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(Communicated by Katrin Gelfert)

Abstract. We show that the circle S1 admits no expansive polycyclic group
actions.

1. Introduction

Expansivity is closely related to the structural stability in differential dynamical
systems. Which spaces can admit an expansive homeomorphism has been inten-
sively studied. It is known that the Cantor set, the 2-adic solenoid, and the tori
T
n with n ≥ 2 admit expansive homeomorphisms. O’Brien and Reddy showed that

every compact orientable surface of positive genus admits an expansive homeomor-
phism [20]. However, the circle admits no expansive homeomorphisms [7]. It was
proved by Kato and Mouron that several classes of one-dimensional continua admit
no expansive homeomorphisms [8, 9, 16, 17]. Hiraide obtained the nonexistence of
expansive homeomorphisms on the sphere S2 (see [5]). Mañé showed that no infinite
dimensional compact metric space admits an expansive homeomorphism, and no
compact metric space with positive dimension admits a minimal expansive home-
omorphism [13]; the latter result of Mañé was extended to the case of pointwise
recurrence by Shi, Xu, and Yu very recently [23].

T. Ward once asked whether the circle S1 can admit an expansive nilpotent group
action. This question was answered in negative by Connell, Furman, and Hurder
using the technique of semi-ping-pong in an unpublished paper [3] and by Inaba
and Tsuchiya in more general situation [6], which is also implied by Margulis’ work
when the action is minimal [14]. Mai, Shi, and Wang showed the nonexistence of
expansive actions by commutative or nilpotent groups on Peano continua with a
free dendrite [12, 25]. Recently, Liang, Shi, Xie, and Xu showed that if the group
G is of subexponential growth and X is a Suslinian continuum, then G cannot act
on X expansively [10]. Contrary to the case of Z action, Shi and Zhou constructed
an expansive Z2 action on an infinite dimensional continuum [26]; Meyerovitch and
Tsukamoto constructed a minimal expansive Z

2 action on a compact metric space
X with dim(X) > 0 (see [15]). Mouron constructed for each positive integer n, a
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continuum X which admits an expansive Z
n+1 action but admits no expansive Z

n

actions [18]. These examples indicate that there are essential differences between
expansive Z actions and expansive Zn actions with n > 1. One may consult [1,2,11]
for some interesting studies around expansive Z

n actions and consult [24] for an
application of expansive Z

2 actions to Ramsey theory.
The aim of the paper is to continue the study of the existence of expansive group

actions on continua. Explicitly, we obtain the following theorem.

Theorem 1.1. The circle S
1 admits no expansive polycyclic group actions.

Here we give some remarks on the condition in the main theorem. It is known
that a polycyclic group may have exponential growth. In fact, Wolf showed that a
polycyclic group is either virtually nilpotent or has exponential growth [27]. Thus
Theorem 1.1 is not implied by the main theorem in [10]. In addition, Rosenblatt
proved that every finitely generated solvable group either is virtually nilpotent or
contains a free non-abelian subsemigroup [22]. So a non-virtually-nilpotent poly-
cyclic group must contain a free non-abelian subsemigroup; and thus the argument
of using semi-ping-pong technique does not work in this case. The proof of Theo-
rem 1.1 relies on a detailed description of the structure of any expansive subgroup
of Homeo([0, 1]) and the existence of quasi-invariant Radon measure for any poly-
cyclic subgroup of Homeo(R) established by Plante [21]. At last, we should note
that there does exist an expansive solvable group action on [0, 1] (and so does on
S
1) (see e.g. [26]).

2. Existence of minimal open intervals

Let us first recall some definitions around group actions. Given a group G and a
topological space X. Let Homeo(X) be the homeomorphism group of X. A group
homomorphism φ : G → Homeo(X) is called a continuous action of G on X; we
use the symbol (X,G, φ) to denote this action and also call it a dynamical system.
For brevity, we usually use gx or g(x) instead of φ(g)(x) and use (X,G) instead of
(X,G, φ) if no confusion occurs. For x ∈ X, the set Gx := {gx : g ∈ G} is called
the orbit of x under the action of G; if Gx = {x}, then x is called a fixed point of
G; if Gx is finite, then x is called a periodic point of G; if Gx is dense in X, then
the action (X,G) is called topologically transitive and x is called a topologically
transitive point of (X,G); if every point of X is transitive, then (X,G) is called
minimal. A subset E of X is said to be G-invariant if Gx ⊂ E for every x ∈ E;
thus if E is G-invariant, we naturally get a restriction action (E,G|E) of G on E;
(E,G|E) is called a subaction or a subsystem of (X,G). It is well known that if
X is a Polish space and G is countable, then (X,G) is topologically transitive if
and only if for every nonempty open sets U, V in X, there is some g ∈ G such that
gU ∩ V �= ∅; if X is a compact metric space, (X,G) is minimal if and only if it
contains no proper closed subsystem. If X is a compact metric space with metric
d, then the action (X,G) is called expansive if there is some c > 0 such that for
every x �= y ∈ X, there is some g ∈ G such that d(gx, gy) > c; such c is called an
expansivity constant of (X,G).

Lemma 2.1. Let G be a countable group acting continuously on the closed interval
[0, 1]. If the action is expansive, then there is a G-invariant nonempty open set U
in [0, 1] such that the subsystem (U,G|U ) is topologically transitive.
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Proof. Let c > 0 be an expansivity constant for the action ([0, 1], G). Take 0 = x1 <
x2 < · · · < xn−1 < xn = 1 such that xi+1 − xi < c for each i. Set A = ∪n

i=1Gxi.
Then A is a G-invariant closed subset in [0, 1]. If for each i, Gxi is nowhere dense,
then A is nowhere dense. Thus [0, 1] \ A is nonempty and open. Choose x �= y in
the same connected component of [0, 1] \ A. Then |gx − gy| < c for each g ∈ G,
which contradicts the expansivity of ([0, 1], G). So there exists some i0 such that
the interior U of Gxi0 is nonempty. Clearly, U is G-invariant and (U,G|U ) is
topologically transitive. �

The following lemma is well known and easy to be checked.

Lemma 2.2. Let X be a compact metric space and let G be a group acting con-
tinuously on X. Suppose H is a finite index subgroup of G. If (X,G) is expansive,
then so is the subgroup action (X,H).

Lemma 2.3. Let X be a compact metric space and let G be a group acting on
X expansively. Let Y be a subset of X and H = {g ∈ G : g(Y ) = Y }. Suppose
that the subgroup H has infinite index in G and let G = g1H ∪ g2H ∪ · · · be a
coset decomposition of G with respect to H. If limn→∞ diam(gnY ) = 0, then the
restriction action (Y,H) is also expansive.

Proof. To the contrary, assume that (Y,H) is not expansive. Let c > 0 be an ex-
pansivity constant for (X,G). Since limn→∞ diam(gnY ) = 0, there is some positive
integer N such that for each n > N , we have diam(gnY ) < c. By the uniform
continuity, there is some δ > 0 such that d(gnx, gny) ≤ c for each n = 1, · · · , N
whenever d(x, y) ≤ δ. By the assumption that (Y,H) is not expansive, there are
x′ �= y′ ∈ Y with d(hx′, hy′) ≤ δ. Thus d(gx′, gy′) ≤ c for each g ∈ G. This
contradicts the expansivity of (X,G). �
Proposition 2.4. Let G be a group acting continuously on the closed interval [0, 1].
If the action is expansive, then there is a subgroup H of G, and an H-invariant open
interval (a, b) in [0, 1] such that the restriction action ((a, b), H|(a,b)) is minimal and
([a, b], H|[a,b]) is expansive.

Proof. Fix an expansivity constant c > 0 for the action ([0, 1], G). By Lemma 2.1,
we can take a G-invariant nonempty open set U in [0, 1] with (U,G|U ) being topo-
logically transitive. Let NT (U) be the set of all nontransitive points of (U,G|U ).

Claim A. U \NT (U) is nonempty. Otherwise, we can take x1 < x2 < · · · < xn in
NT (U) such that each connected component of U \ {x1, x2, · · · , xn} has diameter
less than c. Since each xi is a nontransitive point, the closure Gxi contains no
interior point. Thus U \ ∪n

i=1Gxi is nonempty and G-invariant. Take a connected
component A of U \ ∪n

i=1Gxi. Then the diameter diam(gA) < c for each g ∈ G.
This contradicts the expansivity of ([0, 1], G). Thus Claim A holds.

From Claim A, we can take a maximal open interval (a, b) in U \ NT (U). Let
H = {g ∈ G : g(a, b) = (a, b)}.
Claim B. ((a, b), H|(a,b)) is minimal. In fact, from the maximality of (a, b), we
have g(a, b) ∩ (a, b) = ∅ for every g ∈ G \ H. This together with the topological
transitivity of (U,G|U ) implies Claim B.

Claim C. ([a, b], H|[a,b]) is expansive. This is clear if H has finite index in G by
Lemma 2.2. So we may assume that the index [G : H] = ∞. Let G = ∪∞

i=1giH be
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a coset decomposition of G with respect to H. Then the sets gi([a, b])(i = 1, 2, · · · )
are pairwise disjoint and hence limi→∞ diam(gi([a, b])) = 0. Thus, by Lemma 2.3,
([a, b], H|[a,b]) is expansive.

We complete the proof from Claim B and Claim C. �

3. Minimal polycyclic subgroups of Homeo(R)

Recall that a group G is polycyclic if it has a subnormal decreasing series G =
N0 � N1 � · · · � Nn � Nn+1 = {e} such that Ni/Ni+1 is cyclic for each i ≥ 0.
It is known that every finitely generated nilpotent group is polycyclic and every
polycyclic group is solvable; every subgroup and every quotient group of a polycyclic
group is polycyclic. One may consult [4] for a detailed introduction to polycyclic
groups.

The following proposition can be seen in [27].

Proposition 3.1. A solvable group G is polycyclic if and only if every subgroup of
G is finitely generated.

Let R be the real line. For a ∈ R\{0} and b ∈ R, define the affine transformation
Aa,b : R → R by Aa,b(x) = ax+b for all x ∈ R. Set Aff(R) = {Aa,b : a ∈ R\{0}, b ∈
R}. Then Aff(R) is a solvable group and is called the affine transformation group
on R. It is known that Aff(R) consists of the homeomorphisms f on R satisfying
that |f(x)− f(y)| = c|x− y| for some c = c(f) > 0 and for all x, y ∈ R.

Lemma 3.2. Let G be a subgroup of Aff(R). If G contains an Aa,c with |a| �= 1,
c ∈ R and an A1,b with b �= 0, then G cannot be polycyclic.

Proof. WLOG, we may assume that G contains an element of the form Aa,0; other-
wise, we need only consider a conjugation of G by the translation L := A1, c

a−1
on R

(LAa,cL
−1 = Aa,0 and LA1,bL

−1 = A1,b). It is easy to check that Aa,0A1,bA
−1
a,0 =

A1,ab. From this we see that the set S := {A1,amb : m ∈ Z} is contained in G. Since
the subgroup 〈S〉 generated by S is not finitely generated, G is not polycyclic by
Proposition 3.1. �

Let X be a topological space and let G be a group acting on X. A Borel
measure μ on X is called a Radon measure if it is finite on every compact subset
of X; it is called quasi-invariant if for every g ∈ G there is some c(g) > 0 such
that μ(g−1A) = c(g)μ(A) for every Borel subset A in X; it is called invariant if
c(g) = 1 for every g ∈ G. Clearly, if μ is quasi-invariant, then c(g1g2) = c(g1)c(g2)
for every g1, g2 ∈ G. We remark here our definition of quasi-invariant measure is
stronger than the usual meaning that just requires every group element preserves
the measure class.

The following theorem is due to Plante [21].

Theorem 3.3. Let G be a polycyclic group acting continuously on the real line
R. Then there is a nontrivial G-quasi-invariant Radon measure μ on R. (Here,
“nontrivial” means μ(A) > 0 for some Borel set A.)

Two actions (X,G, φ) and (Y,G, ψ) are said to be topologically conjugate if there
is a homeomorphism h : X → Y such that h(φ(g)(x)) = ψ(g)(h(x)) for every x ∈ X
and g ∈ G. The following proposition clarifies the structure of minimal actions on
R by polycyclic groups.
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Proposition 3.4. Let G be a polycyclic group and let φ : G → Homeo(R) be a
continuous action. If (R, G, φ) is minimal, then (R, G, φ) is topologically conjugate
to an action (R, G, ψ) with each element of ψ(G) being isometric.

Proof. From Theorem 3.3, we can take a nontrivial G-quasi-invariant Radon mea-
sure μ on R. Now we define a map h : R → R as does in [21]:

h(x) =

{
μ([0, x]), x ≥ 0;

−μ([x, 0]), x < 0.

Since (R, G, φ) is minimal, the support supp(μ) = R. Furthermore, μ contains no
atoms by the minimality of G and quasi-invariance of μ (see the appendix). These
imply that h is a homeomorphism. From the quasi-invariance of μ, we see that
for each g ∈ G, hgh−1 is an affine transformation on R. Now define an action
ψ : G → Homeo(R) by ψ(g) = hgh−1 for each g ∈ G.

By the definition of polycyclic group, there is a subnormal decreasing series
G = N0 � N1 � · · · � Nn � Nn+1 = {e} such that Ni/Ni+1 is cyclic for each
i ≥ 0. Take gi ∈ Ni \ Ni+1 such that Ni/Ni+1 = 〈giNi+1〉. Thus for each i ≥ 0,
Ni = 〈gi, gi+1, · · · , gn〉. Let fi = ψ(gi) = Aai,bi for each i ≥ 0 and for some
ai, bi ∈ R.

Assume to the contrary that there is some i0 ∈ {0, 1, · · · , n} such that fi0 is not
isometric and for each i0 < i ≤ n, fi is isometric; that is |ai0 | �= 1 and |ai| = 1 for
i > i0. Since ψ(G) is polycyclic, from Lemma 3.2, either fi = A−1,bi or fi = A1,0

for each i > i0.

Case 1. There is i1 > i0 such that fi1 = A−1,bi1
and fi = A1,0 for all i > i1. Then

fi1 has a unique fixed point c = bi1/2, which is also a fixed point of fi with i < i1
by the normality of Ni1 . Thus c is a fixed point of ψ(G). This contradicts the
minimality of the action (R, G, ψ).

Case 2. For each i > i0, fi = A1,0. Thus the unique fixed point x = bi0/(1− ai0)
of fi0 is also a fixed point of fi with i < i0 by the normality of Ni0 . Thus x is the
fixed point of ψ(G), which contradicts the minimality of (R, G, ψ) again.

So the assumption is false and each fi is isometric. Hence each element of ψ(G)
is isometric. �

4. Proof of the main theorem

In this section, we will prove the main theorem. We first establish the nonex-
istence of expansive polycyclic group actions on the interval [0, 1] in the following
proposition.

Proposition 4.1. The closed interval [0, 1] admits no expansive polycyclic group
actions.

Proof. Assume to the contrary that there is an expansive action ([0, 1], G, φ) by a
polycyclic group G. By Proposition 2.4, there is an open interval (a, b) in [0, 1]
and a subgroup H of G such that (a, b) is H-invariant and the restriction action
((a, b), H|(a,b)) is minimal and ([a, b], H|[a,b]) is expansive. Let c > 0 be an expansiv-
ity constant for the action ([a, b], H|[a,b]). Notice thatH is still polycyclic. Applying
Proposition 3.4, there is an orientation-preserving homeomorphism ξ : (0, 1) → R

such that for every g ∈ H, ξφ(g)ξ−1 is an isometric transformation on R. Take
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a < a′ < b′ < b such that a′ − a < c and b− b′ < c. Let A′ = ξ(a′) and B′ = ξ(b′).
By uniform continuity, there is δ > 0, such that for every x, y ∈ [A′ − 1, B′ + 1]
with |x − y| < δ, we always have |ξ−1(x) − ξ−1(y)| < c. Take u, v ∈ R with
|u− v| < min{1, δ}. Then for every g ∈ H, by the isometry of ξφ(g)ξ−1, we have

|φ(g)(ξ−1(u))− φ(g)(ξ−1(v))|
= |ξ−1(ξφ(g)ξ−1)(u)− ξ−1(ξφ(g)ξ−1)(v)| < c.

This contradicts the expansivity of ([a, b], H|[a,b]). �

The following proposition can be seen in [19].

Proposition 4.2. Let a group G act continuously on the circle S
1 and let Λ be a

minimal closed subset of (S1, G). Then there are three case: (a) Λ = S
1; (b) Λ is a

Cantor set; (c) Λ is finite.

Proof of Theorem 1.1. Assume to the contrary that there is an expansive action on
S
1 by a polycyclic group G. Let Λ be a minimal closed set for the action. From

Proposition 4.2, we discuss into three cases.

Case 1. Λ = S
1. By the amenability of polycyclic groups, there is a G-invariant

probability Borel measure μ on S
1. Since (S1, G) is minimal, the support suppμ =

S
1 and μ has no atoms. Recall a classical result that any subgroup of Homeo+(S

1)
preserving a probability measure with full support and without atoms is topologi-
cally conjugate to a subgroup consisting of rotations (see [19, Proposition 1.1.1]),
where Homeo+(S

1) is the group of orientation preserving homeomorphisms of S1.
Since Homeo+(S

1) has index two in Homeo(S1), we conclude that (S1, G) is not
expansive in this case. This is a contradiction.

Case 2. Λ is a Cantor set. Take a maximal interval (α, β) in S
1 \Λ. Let H = {g ∈

G : g(α, β) = (α, β)}. Then H is a subgroup of G with index [G : H] = ∞. Let
G = g1H ∪ g2H ∪ · · · be a coset decomposition of G with respect to H. Then the
sets gi([α, β]) are mutually disjoint and hence limi→∞ diam(gi([α, β])) = 0. Now
it follows from Lemma 2.3 that ([α, β], H|[α,β]) is expansive. But this contradicts
Proposition 4.1.

Case 3. Λ is finite. Fix a maximal interval (α, β) in S
1 \ Λ. Let H = {g ∈ G :

g(α, β) = (α, β)}. Then [G : H] < ∞. If the cardinality of Λ is greater than 1,
then ([α, β], H|[α,β]) is expansive by Lemma 2.2. This contradicts Proposition 4.1.

If Λ consists of only one point, say O. We view S
1 as the quotient of [0, 1] by

collapsing the two endpoints {0, 1} to one point O. Then the action of H on S
1 can

be naturally lifted to an action on [0, 1]. Clearly, the lifted action is still expansive.
This contradicts Proposition 4.1 again.

All together, we see that the assumption is false and thus complete the proof. �

5. Appendix

In this section, we will explain why the measure μ appearing in Proposition 3.4
has no atoms. Though this fact is well known to experts, it is hard to find the proof
from literatures. So we give a detailed proof here.

Lemma 5.1. Let G be a subgroup of Homeo+(R) admiting a quasi-invariant Radon
measure μ. If the action of G is minimal, then μ is atomless.
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Proof. By the quasi-invariance, there is a group homomorphism c : G → (0,+∞)
from G to the multiplication group of positive real numbers such that g∗μ = c(g)μ
for each g ∈ G. Clearly, μ is G-invariant if and only if c(g) = 1 for all g ∈ G.

If μ is G-invariant, then it has no atoms by the minimality of the action and
the local finiteness of μ. Now suppose that x ∈ R is an atom of μ. Then μ is not
G-invariant and hence there is some f ∈ G with c(f) �= 1.

Claim 1. For each g ∈ G \ {e}, g has at most one fixed point.

Otherwise, there is a maximal finite open interval (a, b) of R \ Fix(g). By the
minimality, there is some h ∈ G such that hx ∈ (a, b). Then gnhx ∈ (a, b) for each
n ∈ Z. Thus

μ([a, b]) ≥
∑
n∈Z

μ({gnhx}) =
∑
n∈Z

c(g)nc(h−1)μ({x}) = ∞,

which contradicts the local finiteness of μ.

Claim 2. For each g ∈ G \ {id}, c(g) �= 1.

To the contrary, assume c(g) = 1 for some nontrivial element g ∈ G.

(1) If g has no fixed point, then we may assume that g(y) > y for any y ∈ R.
Pick a ∈ R and we have R =

⋃
n∈Z

[gna, gn+1a). Since c(g) = 1, the measure of

[gna, gn+1a) is independent of n, saying a positive constant λ > 0. Recall that
c(f) �= 1. We may assume that c(f) > 1 by replacing f with f−1. For sufficiently
large N , we have

μ({f−Nx}) = (fN
∗ μ)({x}) = c(f)Nμ({x}) > λ.

This is absurd since f−Nx must locate in some interval [fna, fn+1a) whose measure
is λ.

(2) If the fixed point set of g is nonempty then g has a unique fixed point p by
Claim 1. Without loss of generality, we assume that g(y) > y for any y ∈ (−∞, p).
By the very arguments used in (1), we also obtain a contradiction.

Combining (1) and (2), we complete the proof of Claim 2.
By Claim 2, we conclude that c : G → (0,+∞) is an injective homomorphism.

Thus G is commutative.

Claim 3. For each g ∈ G \ {id}, we have Fix(g) = ∅.

Otherwise, there is some nontrivial g ∈ G with Fix(g) = ∅. By Claim 1, g has a
unique fixed point. Since G is commutative, Fix(g) is G-invariant. Hence G has a
global fixed point which contradicts the minimality.

By Claim 3, we can choose an element g ∈ G satisfying g(y) > y for any y ∈ R.
Set

H = {h ∈ G : hx ∈ (g−1x, x)}.

Claim 4. For each h ∈ H, we have h−1g−1(x) > g−1(x).

Otherwise, we have h−1g−1(x) ≤ g−1(x) and hence h(g−1x) ≥ g−1x. Note that
h(x) < x. Thus there must be a fixed point of h in [g−1x, x), which contradicts
Claim 3.
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Finally, by Claim 4, we have h−1g−1(x) ∈ (g−1x, x) and hence

μ([g−1x, x]) ≥ 1

2

∑
h∈H

(μ({hx}) + μ({h−1g−1x}))

≥ 1

2

∑
h∈H

(
c(h) + c(h−1)

)
min

(
μ({x}), μ({g−1x})

)
= ∞.

This contradicts the local finiteness of μ. Thus μ has no atoms. �
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