ Zk such that gA = hl1

1 · · ·hlk
k A. Hence the second part of the claim holds by the fact 

that I0 is A-invariant. The first part is easily followed from the observation that the end points of Ik are 
contained in Fix(Γ). Thus the claim holds.

For every (l1, · · · , lk) ∈ Zk, it is clear that

hl1
1 · · ·hlk

k (I0) ⊆ hl2
2 · · ·hlk

k (I1)

⊆ · · · ⊆ hli
i · · ·hlk

k (Ii−1) ⊆ · · ·

⊆ hlk
k (Ik−1) ⊆ Ik.

Set Ll1,··· ,lk = hl1
1 · · ·hlk

k (I0). Thus {Ll1,··· ,lk : (l1, · · · , lk) ∈ Zk} is a family of closed intervals contained 
in Ik with disjoint interiors. By the assumption that hi(x) > x, for every i ∈ N+ and every x ∈ I0, 
{Ll1,··· ,lk : (l1, · · · , lk) ∈ Zk} are disposed on Ik+1 respecting the lexicographic order. By the Claim, we 
have L = {Ll1,··· ,lk : (l1, · · · , lk) ∈ Zk}. Now for each j ∈ {1, · · · , k} and each (l1, · · · , lk) ∈ Zk one 
has

hj(Ll1,··· ,lj−1,lj ,lj+1,··· ,lk) = Ll1,··· ,lj−1,lj+1,lj+1,··· ,lk .

By the choice of k and Lemma 4.2, we know that h1, · · · , hk−1 cannot be contained in Diff1+α
+ (Ik) si-

multaneously, which contradicts the hypothesis that G is a subgroup of Diff1+α
+ (R). This completes the 

proof. �
5. A counterexample of C1 subgroup

In this section, we construct an example which shows that Theorem 1.5 does not hold for C1 commutative 
subgroups of Homeo+(R). The following construction is due to Yoccoz ([3, Lemma 2.1]).

Lemma 5.1. For any closed intervals I = [a, b], J = [c, d] there exists a C1 orientation preserving diffeomor-
phism φI,J : I −→ J with the following properties:

(1) φ′
I,J(a) = φ′

I,J(b) = 1;
(2) Given ε > 0, there exists δ > 0 such that for all x ∈ [a, b],

∣∣φ′
I,J(x) − 1

∣∣ < ε, whenever
∣∣∣∣
d− c

b− a
− 1

∣∣∣∣ < δ;

(3) For any closed interval K and for any x ∈ I,

φI,K(x) = φJ,K(φI,J (x)).

Theorem 5.2. There exists a non-finitely generated abelian group G consisting of C1 orientation preserving 
diffeomorphisms of R such that there exists an infinite tower {(Ij, fj)}∞j=1 with fj ∈ G, j = 1, 2, · · · , such 
that 

⋃∞
j=1 Ij = R.

(Then, by Theorem 1.4, there exists neither G invariant Radon measure nor nonempty closed minimal set.)
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Proof. Firstly, we define f1 : [−1, 1] −→ [−1, 1] by

f1(x) =

⎧⎪⎪⎨
⎪⎪⎩

exp
(

1
x−1 − 1

x+1

)
+ x, x ∈ (−1, 1)

−1, x = −1
1, x = 1.

Then f1 satisfies

• f1 is a C1 orientation preserving diffeomorphism of [−1, 1];
• f1(±1) = ±1 and f1(x) > x for any x ∈ (−1, 1);
• f ′

1(−1) = f ′
1(1) = 1.

Next, choose two infinite sequences −2 < · · · < a2 < a1 < a0 = −1 and 1 = b0 < b1 < b2 < · · · < 2 such 
that

lim
n→∞

an = −2, lim
n→∞

bn = 2,

and

lim
n→∞

an−1 − an
an − an+1

= 1, lim
n→∞

bn+1 − bn
bn − bn−1

= 1.

For example, we can take

an = −2 + 1
n + 1 , bn = 2 − 1

n + 1 , n = 1, 2, · · · .

Define

f2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ[an+1,an],[an,an−1](x), x ∈ [an+1, an], n = 1, 2, · · ·
φ[a1,a0],[−1,1](x), x ∈ [a1, a0]
φ[−1,1],[b0,b1],(x), x ∈ [−1, 1]
φ[bn,bn+1],[bn+1,bn+2](x), x ∈ [bn, bn+1], n = 0, 1, 2, · · ·
±2, x = ±2.

Then, by Lemma 5.1 and the choices of {an} and {bn}, f2 satisfies

• f2 is a C1 orientation preserving diffeomorphism of [−2, 2];
• f2(±2) = ±2 and f2(x) > x for any x ∈ (−2, 2);
• f ′

2(−2) = f ′
2(2) = 1.

Then we extend f1 to a diffeomorphism f̃1 of [−2, 2]:

f̃1(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f
−(n+1)
2 f1f

n+1
2 (x), x ∈ [an+1, an], n = 1, 2, · · ·

f1(x), x ∈ [−1, 1]
fn+1
2 f1f

−(n+1)
2 (x), x ∈ [bn, bn+1]

±2, x = ±2.

We denote f̃1 by f1 for x ∈ [−2, 2]. Then
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f1f2(x) = f2f1(x), ∀x ∈ [−2, 2].

Continuing the above process, we can construct a sequence of commuting C1 orientation preserving dif-
feomorphisms f1, f2, · · · of R. More precisely, assume that we have constructed pairwise commuting C1

orientation preserving diffeomorphisms f1, · · · , fk of [−k, k] for k ∈ N+ with the following properties:

(1) fi(±i) = ±i and ∀x ∈ (−i, i), fi(x) > x, for i = 1, 2, · · · , k;
(2) f ′

i(−i) = f ′
i(i) = 1, for i = 1, 2, · · · , k;

(3) fifj(x) = fjfi(x) for all x ∈ [−k, k] and 1 ≤ i, j ≤ k.

Then choose two infinite sequences −(k+1) < · · · < c2 < c1 < c0 = −k and k = d0 < d1 < d2 < · · · < k+1
such that

lim
n→∞

cn = −(k + 1), lim
n→∞

dn = k + 1,

and

lim
n→∞

cn−1 − cn
cn − cn+1

= 1, lim
n→∞

dn+1 − dn
dn − dn−1

= 1.

For example, we can take

cn = −(k + 1) + 1
n + 1 , dn = k + 1 − 1

n + 1 , n = 1, 2, · · · .

Define

fk+1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ[cn+1,cn],[cn,cn−1](x), x ∈ [cn+1, cn], n = 1, 2, · · ·
φ[c1,c0],[−k,k](x), x ∈ [c1, c0]
φ[−k,k],[d0,d1],(x), x ∈ [−k, k]
φ[dn,dn+1],[dn+1,dn+2](x), x ∈ [dn, dn+1], n = 0, 1, 2, · · ·
±(k + 1), x = ±(k + 1).

Then by Lemma 5.1 and the choices of {cn} and {dn}, fk+1 satisfies

• fk+1 is a C1 orientation preserving diffeomorphism of [−k − 1, k + 1];
• fk+1(±(k + 1)) = ±(k + 1) and fk+1(x) > x for any x ∈ (−(k + 1), k + 1);
• f ′

k+1(−k − 1) = f ′
k+1(k + 1) = 1.

We extend f1, · · · , fk to diffeomorphisms f̃1, · · · , f̃k of [−(k + 1), k + 1]: for i = 1, · · · , k,

f̃i(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f
−(n+1)
k+1 fif

n+1
k+1 (x), x ∈ [cn+1, cn], n = 1, 2, · · ·

fk(x), x ∈ [−k, k],
fn+1
k+1 fif

−(n+1)
k+1 (x), x ∈ [dn, dn+1],

±(k + 1), x = ±(k + 1).

Denote f̃i by fi for x ∈ [−(k + 1), k + 1]. Then f1, · · · , fk+1 are commuting orientation preserving C1

diffeomorphisms of [−(k + 1), k + 1].
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From the constructing process, we see that [−1, 1] � [−2, 2] � · · · and f1, f2, · · · form an infinite tower, 
and the group G generated by f1, f2, · · · is a non-finitely generated abelian group consisting of C1 orientation 
preserving diffeomorphisms of R. This completes the proof. �

It was pointed out by the referee that this example was essentially in [2]. However, it is worthwhile to 
construct it explicitly here, especially for the convenience of the readers.
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