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Abstract
Let A be an annulus in the plane R

2 and g : A → A be a boundary components preserving
homeomorphism which is distal and has no periodic points. Then there is a continuous
decomposition of A into g-invariant circles such that all the restrictions of g on them share a
common irrational rotation number and all these circles are linearly ordered by the inclusion
relation on the sets of bounded components of their complements inR

2. Finally, we show that
g is conjugate to an irrational rotation if and only if there exists a transversal and examples
without transversals are also constructed.

1 Introduction

Recurrence is one of the most fundamental notions in the theory of dynamical system. There
are various definitions to describe the recurrence behaviors of a point in a system, such as
periodic point, almost periodic point, distal point, recurrent point, regularly recurrent point,
and so on. There has been a considerable progress in studying the structures of the dynamical
systems all points of which possess some kind of recurrence.

Montgomery [28] proved that every pointwise periodic homeomorphism on a connected
manifold is periodic. For an infinite compact minimal metric system each point of which
is regularly recurrent, Block and Keesling [5] proved that it is topologically conjugate to
an adding machine. Shi et al. [37] showed that every pointwise recurrent expansive home-
omorphism is topologically conjugate to a subshift of some symbol system, which extends
a classical result of Mañé [26] for minimal expansive homeomorphisms. The structure of
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pointwise recurrent maps having the pseudo orbit tracing property is completely determined
by Mai and Ye [25].

There are also many interesting results around the structures of recurrent maps on
low-dimensional spaces. Mai [24] showed that a pointwise recurrent graph map is either
topologically conjugate to an irrational rotation on the circle or of finite order. Naghmouchi
[31] and Blokh [6] characterized the structures of pointwise recurrent maps on uniquely
arcwise connected curves. Kolev and Pérouème [20] showed recurrent homeomorphisms on
compact surfaces with negative Euler characteristic are of finite order. Foland [14] proved
that any equicontinuous homeomorphism on a closed 2-cell is topologically conjugate either
to a reflection of a disk in a diameter or to a rotation of a disk about its center. Ritter [35]
further determined the structure of equicontinuous homeomorphisms on the 2-sphere and
annulus. Oversteegen and Tymchatyn [33] proved that recurrent homeomorphisms on the
plane are periodic.

The notion of distality was introduced by Hilbert for better understanding equicontinuity
[12]. The study of minimal distal systems culminates in the beautiful structure theorem of
Furstenberg [16], which describes completely the relations between distality and equiconti-
nuity for minimal systems. Considering minimal distal actions on compact manifolds, Rees
[34] proved a sharpening of Furstenberg’s structure theorem.

The aimof the paper is to study the structure of distal homeomorphisms on annuluswithout
periodic points. One may consult [3, 7, 15, 17] for many interesting related investigations.

We obtain the following theorem.

Theorem 1.1 Let A be an annulus in the planeR
2 and g : A → A be a boundary components

preserving homeomorphism which is distal and has no periodic points. Then there is a
continuous decomposition of A into g-invariant circles such that all the restrictions of g on
them share a common irrational rotation number and all these circles are linearly ordered
by the inclusion relation on the sets of bounded components of their complements in R

2.

In [3], the authors show that some conjugacies of an irrational pseudo-rotation on the
annulus can approximate to an irrational rotation. Clearly, the hypotheses about the homeo-
morphism in our setting are much stronger than in [3]. However, even under these stronger
hypotheses we cannot hope the homeomorphism in Theorem 1.1 can be conjugate to an
irrational rotation. This is the so-called linearization. We will show this is equivalent to the
existence of a transversal. Here, a transversal is an arc in the annulus that intersects each
minimal circle exactly once. It is clear that if g is conjugate to an irrational rotation then
there is a transversal. The following theorem shows that the other direction holds as well.

Theorem 1.2 Let A be an annulus in the plane R
2 and g : A → A be a boundary compo-

nents preserving homeomorphism which is distal and has no periodic points. If there is a
transversal, then g is conjugate to an irrational rotation.

Finally, we will construct examples that cannot be linearized.

Theorem 1.3 For each irrational number α ∈ (0, 1), there is a distal homeomorphism g as
in Theorem 1.1 which has rotation number α and cannot be linearized.

The paper is organized as follows. In Sect. 2, we will introduce some concepts and facts
in the theories of dynamical system and topology. Specially, we will give the definitions of
solenoid and addingmachine from the viewpoint of topological groups and recall some results
around distal homeomorphisms. In Sect. 3, we will show that there exists no adding machine
contained in the boundary of an f -invariant open disk under some appropriate assumptions.
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Based on this result, we show in Sect. 4 the existence of an f -invariant circle in the boundary
just mentioned. In Sect. 5, we show further that there are sufficiently many f -invariant circles
in the annulus. Relying on all these results, we show in Sect. 6 the existence of the expected
decompositions. In Sect. 7, we show that g can be linearized assuming the existence of a
transversal. In Sect. 8, examples that are not linearized are constructed.

2 Preliminaries

In this section, we will recall some notions, notations, and elementary facts in the theories
of dynamical system and topology.

2.1 Recurrence, minimal sets, and factors

By a dynamical system we mean a pair (X , f ), where X is a metric space and f : X → X is
a homeomorphism. For x ∈ X , the orbit of x is the set O(x, f ) ≡ { f i (x) : i ∈ Z}. If there
is some n > 0 such that f n(x) = x , then x is called a periodic point of f and the minimal
such n is called the period of x . A periodic point x of period 1 is called a fixed point, that is
f (x) = x . A subset A of Z is syndetic if there is l > 0 with A ∩ {p, p + 1, . . . , p + l} �= ∅
for any p ∈ Z. We call x an almost periodic point if for any open neighborhood U of x , the
set N (x,U ) ≡ {i ∈ Z : f i (x) ∈ U } is syndetic. If there is a sequence of positive integers
n1 < n2 < · · · such that f ni (x) → x , then we call x a recurrent point; and if for any open
neighborhood U of x , there always exists n > 0 such that f n(U ) ∩ U �= ∅, then we call x
a nonwandering point. Clearly, an almost periodic point is recurrent and a recurrent point is
nonwandering. If each point of X is nonwandering, then we call f nonwandering.

A subset S of X is f -invariant if f (S) = S; we use f |S to denote the restriction of f to S.
If S is an f -invariant nonempty closed subset of X and contains no proper f -invariant closed
subset, then we call S a minimal set of f . If X is a minimal set, we call the system (X , f )
is minimal. It is clear from the definition that S is minimal if and only if for each x ∈ S,
O(x, f ) is dense in S. By an argument of Zorn’s lemma, we have that if X is compact, then
there always exists a minimal set of f . We have known that each point of a compact minimal
set is almost periodic (see e.g. [1, Chap.1-Theorem 1]).

For any two dynamical systems (X , f ) and (Y , g), if there is a continuous surjection
φ : X → Y such that φ ◦ f = g ◦ φ, then we say that (Y , g) is a factor of (X , f ) and (X , f )
is an extension of (Y , g); we call φ a factor map or a semiconjugation between (X , f ) and
(Y , g); if φ is a homeomorphism, then we call (X , f ) and (Y , g) are topologically conjugate.
Clearly, if M is a minimal set of f , then φ(M) is a minimal set of g. It is well known that if
S
1 is the unit circle and f : S

1 → S
1 is an orientation preserving homeomorphism without

periodic points, then (S1, f ) is semiconjugate to a rigid minimal rotation on S
1 (see e.g. [38,

Theorem 6.18]).
A topological space U is called an open disk if it is homeomorphic to the unit open disk

in the plane R
2. By the Riemann mapping theorem, we know that a connected open subset

U of C is an open disk if and only if it is simply connected.
The following theorem is implied by Brouwer’s lemma (see e.g. [13, 23]).

Theorem 2.1 IfU is anopendisk and f : U → U isanorientation-preservingnonwandering
homeomorphism, then f has a fixed point in U.
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2.2 Continuous and semi-continuous decompositions

Let (X ,T ) be a topological space. A partition of X is a collection D of nonempty, mutually
disjoint subsets of X such that ∪D = X . Define π : X → D by letting π(x) be the unique
D ∈ D such that x ∈ D for each x ∈ X . We endow D with the largest topology so that
π is continuous, that is U ⊂ D is open iff ∪U ∈ T . The topological space D so defined
is called the decomposition of X . We also call D the quotient space of X by identifying
each element of D into a point and call π the quotient map. The partition D is called upper
semi-continuous provided that whenever D ∈ D , U ∈ T , and D ⊂ U , there exists V ∈ T
with D ⊂ V such that if A ∈ D and A ∩ V �= ∅, then A ⊂ U .

Now suppose X is a compact metric space with metric d . Let 2X be the collection of all
nonempty closed subsets of X and let C(X) = {A ∈ 2X : A is connected}. The Hausdorff
metric Hd on 2X is defined by Hd(A, B) = inf{ε : A ⊂ Bd(B, ε) and B ⊂ Bd(A, ε)} for
each A, B ∈ 2X . Then 2X and C(X) are both compact metric spaces with respect to Hd ,
called the hyperspaces of X (see e.g. [30, Theorems 4.13 and 4.17]). Let D be a partition of
X such that each element of D is closed. The partition D is called continuous if the quotient
map π : X → D , thought of as a map from X into 2X , is continuous.

If D is a partition of X , then it induces an equivalence relation R ⊂ X × X by defining
(x, y) ∈ R if {x, y} ⊂ A for some A ∈ D . The relation R is called a closed relation if it is a
closed subset of X × X .

The following proposition can be seen in [18, Proposition 2.2].

Proposition 2.2 Let X be a compact metric space. Let D be a partition of X and R be the
equivalence relation induced by D . If R is closed, then D is upper semi-continuous.

Proposition 2.2 together with the compactness of hyperspaces implies the following
proposition.

Proposition 2.3 Let f : R
2 → R

2 be a homeomorphism and M ⊂ R
2 be a compact minimal

set of f . Let M be the set of all components of M and let M ′ = {{x} : x ∈ R
2 \ M}. Then

M ∪ M ′ is an upper semi-continuous decomposition of R
2.

A continuum is a connected compact metric space. If X is a continuum contained in the
plane R

2 such that R2 \ X is connected, then we call that X does not separate the plane. The
following theorem is due to R. L. Moore (see e.g. [22, p.533, Theorem 8] for a slightly more
general form).

Theorem 2.4 The space of an upper semi-continuous decomposition of R
2 into continua,

which do not separate R
2, is homeomorphic to R

2.

2.3 Topological dimension

In this paper, the dimension of a metric space is referred to the covering dimension. We recall
the definition here and the readers can find more details in [32].

Let X be a metric space. For a finite open covering U = {U1, . . . ,Un} of X , the order of
U is defined by

ord(U ) = max{k : ∃1 ≤ i1 < i2 < · · · < ik ≤ n s.t . Ui1 ∩ · · · ∩Uik �= ∅}.
Now the covering dimension of X , or simply the dimension of X , denoted by dim X , is at
most n if every finite open covering of X can be refined by a finite open covering whose
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order is at most n + 1. If dim X ≤ n and the statement dim X ≤ n − 1 is false, then we say
dim X = n.

We list some known results used later.

Lemma 2.5 [36, Theorem 19] Let X be a compact subset of Rn. Then dim X < n if and only
if the interior of X in R

n is empty.

Lemma 2.6 [32, Remark 27-9] Let X = lim←−(Xα)α∈I be an inverse limit of compact metric

space. Then

dim X ≤ lim sup
α∈I

dim Xα.

Lemma 2.7 [27, Corollary 2] Let G be a locally compact group and H is closed subgroup
of G. Then

dimG = dim H + dimG/H .

2.4 Solenoids and addingmachines

Let X be a compact metric space with metric d and f : X → X be a homeomorphism. We
say (X , f ) is equicontinuous if for each ε > 0, there is a δ > 0 such that d( f i (x), f i (y)) < ε

for any i ∈ Z, whenever d(x, y) < δ. Let K be a compact abelian metric group and a ∈ K .
The rotation ρa : K → K is defined by ρa(x) = ax for any x ∈ K . Clearly, if {an : n ∈ Z}
is dense in K , then (K , ρa) is minimal and equicontinuous.

The following theorem shows that minimal rotations on compact abelian metric groups
are the only equicontinuous minimal systems (see [38, Theorem 5.18]).

Theorem 2.8 (Halmos-von Neumann) Let X be a compact metric space and f : X → X be
a minimal and equicontinuous homeomorphism. Then (X , f ) is topologically conjugate to
a minimal rotation on a compact abelian metric group.

For each positive integer i , let Ki be a compact metric group and let fi : Ki+1 → Ki be
a surjective continuous group homomorphism. The inverse limit of {Ki , fi } is

lim←− {Ki , fi } ≡
{

(xi ) ∈
∞∏
i=1

Ki : xi = fi (xi+1)

}
,

which is a compact metric group under the multiplication “ · " defined by (xi ) · (yi ) = (xi yi ).
If each Ki is the unit circle {z ∈ C : |z| = 1} and lim←−{Ki , fi } is not the circle, then we call

lim←−{Ki , fi } a solenoid; if each Ki is a finite cyclic group and lim←−{Ki , fi } is not finite, then
we call lim←−{Ki , fi } an adding machine. As topological spaces, a solenoid is a homogeneous

indecomposable circle-like continuum and an adding machine is a Cantor set. We also call a
minimal rotation on an adding machine an adding machine.

Since every compact metric group is an inverse limit of compact Lie groups (see e.g. [29,
Chap. 4.6-4.7]), and the only connected Lie groups of dimension 1 is the circle group and
the only Lie groups of dimension 0 are finite groups, the following proposition is clear.

Proposition 2.9 If K is a connected compact metric group of dimension 1, then it is either a
circle or a solenoid; if K is a compact metric group of dimension 0 and has a dense cyclic
subgroup, then it is either a finite cyclic group or an adding machine.
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Proof Let K be a compact metric group. By the above arguments, we can write K as an
inverse limit of compact Lie groups, i.e., K = lim←−Li . Then each Li is a quotient of K . By

Lemma 2.7, one has dim Li ≤ dim K . On the other hand, it follows from Lemma 2.6 that
dim K ≤ lim sup dim Li . WLOG, we may assume that dim Li = dim K for each i .

Now assume that K is a compact connected metric group of dimension 1. Then each Li

is a compact connected Lie group of dimension 1. Thus each Li is just the circle. This shows
that in this case K is either a circle or a solenoid.

Assume that K is a compact metric group of dimension 0 and has a dense cyclic subgroup.
Then each Li is a finite Lie group and has a dense cyclic subgroup. Thus each Li is a finite
cyclic group. This implies that K is either a finite cyclic group or an adding machine. ��

A curve is an 1-dimensional continuum. The following corollaries are immediate from
Theorem 2.8 and Proposition 2.9.

Corollary 2.10 Let X be a curve and f : X → X be a minimal equicontinuous homeomor-
phism. Then (X , f ) is topologically conjugate to a minimal rotation either on the circle or
on a solenoid.

Corollary 2.11 Let X be a compact metric space of dimension 0 and f : X → X be aminimal
equicontinuous homeomorphism. Then (X , f ) is either a periodic orbit or topologically
conjugate to an adding machine.

Proof By Theorem 2.8, (X , f ) is conjugate to a minimal rotation on some compact abelian
metric group. Thus we may assume that X is a compact metric group of dimension 0. Since
(X , f ) is minimal, X has a dense cyclic subgroup. Then X satisfies the second condition in
Proposition 2.9 and the assertion is followed. ��

The following proposition is shown by Bing [4], which is also implied by the main result
in [19].

Proposition 2.12 Solenoids are not planar continua.

We call x in a system (X , f ) regularly recurrent if for any open neighborhood U of x ,
there is a positive integer n such that f kn(x) ∈ U for each k = 0, 1, . . ..

The following proposition is implied by the definition (see [5] for a characterization of
adding machine using regular recurrence).

Proposition 2.13 If (X , f ) is anaddingmachine, then eachpoint x of X is regularly recurrent.

2.5 Structures of distal homeomorphisms

Let X be a compact metric space with metric d and let f : X → X be a homeomorphism.We
call that (X , f ) is distal if for any x �= y ∈ X , inf i∈Z{d( f i (x), f i (y))} > 0 . We suggest the
readers to consult [1] for the proofs of the following well known facts: (1) If (X , f ) is distal,
then X is a disjoint union of minimal sets; (2) If (X , f ) is minimal and distal and (Y , g) is
a factor of (X , f ), then (Y , g) is also minimal and distal; (3) Let (X , f ) be a minimal distal
system. Then it has a maximal equicontinuous factor.

Lemma 2.14 [34, §6] Let (X , f ) be a minimal distal system and π : (X , f ) → (Y , g) be a
factor map. Then the covering dimension of the fibers π−1(y), y ∈ Y , is constant and

dim(X) = dim(Y ) + dim π−1(y).
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Lemma 2.15 [8, p.192, Theorem 3·17.13] Let (X , f ) be a minimal distal system and π :
(X , f ) → (Y , g) be a factor map. If (Y , g) is equicontinuous and there is some y ∈ Y with
dim π−1(y) = 0, then (X , f ) is also equicontinuous.

Clearly, Lemma 2.15 implies a distalminimal system of zero dimension is equicontinuous.
In fact, this is also true for non-minimal distal systems of zero dimension (see [2, Corollary
1.9]).

Proposition 2.16 Let X be a compact connected metric space and f : X → X be a minimal
distal homeomorphism. If dim(X) = 1, then (X , f ) is equicontinuous.

Proof Suppose that (X , f ) is not equicontinuous. Then themaximal equicontinuous factor of
(X , f ) is nontrivial. Letπ : (X , f ) → (Y , g)be the factormap to itsmaximal equicontinuous
factor. In particular, Y is connected. By Lemma 2.14, we have dim(Y ) = 1 and for each
y ∈ Y , dim π−1(y) = 0. Then it follows from Lemma 2.15 that (X , f ) is equicontinuous.
This contradiction shows that (X , f ) is equicontinuous. ��

3 Nonexistence of an addingmachine in the boundary of an open disk

We call a topological space X is an arc (resp. open arc) if it is homeomorphic to the closed
interval [0, 1] (resp. the open interval (0, 1)). We call X a circle if it is homeomorphic to the
unit circle in the plane, that is X is a simple closed curve.

Let f : R
2 → R

2 be an orientation preserving homeomorphism and U ⊂ R
2 be a

bounded f -invariant open disk. A cross-cut of U is an open arc γ in U with γ being an
arc joining two points of ∂U . Cross-sections of U are connected components of U \ γ for
some cross cut γ of U . A chain for U is a sequence of sections C = (Di )

∞
i=1 such that

D1 ⊃ D2 ⊃ · · · and ∂U Di ∩ ∂U Di = ∅ for all i �= j . Two chains (Di )
∞
i=1 and (D′

i )
∞
i=1

are called equivalent if for any i > 0 there is j > i such that Dj ⊂ D′
i and D′

j ⊂ Di . A
chain (Di )

∞
i=1 is called a prime chain if diam(∂U Di ) → 0. An equivalence class of prime

chains is called a prime end of U . We use bE (U ) to denote the set of all prime ends of U .
Let Û = U ∪ bE (U ).

Now we topologize Û as follows. For a cross-section D of U and for a prime chain (Ui )

representing p ∈ bE (U ), if Ui ⊂ D for sufficiently large i , then we call p divides D. Set
E (D) = {p ∈ bE (U ) : p divides D}. Consider the family B consisting of all sets of the
form D ∪ E (D) for some cross-section D, together with all open subsets of U . Then B is a
topological basis on Û . We endow Û with the topology generated by B.

The following theorem is known as the Carathéodory’s prime ends compactification
theorem (see [9, 10]).

Theorem 3.1 (Prime ends compactification) Û is homeomorphic to the unit closed disk and
bE (U ) is homeomorphic to the unite circle S

1.

It is well known that the homeomorphism f |U can be extended to a homeomorphism
f̂ : Û → Û . We call the rotation number of f̂ |S1 the prime ends rotation number of f |U .
The following theorem is due to Cartwright and Littlewood [11]. One may consult [21]

for the proof of the converse direction under more general settings.

Theorem 3.2 If f is nonwandering and has no periodic point in ∂U, then the prime ends
rotation number of f |U is irrational.
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Fig. 1 Regularly recurrent point in ∂U

Now we use Theorem 3.2 to prove a key result. We remark here that in this section we
mainly shows that the boundary of an invariant disc is essentially an irrational circle rotation.
First note that by Lemma 2.5 that dim ∂U ≤ 1. Further, dim ∂U = 1 since it is connected
and nondegenerate. Also, every minimal set of ∂U is of dimension 0 or 1.

Proposition 3.3 If the prime ends rotation number of f |U is irrational, then no minimal set
in ∂U is an adding machine.

Proof Assume to the contrary that there is a minimal set K ⊂ ∂U , which is an adding
machine. Fix p ∈ K . Since the rotation number of f̂ |bE (U ) is irrational, f̂ |bE (U ) is semi-
conjugate to an irrational rotation on the unit circle. Then we take a cross-cut γ of U such
that for each cross-section D of γ , E (D) contains the closure of a wandering interval (if any)
of f̂ |bE (U ) and such that p is not an endpoint of γ inU . Take a sufficiently small ε > 0 such
that V ≡ B(p, ε) ∩U is contained in a cross-section D of γ . Let D′ be the cross-section of
γ other than D. By Proposition 2.13, there is some positive integer n such that

f kn(p) ∈ B(p, ε) (3.1)

for all k ≥ 0. Take a sequence (xi ) in V such that xi → p. Passing to a subsequence if
necessary, we suppose xi → q ∈ bE (U ) ⊂ Û . So, there is some l > 0 such that

f̂ ln(q) ∈ E
(
D′) . (3.2)

Then for sufficiently large i , by Eqs. (3.1) and (3.2), and by the continuity, we have both
f ln(xi ) ∈ V ⊂ D and f ln(xi ) = f̂ ln(xi ) ∈ D′ (see Figs. 1 and 2). This is a contradiction. ��

4 Existence of an f -invariant circle in the boundary of an open disk

Proposition 4.1 Let f : R
2 → R

2 be a nonwandering homeomorphism and let U be an
f -invariant open disk. If f |∂U : ∂U → ∂U is distal and f has no periodic points except for
an only fixed point O ∈ U, then there is an f -invariant circle C in ∂U such that (C, f |C ) is
minimal and O belongs to the bounded component of R

2 \ C.
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Fig. 2 Regularly recurrent point
in the prime end

Proof Fix a minimal set M in ∂U . Then it follows from Lemma 2.5 that dim(M) ≤ 1. Noting
that f is nonwandering and has no periodic point in ∂U , by Theorem 3.2, we have that the
prime end rotation number of f |U is irrational. Then it follows from Corollary 2.11 and
Proposition 3.3 that M is not an adding machine. So dim(M) = 1. Thus M has a component
K with dim(K ) = 1.

Now we discuss into several cases:
Case 1. There is some n ≥ 1 such that f n(K ) = K and f i (K ) ∩ K = ∅ for 1 ≤

i < n. Clearly, (K , f n) is minimal. Then, from Proposition 2.16, it is equicontinuous. By
Corollary 2.10 and Proposition 2.12, K is a circle.

Subcase 1.1. n = 1. Let C = K and let D be the bounded component of R
2 \C . Since f

has no periodic points in C , so by Brouwer’s fixed point theorem, O ∈ D. Thus C satisfies
the requirement.

Subcase 1.2. n > 1. Let Ci = f i (K ), i = 0, . . . , n − 1. Then Ci are pairwise disjoint.
Let Di be the bounded component of R

2 \ Ci . If there are i �= j such that Ci ⊂ Dj , then
f i− j (D j ) ⊂ Dj . This contradicts the assumption that f is nonwandering. So these Di

are pairwise disjoint. Since each Di contains a fixed point of f n by Brouwer’s fixed point
theorem, this contradicts the assumption that O is the only periodic points of f . So this
subcase does not occur.

Case 2. f i (K ), i ∈ Z, are pairwise disjoint. Write Ki = f i (K ). If K separates the plane,
then R

2 \ K has a bounded component, so is each Ki . Similar to the arguments in Subcase
1.2, we have that for any i �= j , Ki is contained in the unbounded component of R

2 \ K j .
Thus any bounded component ofR

2 \K is a wandering open set of f . This is a contradiction.
From the above discussions, we get the following claim.

ClaimA.Either the conclusion of Proposition 4.1 holds, orM has infinitelymany components
and any nondegenerate component of M does not separate the plane.

If the conclusion of Proposition 4.1 does not hold, then by Claim A together with Proposi-
tion 2.3 and Theorem 2.4, we get a factor g : R

2 → R
2 of f by identifying each component

of M to a point. Let π : R
2 → R

2 be the factor map. Then π(U ) is a g-invariant open disk
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and g is a nonwandering homeomorphism and has no periodic point in ∂π(U ). So, by The-
orem 3.2, the prime ends rotation number of g|π(U ) is irrational. Noting that g|∂π(U ) is still
distal and π(M) is totally disconnected and infinite, by Corollary 2.11, we see that (π(M), g)
is an adding machine contained in the boundary of π(U ). This contradicts Proposition 3.3.

All together, we complete the proof. ��

5 Existence of an intermediate f -invariant circle

Lemma 5.1 Let X be a compactmetric space and let f : X → X be a distal homeomorphism.
If K is an f -invariant proper closed subset of X, then there are δ > 0 and a nonempty open
subset U of X such that f i (U ) ∩ B(K , δ) = ∅ for each i ∈ Z.

Proof For each positive integer n, let Vn = {x ∈ X : f i (x) ∈ B(K , 1
n ) for some i ∈ Z}.

If the conclusion of Lemma 5.1 does not hold, then Vn is a dense open subset of X for
each n. Thus by Baire’s Theorem, G ≡ ∩∞

n=0Vn is a dense Gδ-set. Take x ∈ G \ K . Then
O(x, f ) ∩ K �= ∅. This contradicts the minimality of O(x, f ). ��

For any two circles C,C ′ in the plane R
2, write C ≺ C ′ if C is contained in the bounded

component of R
2 \ C ′.

Proposition 5.2 Let f : R
2 → R

2 be an orientation preserving nonwandering homeomor-
phism. Let A be an f -invariant annulus with two boundary circles C1 ≺ C2. Suppose f |A is
distal and f has no periodic points except for an only fixed point O in the bounded component
of R

2 \ C1. Then there is an f -invariant circle C with C1 ≺ C ≺ C2.

Proof By Lemma 5.1, we can take δ > 0 and a nonempty open set U in A such that
f i (U ) ∩ B(C1 ∪ C2, δ) = ∅ for each i ∈ Z. Set W = ∪i∈Z f i (U ). Let K be the unbounded

component of R
2 \W . Then K is f -invariant and C2 ⊂ ◦

K . Let V be a component of R
2 \ K .

(See Fig. 3) Then V is an open disk by a direct application of Jordan separation theorem.
Since f is nonwandering, there is some n ≥ 0 with f n(V ) = V . Then, by Theorem 2.1,
there is a periodic point of f n in V , so is for f . Thus by the assumption, we have O ∈ V .
This implies C1 ⊂ V . From the above discussions, we see that V is the only component of
R
2 \ K , and hence f (V ) = V . Now applying Proposition 4.1, we get the required circle. ��

6 A decomposition of the annulus into f -invariant circles

In this section, we will complete the proof of the main Theorem. All assumptions are as in
Theorem 1.1. WLOG, we may assume the annulus A = {z ∈ C : 1 ≤ |z| ≤ 2}. Then we
extend g : A → A to f : C → C by defining

f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|x |
2 · g

(
2x
|x |

)
, |x | > 2;

g(x), 1 ≤ |x | ≤ 2;
|x | · g

(
x
|x |

)
, 0 < |x | < 1;

0, |x | = 0.

It is clear from the definition that f is an orientation preserving nonwandering home-
omorphism on the plane and has no periodic points except for the only fixed point
0.
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Write C1 = {z : |z| = 1} and C2 = {z : |z| = 2}. For each circle C in the plane, we use
D(C) and OD(C) to denote the bounded component and unbounded component of R

2 \C ,
respectively. Let ≺ be the transitive order defined in Section 5; that is, for circles C and C ′
in the plane, C ≺ C ′ iff C ⊂ D(C ′). Let

C = {C : C is an f -invariant circle and C1 ≺ C ≺ C2} ∪ {C1,C2}.
Let T be the family of all chains of C respect to ≺. Then T is a partial set with respect to
the inclusion relation on the power set of R

2. Using Zorn’s lemma, there is a maximal chain
P in T .
Claim A. P is a partition of A.

Proof of Claim A Assume to the contrary that there is some v ∈ A \ ∪P . Since C1,C2 ∈ P

by the maximality of P , we have v ∈ ◦
A. Set P1 = {C ∈ P : v /∈ D(C)} and P2 = {C ∈

P : v ∈ D(C)}. Then C1 ∈ P1 and C2 ∈ P2.
Now we discuss into several cases.
Case 1. P1 has no maximal element. Let U = ∪C∈P 1D(C). Then U is an f -invariant

open disk. From Proposition 4.1, we have an f -invariant circle C3 in ∂U with 0 ∈ D(C3).
Clearly, C3 /∈ P and C ≺ C3 for any C ∈ P1. If C3 ≺ C for any C ∈ P2, then {C3} ∪ P
is a chain, which contradicts the maximality of P . So, there must exit a C4 ∈ P2 such
that C3 ∩ C4 �= ∅. Let V be a component of D(C4) \ D(C3). Then V is a component
of R

2 \ (C3 ∪ C4), and hence it is an open disk. Noting that f is nonwandering, we have
f n(V ) = V for some n ≥ 0. Then by Theorem 2.1, f has a periodic point in V . This is a
contradiction. So, Case 1 does not happen.

Case 2.P2 has no minimal element. We consider the Riemann sphere Ĉ = C∪{∞}. Let
L = Ĉ \ {0}. Then L is a plane. Define f̂ : L → L by letting f̂ (∞) = ∞ and f̂ (x) = f (x)
for any x ∈ C \ {0}. Then f̂ is an orientation preserving nonwandering homeomorphism
on the plane L and has no periodic points except for the only fixed point ∞. Similar to the
discussions in Case 1, we see that Case 2 does not happen.

Case 3. P1 has the maximal element C5 and P2 has the minimal element C6. Then
C5 ≺ C6. Applying Proposition 5.2, we get an f -invariant circleC7 such thatC5 ≺ C7 ≺ C6.
Then {C7}∪P is a chain. This contradicts the maximality ofP . Thus Case 3 does not occur.

So A = ∪P; that is P is a partition of A (see Fig. 3). ��
Claim B. ≺ is a dense and complete linear order on P .

Proof of Claim B (1) Linearity. For any distinct C,C ′ ∈ P , we have C ∩ C ′ = ∅ and hence
either C ⊂ D(C ′) or C ′ ⊂ D(C). This shows that either C ≺ C ′ or C ′ ≺ C . Thus ≺ is a
linear order.

(2) Density. Let C,C ′ ∈ P be with C ≺ C ′. Then we have D(C) � D(C ′). Now for any
x ∈ D(C ′) \ D(C), there is some C ′′ ∈ P such that x ∈ C ′′. It follows from the definition
of ≺ that C ≺ C ′′ ≺ C ′. This shows that ≺ is a dense order.

(3) Completeness. To the contrary, assume that≺ is incomplete. That is there is aDedekind
Gap, which means that there is a partition P = L ∪ U such that

• For any C ∈ L and C ′ ∈ U , C ≺ C ′,
• L has a maximal element C∗ and U has a minimal element C∗.

Then we have⋃
C∈L

C = D(C∗) \ D(C1) and
⋃
C∈U

C = OD(C∗) \ OD(C2),
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Fig. 3 Description of Case 1 in
the proof of Claim A

both of which are closed in A. But this contradicts the connectedness of A. This shows that
≺ is complete. ��

NowClaimB implies that (P,≺) endowedwith the ordering topology is homeomorphism
to a closed interval. WLOG, we may assume that (P,≺) ∼= [1, 2] and use Cr to denote
elements of P with r ∈ [1, 2].

Recall that 2A is the hyperspace of A endowed with the Hausdorff metric.
Claim C. P is closed in 2A. Specially, P is a continuous decomposition.

Proof of Claim C LetCrn be a sequence inP that converges to K in 2A underHausdorffmetric.

Since (P,≺) ∼= [1, 2], by passing to some subsequence, we may assume that Crn
≺−→ Cr

under the ordering topology for some r ∈ [1, 2].
Next we will show that K = Cr which implies that P is closed in 2A. We may assume

as well Crn ≺ Cr for each n. Fix an x ∈ K . Then it follows from the definition of Hausdorff
metric that there is a sequence (xn)with xn ∈ Crn such that xn → x . Since xn ∈ Crn ⊂ D(Cr ),
we have x ∈ D(Cr ). To show x ∈ Cr , we assume that x ∈ D(Cr ). Then there is some
s ∈ [1, r) such that x ∈ Cs . Since rn → r , we have s < rn ≤ r and hence Cs ≺ Crn � Cr

for any sufficiently large n. But in this case, xn cannot converge to x ; this is a contradiction.
To sum up, we have x ∈ Cr . Hence K ⊂ Cr as x is arbitrary. On the other hand, for any
y ∈ Cr , there is some subsequence (yni ) with yni ∈ Crni

such that yni → y. Indeed, take
any point z ∈ C1 and let L be the segment connecting z and y in A. Then L ∩ Crn �= ∅ for
each n and we choose some yn ∈ L ∩Crn . It is clear that y is a limit point of (yn). The above
arguments show that K = Cr and the closedness of P in 2A is followed. ��

For any orientation preserving homeomorphism φ on a circle, we use ρ(φ) to denote the
rotation number of φ.
Claim D. The rotation numbers of f |C , C ∈ P , are the same irrational number.

Proof of ClaimD Assume to contrary that there are C ′ �= C ′′ ∈ P such that the rotation
numbers ρ( f |C ′) �= ρ( f |C ′′). Let Ã be the annulus in A with boundary C ′ ∪ C ′′. Write
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α′ = ρ( f |C ′) and α′′ = ρ( f |C ′′). Take a homeomorphism h : Ã → S
1 × [0, 1] such

that h(C ′) = S
1 × {0} and h(C ′′) = S

1 × {1}. Let f̃ = h f |Ah−1. Then ρ( f̃ |h(C ′)) = α′
and ρ( f̃ |h(C ′′)) = α′′. Let R × [0, 1] be the universal covering of S

1 × [0, 1] and let F :
R × [0, 1] → R × [0, 1] be a lift of f̃ . Noting that f̃ is homotopic to the identity, we have
T F = FT , where T is the unit translation on R × [0, 1] defined by T (s, t) = (s + 1, t). Let
π : R × [0, 1] → R be the projection to the first coordinate, that is π(s, t) = s. For any map
ψ : R × [0, 1] → R × [0, 1], write ψ1 = πψ . Then there are m′,m′′ ∈ Z such that

lim
n→∞

Fn
1 (x, 0) − x

n
= α′ + m′

and

lim
n→∞

Fn
1 (x, 1) − x

n
= α′′ + m′′.

WLOG, suppose α′ + m′ < α′′ + m′′. Take a rational number p
q with

α′ + m′ <
p

q
< α′′ + m′′.

Then we have

lim
n→∞

(
T−pFq

)n
1 (x, 0) − x

n
= q

(
α′ + m′) − p < 0

and

lim
n→∞

(
T−pFq

)n
1 (x, 1) − x

n
= q

(
α′′ + m′′) − p > 0.

Since f is nonwandering, it follows from [15, Theorem 3.3] that f̃ q has a fixed point in
S
1 × [0, 1]. That is f̃ has a periodic point, so is f . This is a contradiction. So the rotation

numbers of f |C , C ∈ P , are the same, the irrationality of which clearly follows from the
Poincaré’s classification theorem for circle homeomorphisms. ��

All together, we complete the proof of Theorem 1.1.

7 Transversal implies linearization

In this section, we will show that if there is a transversal then g is conjugate to an irrational
rotation, i.e., g can be linearized. Recall that P is the decomposition of the annulus into
minimal circles. A transversal is an arc in the annulus that intersects each member in P
exactly once.

Now suppose that γ is a transversal for P . For each n ∈ Z, let Ln = gn(γ ).
Recall that the map [1, 2] → P, α �→ Cα is continuous. We parametrize P with Cα :

α ∈ [1, 2]. For each n ∈ Z and α ∈ [1, 2], set {xα
n } = Ln ∩Cα . Then it is clear that {xα

n }n∈Z
is dense in Cα . WLOG, we may assume that C1.5 = {z ∈ C : |z| = 1.5} and g |C1.5 is the
rigid rotation.
Claim 1. For each n ∈ Z, Ln is also a transversal for P and Lm ∩ Ln = ∅ for any m �= n.

Proof of Claim 1 Since g is a homeomorphism and each C ∈ P is g-invariant, we conclude
that Ln is also a transversal.
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Now suppose that there is some x ∈ Lm ∩ Ln . Let C ∈ P be such that x ∈ C . Then we
have g−mx, g−nx ∈ C ∩ L0. Thus g−mx = g−nx , since |L0 ∩ C | = 1. But this contradicts
the minimality of g |C . Thus Lm ∩ Ln = ∅. ��

It is easy to see that P |[Lm ,Ln ] is a partition of [Lm, Ln] for each m �= n ∈ Z, where
[Lm, Ln] is any region between Lm and Ln that is the closure any one of the components of
A \ (Lm ∪ Ln). Precisely, for each α ∈ [1, 2], [Lm, Ln] ∩ Cα is a curve joining xα

m and xα
n .

We denote this curve by Cα
m,n .

Claim 2. For each m �= n ∈ Z, {Cα
m,n}α∈[1,2] is a continuous decomposition of [Lm, Ln].

Proof of Claim 2 It suffices to show that {Cα
m,n}α∈[1,2] is closed in 2A. For this, suppose that

Cαi
m,n → K in 2A as i → ∞. By passing to some subsequence, we may assume that

Cαi

≺→ Cα . We have shown in previously that Cαi → Cα under the Hausdorff topology.
Thus K ⊂ Cα . What remains to show is K = Cα

m,n . Since [Lm, Ln] is closed in A, it is clear
that K ⊂ Cα

m,n . On the other hand, it follows from the continuity of Lm and Ln that x
αi
m → xα

m

and xαi
n → xα

n . Finally, note that K is connected. Thus K = Cα
m,n and we complete the proof.

��
Claim 3. If xα

ni → x , then for each β ∈ [1, 2], xβ
ni → yβ for some yβ ∈ Cβ .

Proof of Claim 3 Fix a β ∈ [1, 2]. To the contrary, assume that there are subsequence {ki } and
{li } of {ni } such that

xβ
ki

→ y′, xβ
li

→ y′′, with y′ �= y′′.

There there are a, b, c, d ∈ Z such that there is a component (La, Lb) of A \ (La ∪ Lb) and
a component (Lc, Ld) of A \ (Lc ∪ Ld) with y′ ∈ (La, Lb), y′′ ∈ (Lc, Ld) and [La, Lb] ∩
[Lc, Ld ] = ∅, where [La, Lb] = (La, Lb) and [Lc, Ld ] = (Lc, Ld). Then both [La, Lb] ∩
{xα

ni } and [Lc, Ld ] ∩ {xα
ni } are infinite. But this contradicts the convergence of {xα

ni }. ��
Now for each x ∈ A, let Cα be such that x ∈ Cα and take xα

ni → x . Then let

Lx := {y : xβ
ni → y, β ∈ [1, 2]}.

Claim 4. Lx is a transversal.

Proof of Claim 4 Clearly, |Lx ∩ Cβ | = 1 for any β ∈ [1, 2]. It remains to show that Lx is an
arc. For this, it suffices to show that the map [1, 2] → Lx , α �→ xα is continuous, where
{xα} = Lx ∩ Cα .

Fix α ∈ (1, 2) and a neighborhood U of xα in A. Further, we can take an open disc V
around xα contained inU . Take m, n ∈ Z such that Cα

m,n ⊂ V . Then V is a neighborhood of

Cα
m,n . By Claim 2, there are 1 < β1 < α < β2 < 2 such thatCβ

m,n ⊂ V for each β ∈ [β1, β2].
In particular, Lx ∩ Cβ ⊂ V , for any β ∈ [β1, β2]. This shows that α �→ xα is continuous. ��
Claim 5. The definition of Lx is independent of the choice of (ni ).

Proof of Claim 5 Suppose that xα
ni → x and xα

mi
→ x . The we have to show that

lim
ni→∞ xβ

ni = lim
mi→∞ xβ

mi
, ∀β ∈ [1, 2].

Let (ki ) be the sequence by putting (ni ) and (mi ) together. Then we have xα
ki

→ x . By Claim

3, the sequence (xβ
ki

) is convergent for each β. This implies our Claim. ��
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Claim 5 tells us that for each y ∈ Lx , we have Lx = Ly . Thus Lx , x ∈ Cα forms a
decomposition of A. Actually, similar to the proof of the continuity ofP , we can also show
that Lx , x ∈ Cα is a continuous decomposition.
Claim 6. For each α ∈ [1, 2], (xα

ni ) converges in Cα if and only if (niθ) converges in S
1.

Proof of Claim 6 This is followed from Claim 3 and our assumption that C1.5 = {z ∈ C :
|z| = 1.5} and g |C1.5 is the rigid rotation. ��

Now we are ready to show that g can be linearized. Let θ be the rotation number of g.
Take a homeomorphism ψ : L0 → P0 := [1, 2] × {0}.

We define the conjugacy 
 : A → A by

x �→ e2π inθψ
(
g−nx

)
, for each x ∈ Ln, n ∈ Z,

and for x = lim xα
ni , define


(x) = lim

(
xα
ni

)
.

Clearly, we have the following claim.
Claim 7. 
g = Rθ
.

In addition, it is also clear that 
 is one-one. Thus it remains to show the continuity of

. For this, suppose that xk → x and we assume that xk ∈ Cαk . Then we have αk → α

and x ∈ Cα . We claim that lim
(xk) = 
(x). WLOG, we may assume that lim
(xk) =
y. For any neighborhood V of 
(x), there are some m, n ∈ Z and β1 ≺ α ≺ β2 such
that 
([β1, β2, Lm, Ln]) ⊂ V , where [β1, β2, Lm, Ln] is the closure of the component of
A\(β1∪β2∪Lm∪Ln) containing x . Since xk → x , xk ∈ [β1, β2, Lm, Ln] for all sufficiently
large k. This shows that 
(xk) → 
(x). Thus we have shown that g is conjugate to the rigid
rotation by 
.

This completes the proof of Theorem 1.2.

8 Proof of Theorem 1.3

In this section, we will construct distal homeomorphisms without periodic points that cannot
be linearized.

8.1 Some notions

Let A = {z ∈ C : 1 ≤ |z| ≤ 2} be the standard closed annulus on the complex plane. Let
Ã = {x+yi ∈ C : 1 ≤ y ≤ 2} be the universal cover ofA andπ : Ã → A : x+yi �→ ye2π i x

be the covering map. Further, for each r ∈ [1, 2], we denote
Cr = {z ∈ C : |z| = r}.

Nowfor eachpoint z ∈ A,weuse thepolar coordinate (θ, r) to represent itwith θ ∈ [0, 2π)

and 1 ≤ r ≤ 2. For each β ∈ R, we define the rigid rotation on A with angle 2πβ by

Rβ : A → A, z �→ ze2π iβ.
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Fig. 4 Definition of L̃

Let γ : [0, 1] → A be an essential simple closed curve in A. We define the folding width
of γ to be the maximal w > 0 such that for each ξ ∈ [0, 1], the circular sector

Sξ := {z ∈ C : 1 ≤ |z| ≤ 2, 2πξ ≤ arg(z) ≤ 2πξ + w}

is separated by at least two disjoint subarcs contained in γ .

8.2 Construction of a periodic folding rotation

We fix p, q ∈ N with (p, q) = 1 and q > 6. We are going to construct a homeomorphism
H on A such that

(1) HRp/q H−1 = Rp/q ;
(2) For any z, z′ ∈ A with |z| = |z′|, one has∣∣θ(H(z)) − θ

(
H

(
z′

))∣∣ ≤ 5q
∣∣θ(z) − θ

(
z′

)∣∣ ;
(3) The folding width of H(C3/2) is not less than π

6 .

Let z0 = i, z1 = 1 + 2i, z2 = 1 + 1
q + 2i, z3 = 1

q + i . Then let

w1 = 1

2
+ 3

2
i, w2 = 3

4
+ 1

2q
+ 7

4
i, w3 = 1

2
+ 1

q
+ 3

2
i .

Define L0 be the union of the segment between w1, w2 and the segment between w2, w3.
Then define L̃ = ⋃

n∈Z(L0 + n
q ) and let �̃ = π(L̃) be the simple closed curve in A (see Fig.

4).
Claim 1. The folding width of �̃ is not less than π

6 .

Proof of Claim 1 It suffices to show that there are two disjoint segments in L̃ linking the
boundaries of the rectangle Bξ := {z ∈ C : ξ ≤ Re(z) ≤ ξ + 1/6, 1 ≤ Im(z) ≤ 2}.
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Fig. 5 Constructions of H

Weassume that ξ ∈
(

j
q + 1

2 ,
j+1
q + 1

2

]
with j ∈ {0, 1, . . . , q−1}.We claim that L0+ j−1

q

and L0 + j
q across Bξ . Since q > 6, we have

1

2
+ j − 1

q
<

j

q
+ 1

2
< ξ

and

ξ + 1

6
≤ j + 1

q
+ 1

2
+ 1

6
<

3

4
+ j − 1

q
+ 1

2q
.

Thus there is a segment between 1
2 + j−1

q + 3
2 i and

3
4 + j−1

q + 1
2q + 7

4 i contained in L0+ j−1
q ,

which across Bξ . Similarly, since

1

2
+ j

q
< ξ < ξ + 1

6
≤ j + 1

q
+ 1

2
+ 1

6
<

3

4
+ j

q
+ 1

2q
,

the segment between 1
2 + j

q + 3
2 i and

3
4 + j

q + 1
2q + 7

4 i contained in L0 + j
q across Bξ . ��

Now we are going to construct the desired homeomorphism H on A. Let B0 be the
rectangle whose vertices are i, 2i, 1

q + 2i, 1
q + i and B ′

0 be the parallelogram whose vertices

are z0, z1, z2, z3. First, we define a homeomorphism H̃ on Ã such that

(i) H̃ maps B0 onto B ′
0;

(ii) H̃ maps affinely the segment between 3i
2 and 1

q + 3i
2 onto L0;

(iii) H̃ maps affinely each horizontal segment in B0 to a piecewise linear segment in B ′
0 such

that the images of the end points have the same imaginary part (see Fig. 5);
(iv) H̃ is extended to Ã by the translation z �→ z + 1

q , precisely,

H̃

(
z + n

q

)
= H̃(z) + n

q
,∀z ∈ B0, n ∈ Z.

123



    3 Page 18 of 20 E. Shi et al.

Then H̃ commutes with the integral translations and thus it factors through a homeomor-
phism H onA. It is clear that such H satisfies our requirements (1) and (3). It remains to show
that H obeys (2). Due the periodicity of H̃ , we may assume that z, z′ ∈ B0 with |z| = |z′|.
But then it follows from our construction that

|θ(H(z)) − θ(H(z′))| ≤
√
1 + (1 + 1/q)2

1/2q
|θ(z) − θ(z′)| ≤ 5q|θ(z) − θ(z′)|,

since q > 6.
It follows from (1) and (2) that we have

Claim 2. For any z ∈ A,

|θ(HRαH
−1(z)) − θ(Rp/q(z))| ≤ 10qπ

∣∣∣∣α − p

q

∣∣∣∣ .
8.3 Final construction

We fix an irrational number α. It follows from Dirichlet’s approximation theorem that there
is a sequence (

pn
qn

) of rational number with (pn, qn) = 1 and qn → ∞ such that∣∣∣∣α − pn
qn

∣∣∣∣ <
1

q2n
, ∀n ∈ N.

WLOG, we may further assume qn > 6 for each n ∈ N.
Now for each pn

qn
, the construction above gives us a homeomorphism Hn on A satisfying

(1), (2), (3).
For each n ∈ N, let

An =
{
z ∈ C : 2 − 1

2n
≤ |z| ≤ 2 − 1

2n + 1

}
.

Now we define the desired homeomorphism g on A as follows.

(a) The restriction of g on An is conjugate to HnRαH−1
n by squeezing along the radical

direction.
(b) The definition of g on A \ ⋃∞

n=1 An is the rotation Rα .

It follows from the construction that g is continuous on A \ C2. Thus it suffices to show
that g is continuous on C2 = {z ∈ C : |z| = 2}. For this, let (zk) be a sequence in A

with zk → z ∈ C2. Since the restriction of g outside
⋃∞

n=1 An is the standard rotation Rα .
WLOG, wemay assume that {zk} ⊂ ⋃∞

n=1 An . Further, to show that g(zk) → g(z) = ze2π iα

it suffices to show that

θ(g(zk)) − θ(zk) → 2πα.

We assume zk ∈ Ank . We denote the conjugation from g|An to HnRαH−1
n by φn , which is a

squeezing transformation along the radical direction. Then we have

|θ (g (zk)) − θ(zk) − 2πα| = ∣∣θ(Hnk RαH
−1
nk (φnk (zk))) − θ((φnk (zk)) − 2πα

∣∣
≤ |θ(Hnk RαH

−1
nk ((φnk (zk))) − θ(Rpnk /qnk

((φnk (zk)))|
+ |2π(pnk /qnk ) − 2πα|

≤ 10qnkπ
∣∣α − pnk /qnk

∣∣ + 2π |pnk /qnk − α|
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≤ 10π

qnk
+ 2π

q2nk
−→ 0.

Thus θ(g(zk)) − θ(zk) → 2πα.
It remains to show that g cannot be linearizable. For this, it suffices to show that there is

no a transversal. Assume there is a transversal γ .
We denote the conjugate image of Hn(C3/2) by Dn , which is clearly invariant under g

and its folding width is also no less than π
3 . Precisely, for each ξ ∈ [0, 1], the circular sector

Sξ :=
{
z ∈ C : 1 ≤ |z| ≤ 2, 2πξ ≤ arg(z) ≤ 2πξ + π

6

}
is separated by at least two disjoint arcs contained in Dn .

Since γ is a curve connecting the boundaries of the annulus, there is some ξ ∈ [0, 1] such
that γ ∩ An is contained in the circular sector

Sξ :=
{
z ∈ C : 1 ≤ |z| ≤ 2, 2πξ ≤ arg(z) ≤ 2πξ + π

6

}
for all sufficiently large n. But then γ must intersect Dn at least twice for sufficiently large
n. This contradicts the transversality of γ . Thus g cannot be linearizable.
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