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Abstract It is well known that if X is an arc or a circle, then there is no expansive homeomorphism

on X. In this paper we prove that there is no expansive Z
d action on X, which answers the two

questions raised by us before. In 1979, Mañé proved that there is no expansive homeomorphism on

infinite dimensional spaces. Contrary to this result, we construct an expansive Z
2 action on an infinite

dimensional space. We also construct an expansive Z
2 action on a zero dimensional space but no

element in Z
2 is expansive.
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1 Introduction
Let X be a compact metric space with metric d. A homeomorphism f of X is expansive
if there exists c > 0 such that for any x, y ∈ X with x �= y, there is an integer n ∈ Z

with d(fn(x), fn(y)) > c, where c is called an expansive constant for f . Whether a continuum
(compact connected metric space) admits expansive homeomorphisms is an interesting problem
in topological dynamics and continuum theory. Many results have been obtained (see [1–10]).
Especially there is no expansive homeomorphism on an arc or a circle (see [1], [2] or [11]).

In recent years there has been a considerable progress in the study of higher dimensional
actions (i.e., action of Z

d or R
d with d > 1) (see [12]). Stimulated by this progress, we started

to consider the existence of expansive Z
d actions on continua. In [13] we proved that there is

no expansive Z
2 action on the closed interval I = [0, 1] and constructed an expansive G action

on I, where G is generated by two noncommutative homeomorphisms. Furthermore, we proved
that there is no expansive Z

2 action on the unit circle in [14]. In this paper, we prove that
there is no expansive Z

d action on an arc or a circle for any d ≥ 1. This result also answers the
two questions in [13].

In [7] Mañé proved that there is no expansive homeomorphism on infinite dimensional spaces.
Contrary to this result we construct an expansive Z

2 action on an infinite dimensional space.
This example indicates that some new phenomena arise when we consider higher dimensional
expansive actions. At the same time, this example also shows that the conclusion “a space which
admits no expansive Z actions must admit no expansive Z

d actions” is not true in general. We
also construct an expansive Z

2 action on a zero dimensional space but no element in Z
2 is

expansive.
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2 Preliminaries

Let G be a discrete group (a topological group with discrete topology), X be a compact metric
space with metric d and let Hom(X) be the group of selfhomeomorphisms of X. Recall that a
group homomorphism α : G → Hom(X) is called an action of (the discrete group) G on X. This
concept is a generalization for a discrete dynamical system, for if (X, f) is a discrete system,
where f is a homeomorphism on X, then the map n �→ fn defines a group homomorphism from
the integer additive group Z to Hom(X).

The action α : G → Hom(X) is called expansive if there is a constant c > 0 (called an expan-
sive constant for α) such that, for any x �= y ∈ X, there is a g ∈ G with d(α(g)(x), α(g)(y)) > c.
From this definition we know a space admits no expansive homeomorphisms if and only if it
admits no expansive Z actions.

In this paper we are mainly interested in the case G = Z
d where Z

d is the free abelian group
of rank d.

In the following, we use the symbol I to denote the unit closed interval [0, 1], and S
1 stands

for the unit circle in the complex plane:

Definition 2.1 A homeomorphism f : I → I is call positive if for any interior point x ∈ I
we have f(x) > x, and f is called negative if for any interior point x we have f(x) < x.

Let R = {−∞} ∪R ∪ {+∞} be the two points compactification of the real line R. Then R
is homeomorphic to I. Define L : R → R by L(x) = x + 1, for all x ∈ R, L(+∞) = +∞, and
L(−∞) = −∞. Obviously L is a homeomorphism.

Lemma 2.2 Let f : I → I be a positive homeomorphism. Then f and L are topologically
conjugate, i.e., there exists a homeomorphism φ : R → I such that φ−1 ◦ f ◦ φ = L.

Proof We define φ : R → I as follows: For any x ∈ [0, 1) let φ(x) = 1/2 + x(f(1/2)− 1/2) and
for any n ∈ Z and any x ∈ [0, 1), let φ(x + n) = fn(φ(x)). Let φ(−∞) = 0 and φ(+∞) = 1. It
is easy to check that φ is a homeomorphism.

For any x ∈ R, there exists a unique n ∈ Z such that x = {x} + n, where {x} means the
decimal part of a real number x. By the definition of φ, we have

φ−1 ◦ f ◦ φ(x) = φ−1 ◦ f ◦ φ({x} + n) = φ−1 ◦ fn+1 ◦ φ({x})
= φ−1 ◦ φ({x} + n + 1) = {x} + n + 1 = x + 1 = L(x).

Obviously φ−1 ◦ f ◦ φ(+∞) = +∞ and φ−1 ◦ f ◦ φ(−∞) = −∞. So f and L are topologically
conjugate.

Recall that if H is a subgroup of G, then the cardinality of the coset G/H is called the
coset index of H in G and is denoted by [G : H].

Proposition 2.3 Let G be a discrete group, X be a compact metric space with metric d and
let α : G→Hom(X) be an action of G on X. Let H be a subgroup of G. If the coset index [G : H]
is finite, then α is expansive if and only if the restriction α|H : H→Hom(X) is expansive.

Proof Sufficiency is clear. Suppose α|H is not expansive. Let G = g1H ∪ g2H ∪ · · · ∪ gnH
be the coset decomposition of G, where n = [G : H]. By uniform continuity, for any c > 0
there exists δ > 0 such that if d(x, y) ≤ δ then for all 1 ≤ i ≤ n, d(α(gi)(x), α(gi)(y)) ≤ c.
Since α|H is not expansive, there exist x′, y′ ∈ X with x′ �= y′, such that for any h ∈ H,
d(α(h)(x′), α(h)(y′)) ≤ δ. It follows that

d(α(gih)(x′), α(gih)(y′)) = d(α(gi)α(h)(x′), α(gi)α(h)(y′)) ≤ c,

for all 1 ≤ i ≤ n, and for all h ∈ H, i.e., d(α(g)(x′), α(g)(y′)) ≤ c, for all g ∈ G. So α is not
expansive.
Lemma 2.4 Let F = {fi|1 ≤ i ≤ n} be n pairwise commutative homeomorphisms on I
which satisfy fi(0) = 0 and fi(1) = 1, for all 1 ≤ i ≤ n. If every fi is not the identity, then
there exist a closed interval [α, β] ⊂ I and some fi′ ∈ F such that fi([α, β]) = [α, β], for all
1 ≤ i ≤ n, and the restriction of fi′ to [α, β] is either positive or negative.



The Nonexistence of Expansive Z
d Actions on Graphs 1511

Proof We use the symbol Fix(fi) to denote the fixed points set of fi. Since each fi is not the
identity, I \ Fix(fi) �= ∅, for all 1 ≤ i ≤ n. As the two end points 0 and 1 belong to Fix(fi), we
may write Γi = {(αi,j , βi,j)|

⋃
j∈Λi

(αi,j , βi,j) = I \ Fix(fi)}, 1 ≤ i ≤ n, where Λi is some index
set and for any fixed i these open intervals (αi,j , βi,j) are pairwise disjoint. By commutativity,
we have fi(Fix(fj)) = Fix(fj), for all 1 ≤ i ≤ n, for all 1 ≤ j ≤ n, which implies that either

(αi,j , βi,j) ∩ (αi′,j′ , βi′,j′) = ∅, or (αi,j , βi,j) ⊂ (αi′,j′ , βi′,j′), or (αi,j , βi,j) ⊃ (αi′,j′ , βi′,j′),
for all 1 ≤ i ≤ n, for all 1 ≤ i′ ≤ n, for all j ∈ Λi, and for all j′ ∈ Λi′ . We claim that there
exists some open interval (α, β) = (αi′,j′ , βi′,j′) that satisfies

(α, β) ∩ (αi,j , βi,j) = ∅ or (α, β) ⊃ (αi,j , βi,j), (1)
for all 1 ≤ i ≤ n, for all j ∈ Λi. We take the following steps to find (α, β):

Step 1. Select an arbitrary (α1,j1 , β1,j1) ∈ Γ1 and write (α, β) = (α1,j1 , β1,j1).
Step 2. If there is some (α2,j2 , β2,j2) ∈ Γ2 such that (α, β) ⊂ (α2,j2 , β2,j2), then write (α, β)

= (α2,j2 , β2,j2). Otherwise we do not change the value of (α, β).
Continue this process · · · · · · .
Step n. If there is some (αn,jn

, βn,jn
) ∈ Γn such that (α, β) ⊂ (αn,jn

, βn,jn
) then write (α, β)

= (αn,jn
, βn,jn

). Otherwise we do not change the value of (α, β).
Then we get (α, β) = (αi′,j′ , βi′,j′) for some 1 ≤ i′ ≤ n and some j′ ∈ Λi′ . It is easy to see

that (α, β) satisfies (1), and thus [α, β] and fi′ satisfy the requirement.
In the following, we always write intervals on S

1 anticlockwise, so [α, β] ⊂ S
1 denotes the

anticlockwise closed interval beginning at α and ending at β (α may be equal to β).
Lemma 2.5 Let {fi|1 ≤ i ≤ n} be n pairwise commutative homeomorphisms on S

1 such
that each fi preserves the orientation of S

1. If for every 1 ≤ i ≤ n, fi is not the identity
and Fix(fi) �= ∅, then there is a closed interval [α, β] ⊂ S

1 such that fi([α, β]) = [α, β], for all
1 ≤ i ≤ n.
Proof The proof is similar to that of Lemma 2.4 so we omit it here. We need to note only that
the requirement of preserving orientation is to exclude the following case: α, β are the only two
fixed points of some fi and fi([α, β]) = [β, α].

Let f : X → X be a homeomorphism on X. Recall that a point x ∈ X is called nonwander-
ing if, for every open neighborhood U of x, there is an integer n �= 0 such that fn(U) ∩ U �= ∅.
Lemma 2.6 Let f and g be two commutative homeomorphisms on X and Ω(g) be the non-
wandering set of g. Then f(Ω(g)) = Ω(g).
Proof For any x ∈ X \Ω(g), there is an open neighborhood U of x such that gn(U)∩gm(U) =
∅, for all n �= m ∈ Z. Since f and g are commutative, we have gn(f(U)) ∩ gm(f(U)) =
f(gn(U) ∩ gm(U)) = ∅, for all n �= m ∈ Z. Since f(U) is an open neighborhood of f(x), f(x)
∈ X \ Ω(g). Hence f(X \ Ω(g)) ⊂ X \ Ω(g). Similarly by the commutativity of f−1 and g we
get f−1(X \ Ω(g)) ⊂ X \ Ω(g). So f(Ω(g)) = Ω(g).

The following well-known result will be used in the proof of the main theorem:
Theorem 2.7 (See [11]) Let T : S

1 −→ S
1 be a homeomorphism with no periodic points.

Then T is semi-conjugate to a minimal rotation P of S
1, i.e., there is a continuous surjection

Ψ : S
1 → S

1 such that Ψ◦T = P ◦Ψ. The map Ψ has the property that for each z ∈ S
1, Ψ−1(z)

is either a point or a closed sub-interval of S
1.

3 No expansive Z
d Actions on Graphs

With the preparation in the previous section now we are ready to prove the main theorem in
this paper.
Theorem 3.1 There is no expansive Z

d action on the unit interval I and the unit circle S
1.

Proof We shall prove this by induction on d. The case d = 1 is just the well-known result that
there is no expansive homeomorphism on I and on S

1. Suppose that the conclusion is true for
d < n. We shall establish it for d = n in two steps.
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Step 1. There is no expansive Z
n action on I.

Otherwise, suppose λ : Z
n → Hom(I) is an expansive Z

n action with expansive constant
c > 0. Let fi = λ(�ei), for all 1 ≤ i ≤ n, where �ei is the i-th vector of the canonical base of Z

n.
By Proposition 2.3 we may assume that fi(0) = 0, fi(1) = 1, for all 1 ≤ i ≤ n. Otherwise we
need to consider only the Z

n action generated by {f2
i |1 ≤ i ≤ n}. By Lemma 2.4 we may also

assume that f1 is positive on I. By Lemma 2.2 there is a homeomorphism φ : R → I such that
φ−1f1φ = L, where L is defined as in Lemma 2.2. Let f̃i = φ−1fiφ, for all 1 ≤ i ≤ n. Then
{f̃i|1 ≤ i ≤ n} are n pairwise commutative homeomorphisms on R and f̃1 = L. Obviously
there is a constant δ > 0 such that for any x, y ∈ R, if |x − y| ≤ δ then

d(φ(x), φ(y)) ≤ c. (2)

Let π : R −→ S
1 be the exponent map, i.e., π(x) = e2πix, for all x ∈ R. Let d̂ be the arclength

metric on S
1. Under the Euclidean metric on R, π is locally isometric. For arbitrary x, y ∈ R,

if there is some integer n such that x − y = n, then for any 2 ≤ i ≤ n, we have
πf̃i(x) = πf̃i(y + n) = πf̃if̃

n
1 (y) = πf̃n

1 f̃i(y) = π(f̃i(y) + n) = πf̃i(y).
So f̃i induces naturally a continuous map gi : S

1 −→ S
1 with gi(π(x)) = π(f̃i(x)), for all

2 ≤ i ≤ n. Since each f̃i is a homeomorphism and f̃i(x + 1) = f̃i(x) + 1 for any x ∈ R, gi is
a homeomorphism on S

1 and preserves the orientation of S
1. Thus {gi|2 ≤ i ≤ n} generate a

Z
n−1 action on S

1. Since for any x ∈ R, f̃i(x + 1) = f̃i(x) + 1 and f̃−1
i (x + 1) = f̃−1

i (x) + 1,
the restrictions f̃i|R and f̃−1

i |R are uniformly continuous under the Euclidean metric on R, for
all 2 ≤ i ≤ n. So there is a δ′ > 0 such that, if |x − y| < δ′, then, for any 2 ≤ i ≤ n,

|f̃i(x) − f̃i(y)| <
1
2
, |f̃−1

i (x) − f̃−1
i (y)| <

1
2
. (3)

Let δ′′ = min{δ, δ′, 1
2}. By the inductive assumption, there exist x, y ∈ S

1 and x �= y such that

d̂(gm2
2 gm3

3 · · · gmn
n (x), gm2

2 gm3
3 · · · gmn

n (y)) ≤ δ′′, (4)
for any �m = (m2, m3, . . . , mn) ∈ Z

n−1. Select x̃, ỹ ∈ R so that π(x̃) = x, π(ỹ) = y and
|x̃ − ỹ| = d̂(x, y) ≤ δ′′. Since π is a locally isometry, by (3) and (4) we get
|f̃m2

2 f̃m3
3 · · · f̃mn

n (x̃)− f̃m2
2 f̃m3

3 · · · f̃mn
n (ỹ)| = d̂(gm2

2 gm3
3 · · · gmn

n (x), gm2
2 gm3

3 · · · gmn
n (y)) ≤ δ′′ ≤ δ.

By the definition of f̃1, we have
|f̃m1

1 f̃m2
2 · · · f̃mn

n (x̃) − f̃m1
1 f̃m2

2 · · · f̃mn
n (ỹ)| = |f̃m2

2 · · · f̃mn
n (x̃) − f̃m2

2 · · · f̃mn
n (ỹ)| ≤ δ.

Furthermore by (2), we have
d(fm1

1 · · · fmn
n φ(x̃), fm1

1 · · · fmn
n φ(ỹ)) = d(φf̃m1

1 · · · f̃mn
n (x̃), φf̃m1

1 · · · f̃mn
n (ỹ)) ≤ c,

for all (m1, m2, . . . , mn) ∈ Z
n, a contradiction. Therefore there is no expansive Z

n action on I.
Step 2. There is no expansive Z

n action on S
1.

Otherwise suppose θ : Z
n −→ Hom(S1) is an expansive action with expansive constant

c > 0. Let fi = θ(�ei), for all 1 ≤ i ≤ n, where �ei is the i-th vector of the canonical base of
Z

n. If each fi has a periodic point, then by Proposition 2.3 we may assume that each fi has
fixed points in S

1 and preserves the orientation, otherwise we need to consider only the Z
n

action generated by some suitable iterate of fi. By Lemma 2.5 there is some closed subinterval
[a, b] ⊂ S

1 satisfying fi([a, b]) = [a, b], 1 ≤ i ≤ n. Thus the restrictions {fi|[a,b] | 1 ≤ i ≤ n}
generate a Z

n expansive action on [a, b], which contradicts the conclusion of Step 1. So there is
some fi with no periodic points. Without loss of generality, we may assume f1 has no periodic
points. By Theorem 2.7, f1 is semi-conjugate to a minimal rotation P on S

1, i.e., there is a
continuous surjection Ψ : S

1 −→ S
1 such that Ψf1 = PΨ. If for every x ∈ S

1 Ψ−1(x) is a
single point, then Ψ is a homeomorphism. Thus f1 is conjugate to an isometric action on S

1.
In this case, it is not difficult to show that the Z

n−1 action generated by {fi|2 ≤ i ≤ n} is still
expansive (expansive constant may be changed), which contradicts the inductive assumption.
Therefore there is some x ∈ S

1 such that Ψ−1(x) is a non-degenerate subinterval of S
1. Let

Γ = {(αi, βi) ⊂ S
1|∃x ∈ I s.t. [αi, βi] = Ψ−1(x)} and let Ω be the nonwandering set of f1. It

is easy to see that S
1 \ Ω =

⋃
(αi,βi)∈Γ(αi, βi). By Lemma 2.6, fi(S1 \ Ω) = S

1 \ Ω, 1 ≤ i ≤ n.
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Since the family of open intervals (αi, βi) are pairwise disjoint, each fi permutes these open
intervals in Γ, i.e., fi maps each (αj , βj) ∈ Γ onto some (αj′ , βj′) ∈ Γ. Fix some (α0, β0) ∈ Γ.
Let H = {�m ∈ Z

d|θ(�m)((α0, β0)) = (α0, β0)}. It is clear that H is a subgroup of Z
d. Consider

the coset decomposition Z
d = H ∪ (�m1 + H) ∪ · · · ∪ (�mk + H) ∪ · · · . It is easy to see that if

�mi �= �mj then θ(�mi)((α0, β0)) �= θ(�mj)((α0, β0)). So the cardinality of Z
d/H is infinite. Since

the length of S
1 is finite, there is some k > 0 such that, for any i > k and any �h ∈ H, we have

diam(θ(�mi + �h)((α0, β0))) = diam(θ(�mi)((α0, β0))) ≤ c. (5)
By uniform continuity, there is a δ > 0 such that d(x, y) ≤ δ implies

d(θ(�mi)(x), θ(�mi)(y)) ≤ c, for all 1 ≤ i ≤ k. (6)
Since H is a subgroup of Z

n, H ∼= Z
l for some 0 ≤ l ≤ n (see [15, Ch. 1-Thm. 7.3]). By Step 1

we know that the restriction of H to [α0, β0] is not expansive. So there are x, y ∈ [α0, β0] with
d(θ(�h)(x), θ(�h)(y)) ≤ δ, for all h ∈ H. (7)

By (5), (6) and (7), we get that for any �m ∈ Z
n, d(θ(�m)(x), θ(�m)(y)) ≤ c, which contradicts

our assumption. So there exists no expansive Z
n action on S

1. The proof is complete.
Recall that a graph is a continuum which can be written as a union of finitely many arcs in

such a way that each two arcs are either disjoint or intersect only in one or both of their end
points.

Corollary 3.2 There is no expansive Z
d action on graphs.

Proof This corollary can be easily obtained from Proposition 2.3 and Theorem 3.1.

4 Two Examples

One may expect that a space which admits no expansive Z actions must admit no expansive
Z

d actions for any d ≥ 1. But this is not true in general as the following example shows.
Mañé proved that there is no expansive Z action on infinite dimensional spaces [7]. In the

following we will construct an expansive Z
2 action on an infinite dimensional space.

Let K2 = S
1 × S

1 be a two-dimensional torus and A : K2 → K2 be an homeomorphism on
K2 which is induced by a matrix [A] = (aij)2×2, where aij are integers, det([A]) = 1 and [A]
has no eigenvalues of modulus 1. Then A is an expansive homeomorphism on K2([11, p. 143]).

Now let X = (K2)Z = {(xi)∞i=−∞|xi ∈ K2} be the product of countable many copies
of K2. Let d be a compactible metric on K2. Define a compactible metric d̃ on X by
d̃(x, y) =

∑∞
i=−∞

1
2|i| d(xi, yi), for any x = (xi) ∈ X and y = (yi) ∈ X. Now we define

two homeomorphisms on X by f(x)i = A(xi) and σ(x)i = xi+1 for any x ∈ X. Obviously f
and σ are commutative, so they generate a Z

2 action on X.

Proposition 4.1 The Z
2 actions generated by f and σ on X are expansive.

Proof If x �= y ∈ X, then there is some integer m with xm �= ym. Since A : K2 → K2

is expansive, there is a constant c > 0 such that for any a �= b ∈ K2, there is an integer
n with d(An(a), An(b)) > c. It follows that there is some integer k with d(fk(x)m, fk(y)m) =
d(Ak(xm), Ak(ym)) > c. So d̃(σmfk(x), σmfk(y)) =

∑∞
i=−∞

1
2|i| d(Akxi+m, Akyi+m) > d(Akxm,

Akym) > c. Thus the Z
2 action generated by f and σ is expansive with expansive constant c.

Although we give a space which admits expansive Z
2 actions but admits no expansive

homeomorphisms in the above proposition, the dimension of the space is infinite. We don’t
know whether there is a finite dimensional space which admits an expansive Z

2 action but
admits no expansive Z actions. However, in the following, we can give an expansive Z

2 action
on a zero-dimensional space but none of the elements in Z

2 is expansive.
Let X = {0, 1}Z

2
= {(x(i,j))(i,j)∈Z2 |x(i,j) ∈ {0, 1}}. Let σ1 and σ2 be two shifts on X defined

by σ1(x)(i,j) = x(i+1,j) and σ2(x)(i,j) = x(i,j+1), for any x = (x(i,j)) ∈ X. Obviously σ1 and
σ2 are two commutative homeomorphisms on X, so they generate a Z

2 action on X. Define a
compactible metric d on X by d(x, x) = 0 and d(x, y) = 2−min{|i|+|j| | x(i,j) �=y(i,j)} for x �= y.
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Proposition 4.2 The Z
2 action generated by σ1 and σ2 on X is expansive but no elements

in Z
2 are expansive.

Proof If x �= y ∈ X, then there is some (m, n) ∈ Z
2 with x(m,n) �= y(m,n). So

d(σm
1 σn

2 (x), σm
1 σn

2 (y)) = 2−min{|i|+|j| | x(i+m,j+n) �=y(i+m,j+n)} = 1.
Therefore the Z

2 action generated by σ1 and σ2 is expansive with expansive constant 1.
If (m, n) �= (0, 0), we will prove that the homeomorphism h = σm

1 σn
2 on X is not expansive.

For any r > 0, let Ar = {(m′, n′) ∈ Z
2 | |mn′ − nm′| ≥ r}. It is easy to see that for any

(m′, n′) ∈ Ar, we have |m′| + |n′| ≥ (m′2 + n′2)
1
2 ≥ r

(m2+n2)
1
2
. It follows that for any ε > 0,

there is a sufficiently large r with

2−(|m′|+|n′|) ≤ 2−r(m2+n2)
−1
2 < ε, for all (m′, n′) ∈ Ar. (8)

Let x ∈ X with x(i,j) = 1 if (i, j) ∈ Ar and x(i,j) = 0 if (i, j) /∈ Ar, and let y ∈ X with y(i,j) = 0,
for all (i, j) ∈ Z

2. Since (m′, n′) ∈ Ar implies (m′ − km, n′ − kn) ∈ Ar for any k ∈ Z, we have
{(i, j) | x(i+km,j+kn) �= y(i+km,j+kn)} ⊂ Ar. (9)

By (8) and (9) we get d(hk(x), hk(y)) = 2−min{|i|+|j| | x(i+km,j+kn) �=y(i+km,j+kn)} < ε. Since ε is
arbitrary, h is not expansive.

5 Some Questions
The following questions are still open:

Question 5.1. Can a commutative group, which is not finitely generated, act on an arc or a
circle expansively?

Question 5.2. Can a nilpotent group act on an arc or a circle expansively?
Question 5.3. There are many continua that admit no expansive Z actions besides the arc

and circle, which of these do not admit expansive Z
d actions with d ≥ 1?
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