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1 | INTRODUCTION

| Aibing Yu?? | Jie Xiao?

Abstract

Mathematical modeling of mass transfer and absorption in the small intestine has
been a challenging task. Systematic review and analysis of existing efforts indicate
the need to pursue a reliable predictive model that is physically sound and computa-
tionally efficient. With the consideration of 3D intestinal inner wall structure, this
work rigorously derives an absorption model that can be used as a source term in a
1D distributed model, conventionally called the diffusion-convection-reaction
model. Moreover, computational fluid dynamics simulations are carried out to gener-
ate in silico experimental data for quantification of the mass-transfer coefficient in
the absorption model. This model facilitates a better understanding of the intricate
influence of intestinal morphology and motility on mass transfer and absorption in
the intestine. Rat duodenum featuring a villous structure and pendular movement is

selected as an example to demonstrate the capability of this approach.
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diffusion-convection-reaction (DCR) model, intestine, mass transfer and absorption, motility,
villi

in vivo human intestinal perfusion? and in situ animal intestinal

perfusion,’ is a representative approach capable of quantifying the

Intestinal absorption determines the bioavailability of nutrients and
drugs. Understanding this important process can help identify the
pathogeny of some food-related diseases, for example, Type 2 diabe-
tes, obesity, and hyperlipidemia. Reliable quantification of absorption
rate is crucial for the prediction of nutrient and drug concentrations in
the blood, which are essential factors to be considered during food
and drug development.

It has always been a challenging task to quantitatively investigate
the absorption process. Over the past decades, various methodologies
have been proposed to determine the intestinal permeability (m/s), a
coefficient reflecting the rate of substance passing across the intesti-
nal membrane.! In vivo experiments have been carried out, though

limited by ethical reasons. Intestinal perfusion technique, including

intestinal permeability. However, it has some intrinsic problems such
as imposing an unrealistically high flow rate and being incapable of
differentiating between consumptions by absorption and intestinal
metabolism.* Moreover, it is impossible for in vivo experiments,
human experiments, in particular, to identify the isolated effects of
some characteristic features, such as intestinal morphology and
motility.

Aiming to overcome these restrictions, many in vitro digestion
systems have been developed as an alternative in recent years.”””
Most of these systems, however, simulate the processes in the intesti-
nal lumen prior to absorption, for example, mixing, gastric emptying,
hydrolysis, and so forth, and cannot take care of the complicated

absorption mechanisms. A limited number of in vitro researches can
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be identified to mimic the absorption process by using a semiperme-
able membrane that allows the passage of digested products
(i.e., small molecules) and blocks undigested substrates.®~° For
in vitro systems, it is difficult to implement complex geometrical fea-
tures of a real small intestine, such as circular folds and villi, which
affect the flow pattern and thus the mass transfer.!*'? Even if some
research groups used excised animal intestinal tissues®® or cultured
epithelial cell monolayer,14 various movements of the intestinal walls,
for example, segmentation and peristalsis, can hardly be implemented
in those experiments.

In addition to the experimental study, lots of efforts have been
devoted to mathematical modeling of the transport and evolution of
food and drugs in the digestive tract.® Compared with in vivo and
in vitro trials, in silico studies without ethical limitations can vastly
reduce the cost and allow us to explore the influence of specific phys-
iological structures or dietary properties on digestion. Comprehensive
simulation results that are difficult to obtain through experiments can
help us understand the underlying digestion and absorption
mechanisms.

Computational fluid dynamics (CFD) models have been developed
to explore a single or several physical and chemical phenomena in the
intestinal lumen. They can reproduce various characteristic features of
the intestinal tract in silico at different scales, such as axial propagating

15-18 11,19,20 and

12,21-24

circular nonpropagating contractions,
17,18

peristalsis,
curved tubular structure at macroscale or villi movements
at microscale. The absorption was usually modeled as outward mass
flux from the intestinal wall. These numerical studies revealed that the
physiological features do have significant influences on mass transport
and hence nutrient absorption. For example, a multi-physics model
was developed by Zhang et al.1? to investigate the impact of pendular
movement on mass transfer and absorption in a rat intestine with villi
on its inner wall. Since solving partial differential equations (PDEs) is
computationally expensive, which is especially true for 3D cases with
complicated geometry, it is impossible to use CFD models for instan-
taneous prediction of the absorption rate of nutrients or drugs. Note
that for some applications, real-time prediction is mandatory. For
instance, the feedback control of insulin injection for Type 1 diabetics
is based on the real-time prediction of glucose absorption and the
resulting blood glucose level.?

Without capturing the complicated fluid flow, the other set of
approaches are lumped or distributed parameter models, which are
ordinary differential equations (ODEs) or one-dimensional partial dif-
ferential equations (1D PDEs), respectively. By sacrificing detailed
spatial distribution information, they are computationally efficient and
allow us to investigate the phenomena in a much larger system, for
example, blood sugar regulation of the human body. Hence, they have
wide application in the fields of pathology, pharmacology, and nutri-
tion science, and so on. In these models, absorption is modeled as a
sink term in the mass conservation equation, for example, the 1D
diffusion-convection-reaction (DCR) model. To the extent of our
knowledge, the derivation of the formula for the sink term (i.e., the
absorption model) together with its associated parameters in a 1D

model can hardly be identified. There are many questions that need to

be answered or clarified. How to convert absorption flux on the intes-
tinal wall in the 3D space to absorption rate in a 1D model? How to
take into account intestinal morphology such as villi in the absorption
model? How to determine key parameter values in the absorption
model? What are the correlations between physiological features
(e.g., morphology and motility) and absorption model parameters? Pur-
suing answers to these questions is critical for obtaining an in-depth
understanding of the absorption process and rational use of the model
for reliable prediction.

The focus of the current work is the characterization and investi-
gation of in vivo chemical species' transport in the intestinal lumen fol-
lowed by their absorption by the intestinal wall to enter the blood
circulation. The chemical species modeled in this work are nutrients or
drugs that can be directly absorbed by the intestine. Although multiple
complex physical and chemical processes (e.g., breakdown of food or
drug particles, and enzymatic reactions) may be involved to produce
those chemical species, they are out of the scope of the current work.
In the following text, the lumped and 1D distributed parameter
models are first thoroughly reviewed. By organizing and analyzing
these models, issues that need to be addressed are pointed out. After
that, detailed derivations of our new absorption model are presented,
which is followed by the approach for key parameter determination.
Finally, the method is successfully applied to the study of absorption
in rat duodenum. The influences of some physiological factors (such
as villi length and motility) on absorption are investigated to reveal
underlying mechanisms.

2 | REVIEW AND ANALYSIS OF REPORTED
MODELS

Table 1 summarizes lumped and 1D distributed parameter models for
mass conservation in the small intestine published in the open litera-
ture. The original key equations together with variable definitions are
listed in columns 3 and 4. Based on the way to quantify the absorp-
tion behavior, these models are classified into five categories. For
models in the same category, a general form of the equation is sum-
marized in column 5 to capture their intrinsic connections.

Type 1 is the lumped parameter model that describes a digestive
organ as a fully mixed tank reactor. These models usually follow a
multi-compartmental simulation approach, which divides a system
(i.e., the digestive tract) into several anatomical compartments
(e.g., stomach, duodenum, jejunum, and ileum) and considers mass
transport among them. The substance is assumed to be uniformly dis-
tributed throughout the compartment. The transport rate of a specific
substance between two compartments generally depends on its
amount in the source compartment. For this type of model, the intes-
tinal absorption rate, Q, depends on the real-time amount of sub-
stances in the small intestine, M, which can be obtained by solving the
ODEs of mass conservation. The absorption rate coefficient is usually
assumed to be a constant, K, indicating a simple linear relationship
between Q and M. Although these models can estimate the absorp-

tion rate, they all have a significant limitation, that is, the assumption
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(Continued)

TABLE 1

Classification

Variable definition

Model

Ref. index

38

rufast—fast digestion rate of starch (g/ (cm?® min))
Iy siow—Sslow digestion rate of starch (g/ (cm?® min))
ra,—glucose absorption rate (g/(cm?min))
Rsi—radius of the small intestine (cm)

) +rHfast (Stast (2,£))

)rab(Gsi(zvt))

_ &GS; (Z,t
=—v(t) 5
+ rHstow (Sstow (Z,1)) — (

ﬁGS; (Z,t)
at

V-3

2
Rsi

I abmax—Maximum rate of absorption (g/(cm? min))
Kap—saturation constant for absorption (g/cm®)

Fabmax Gsi (2,t)

" Kap+Gsi(2,t)

rab(Gs,-(z,t))

AI?BIl:'J R NALJLHS

of instantaneously thorough mixing of substances in a compartment,
which is far from the realistic condition in a digestive organ, the small
intestine in particular.

Type Il model considers the spatial distribution of substances
along the gut. Different from Type | models, the total absorption rate
is calculated by integrating the localized mass flux over the intestinal
inner surface, which is usually assumed to be a cylindrical tube with a
constant radius. Since the nutrient is indeed absorbed through the
inner wall of the intestine, this approach is physically sound. However,
it is a challenging task to obtain the mass flux, which is the product of
drug permeability and localized concentration in their work. In order
to better capture mass distribution along the intestine, one needs to
model mass conservation in the lumen with the consideration of fluid
flow, nutrient diffusion, reaction and absorption, which inspires
efforts summarized below.

Since the small intestine has a tubular structure, it can be mod-
eled as a plug flow reactor (PFR), where chyme advances axially
through the tube with reaction and absorption taking place simulta-
neously. In this regard, the 1D diffusion-convection-reaction (DCR)
equation has been widely used for describing mass distribution in the
intestinal lumen. As shown in column 5 of Table 1, mathematically,
these models treat absorption as a volume reaction, whose rate per
unit volume is calculated as a rate coefficient K (1/s) times local nutri-
ent concentration C (mol/m?3). Integration of the rate per unit volume
over the lumen volume yields the overall absorption rate Q (mol/s).
Different ways were reported to quantify the rate coefficient, which
is presented below. Type Il models adopt a constant rate coefficient.
In Type IV models, the rate coefficient is a function of location, that is,
the distance from the pylorus. Type V models implement a rate coeffi-
cient with both spatial and temporal variations.

For models summarized in Table 1, the DCR model is the only
one that can capture different physical and chemical phenomena tak-
ing place in the lumen, which has the potential for offering a new
understanding of digestion and absorption. However, the current way
of formulating the absorption-related sink term as a volumetric reac-
tion without rigorous justification is difficult for readers to understand
the underlying physics. As a result, it becomes very confusing to see
different ways to quantify the rate coefficient (see different models
from Type Ill to Type V in Table 1). It remains a mystery that how the
complex geometry of the intestinal inner surface and the motility can

quantitatively affect mass transfer and absorption.

3 | MODELDEVELOPMENT

The intestine has been typically described as a circular PFR with a
smooth inner wall. The real system is more complicated. On one hand,
the inner surface of the intestinal wall is usually not smooth, having
hierarchical structures at multiple scales, such as circular folds, villi
and microvilli (see Figure 1A). Since nutrients are absorbed through
villous epithelium, the multiscale structures significantly enlarge the
absorption area. On the other hand, motility of the intestine includes

peristalsis, segmentation, and pendular movement. These movements
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FIGURE 1
consideration of the axial dimension only.

of the intestinal wall together with its hierarchical structure influence
fluid flow and mass transfer in the lumen. In the following text,
detailed derivations of a 1D distributed parameter DCR model for
characterizing mass transfer and absorption in the intestine with con-
sideration of the above-listed physiological features in 3D space are

presented.

3.1 | Mathematical description of 1D distributed
parameter model

For a 1D model shown in Figure 1B, it is assumed that the concentra-
tion is homogeneous in the radial and circumferential directions since
the absorption of nutrients through the complete axisymmetric intesti-
nal inner surface is predominantly determined by the concentration dis-
tribution along the axial direction. The mass conservation in the lumen
of the small intestine can be described by the 1D DCR equation:

dC(z,t) d*Clzt) IC(zt)
Gt Doz Vo SBY 1)

The initial condition is:

C(z,0)=0 (2)

The boundary conditions at two ends are respectively:

—+ C(zt) sma]lintestine _ Z
iabsoiptioni kK ! i i b

small intestine

T

Model simplification from 3D to 1D: (A) 3D view of the small intestine with morphology and motility, and (B) 1D plot with

~ Qemp(t)
c(o,t) = 2mell)
oC
E‘z:l =0 (3)

Here C(z,t) (mol/m°3) is the dynamic concentration of the nutrient
along the intestine. D (m?/s) and v(m/s) are the diffusivity of the
nutrient and the fluid flow velocity, respectively. Qemp(t) (mol/s)
denotes the gastric emptying rate, that is, the flow rate of nutrient
into the duodenum, whose value depends on dietary conditions in the
stomach.2%? F (m®/s) is the volume flow rate of liquid transported
through the intestinal tract. In most previous models, S(z,t)
(mol/[m3s]) is the sink term corresponding to the consumption of
nutrient due to reaction and/or absorption. In this work, the nutrient
molecules that can be directly absorbed (e.g., glucose) are modeled,
volumetric reaction is not considered. Our focus is the mathematical
characterization of the sink term S(z,t) due to absorption.

The absorption of nutrient into the blood is a multi-step process,
that is, the transport of nutrient molecules in the lumen to the intesti-
nal wall followed by their passage across the intestinal epithelium.
The latter step is usually assumed to be instantaneous, and the rate-
limiting step is the first one.'*%2 Therefore, the nutrient concentration
on the intestinal inner surface is assumed to be zero and the absorp-

tion flux J (mol/[m?s]) can be expressed as:

J(z,t) =k(z,t)(C, — 0) =k(z,t)Cp (4)
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where Cp, (mol/m?3) represents the bulk concentration, which is equal
to the inlet concentration; k(m/s) denotes the mass-transfer coeffi-
cient of the nutrient in the lumen and is affected by various factors,
for example, fluid property, intestinal structure and motility, ambient
flow, and so on.

As shown in Figure 1A, the total inner surface area of a cylindrical
segment of length Al is a2zRAl, and thus the total absorption rate Q,

(mol/s) of this segment becomes:

Qu(z.t) = a27RAU(z,t) = a27RAIK(2,£)Cp (5)

where R (m) is the radius of the small intestine and a (hereafter
referred to as area-increase ratio) gives the ratio by which the absorp-
tive area is increased due to intestinal inner surface structures, for
example, the villi. To convert the absorption rate (in [mol/s]) to the
volumetric consumption rate (in [mol/(m3s)]) that can be used as a
sink term in Equation (1), Equation (5) should be divided by the cavity
volume BrRAl:

S(zt) :%k(z,t)cb —KCy (6)

where g (hereafter referred to as volume-decrease ratio) denotes
the ratio between the cavity volume of a rough tube (with consid-
eration of inner surface structures) and that of a smooth tube. The
consumption rate coefficient K (s~%), which was used widely in pre-
vious studies (I1I-2,3* 111-3,32 11I-4,2® IV-1,3* V-1*¢ in Table 1), is

essentially:

K=2%k 7)

The derivation steps above show how to convert the absorption

rate on a 3D curved surface to the volumetric consumption rate used

 wransfer coeffye,
k C

‘I\‘»\" By

Consumption
rate coefficient

='6' ;2 Qﬂ\i 3

“decreage rati

Ambient conditions

FIGURE 2 A schematic diagram showing the relationship
between consumption rate coefficient and physiological properties.
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in a 1D DCR model. Equation (7) clarifies that the consumption rate
coefficient depends not only on the mass-transfer coefficient k, but
also on the geometrical features of the intestine, reflected by «, 5, and
R. It should also be pointed out that the change of intestinal inner sur-
face structure influences not only a and g, but also k. Thus, the
consumption rate will not simply be proportional to the absorption
area in most cases. Furthermore, in addition to geometric features,
motility of the intestine affects k as well, and other factors includ-
ing ambient flow velocity and fluid properties also have an influ-
ence on the value of this parameter. The intricated correlations are

given in Figure 2.

3.2 |
volume

Quantification of absorption area and lumen

There are various structures, including circular folds, villi, and micro-
villi, on the inner surface of the small intestine. These structures offer
greatly increased surface area for absorption. Meanwhile, they occupy
a portion of the lumen volume.

The influences of intestinal surface morphology on absorption
area and lumen volume can be quantified. Rat duodenum, which has
no circular folds, is selected as an example. Villi are projections on the
mucosa membrane that can enlarge the absorption area and reduce
cavity volume. As shown in Figure 3, a healthy villus is a fingerlike
structure, geometrically approximated by a hemisphere placed on the
top of a cylinder. Without considering the area of its base, the surface

area of a villus is:

2
xdy <hv 7%) +ﬂ—gv =rdyh, ifh, 2 dz—v (8)
where h,(m) and d,(m) are the length and the width of a villus, respec-
tively. The height of a damaged villus may be less than the radius of
its base. The geometry can then be approximated by a spherical cap
of height h, and base radius "2—V. The surface area of such a damaged
villus without considering its base becomes:

AN d
n<h§+4V> lfOshv<5v ©9)

Assuming that villi are uniformly distributed on the inner surface
of the duodenum, the effective absorptive area of a segment of length

Al becomes

2
27zRAlw,nd, h, + 27RAIl (1 - %wv> ifhy 2 % (10)

2 df ”de ; dy
2aRAlwyr | b+ | +27RAI 1=, | ifO<hy <= (11)
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healthy villi

density: w,

where @, (m™2) is the density of villi, that is, the number of villi per
unit base area, and the latter terms in the two expressions above con-
tain a deduction of the base area of villi. The area-increase ratio due

to villi can be calculated as:

2

20RAlw,xd,h, + 27RAI (1 - ”%va> ) )
_ dN L dy

_ 27RAl =1+ro.d, <hv 4> ifh, 2 >

2 d xd?

27RAlwy 7| by, +ZV +27RAI[ 1 7TV'HV )
— 2 . av

27RAl =1+zohy ifOsh <3

(12)
Similarly, the volume of a healthy villus is equal to the addition of
the volume of a hemisphere and a cylinder:

2

zd>  nd? d)\ =d’h, xdd _  _d,
ﬁ*T(’” >— 4 24 Thezy (13)

A damaged villus geometrically approximated as a spherical cap

has a volume of:

Lan, <§d3+h3) ifo<h, <% (14)

The total volume of villi in a segment of length Al can be obtained
by multiplying it by the number of villi:

2RAlw, edfhv—%df) ithZ% (15)
2RAlo, Gdfhwr%hf) ifosh, <% (16)

Then the volumetric ratio of the cavity of a rough intestinal tract

to a smooth one can be quantified as:

damaged villi o
density: w, 3

FIGURE 3 Multiscale structure of a
rat duodenum segment modeled in
this work.
n h,
Sy

7R2Al— 72RAlw, (%d&hv - %df)

ﬂw‘,ds d\ . d,
RNl =1- R <hv—z> lfhvzi

h= 1 1
2012 1 1.3
aR“Al - RA’wv(4dvhv+3hv> _1_7m)vhv 1d2+zh2 ifO<h, < dy
ZR2AI - 2R \2™v "3 v
(17)
3.3 | Quantification of mass transfer and

consumption rate coefficients

The mass transfer behavior in the small intestine can be numerically
investigated in detail by a CFD model. Herein a multi-physics model,
which takes into account the villi in the rat duodenum, is taken as an
example to show how to obtain the mass-transfer coefficient in the
1D DCR model. A detailed description of this model can be found in
our previous publication.'?

In this 2D axisymmetric system, the mass-transfer coefficient
within the lumen can be obtained by rearranging Equation (4).

J
k=g (18)

where J (mol/[m?s]) represents the flux of nutrient absorbed through
the intestinal wall, that is, along the villi surface.

As reported in our previous studies,*??* the mass-transfer
coefficient k varies along the villi surface and changes with time. Its
average values can be derived for the sink term in the 1D DCR model.

The spatial average over the rough boundary can be calculated as:

(19)

Here 6§ is used to represent location, which gives distance along

the rough boundary from the starting point of absorption.
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TABLE 2 Parameter values for a rat duodenum used in this
article.
Parameter Value References
Radius of the duodenum R 3 mm 40
Flow velocity v 0-2x10%m/s 41

Pendular activity frequency  f 0,0.15-1.0s7* 42-44

Length of a villus h, 0-0.9 mm 45-49
Width of a villus dy, 0.156 mm 50
Density of villi o,  9mm2 51

The temporal average of k over a period of motility is:

T7
j Kt

o (20)

k=

where £ (m) is the total length of the absorptive rough boundary and
T (s) denotes the duration of a pendular activity.
Substituting the average mass-transfer coefficient into
Equation (7) yields:
_ 2ay

K=25 (21)

This method can help quantitively reveal the impacts of diverse
physiological factors, such as villi length, motility, and ambient flow
velocity, on mass transfer and absorption. Furthermore, to incorporate
these influences explored by CFD simulation into the 1D DCR model,
an empirical function of the mass-transfer coefficient depending on

physiological parameters has also been derived in this work.

3.4 | Summary of differences between the new
model and previous ones

Among the models reviewed in Table 1, models 11-1,%° 11-2,3 111-3,32
I-4,%% and V-2%7 are selected as control group models, since they
essentially have a similar form of the absorption model (i.e., the sink
term in the DCR equation), that is, the product of the mass-transfer
coefficient k and concentration C multiplied by a coefficient ¢.

S=¢pkC (22)

where the coefficient ¢ is simply 1 (1/m) for models 11I-2 and Ill-4;
model Ill-1 considers intestinal lumen radius R in ¢ (i.e., (0:%); models
11I-3 and V-2 further take the increase of absorption area due to intes-
tinal inner surface structure into account by using a constant ratio «,
which gives (7):273. Through rigorous derivation, ¢ in our new model
becomes (7):%;. The new model can capture quantitatively the influ-
ence of the intestinal microstructure on the increase of absorption

area and the decrease of lumen volume, while the control group

AI?BIl:'J R NALJ9;f15

models either neglected this influence or adopted a constant area
increase ratio. Furthermore, the new one can capture the relationship
between the mass-transfer coefficient and key parameters that char-
acterize representative physiological features of the intestine by using
CFD simulations, in silico experimental design and data fitting
methods, while control group models either conducted expensive
experiments or adopted an empirical relationship for plug flow in a
smooth tube that ignores the effect of villi on fluid flow and mass
transfer. With these advantages, the new model will be more power-
ful in reliable prediction of intestinal absorption rate for a variety of
living beings with specific physiological features, and will help save

tremendous effort on expensive in vivo experiments.

4 | RESULTS AND DISCUSSION

The rat duodenum featuring pendular motility is selected to demon-
strate the efficacy of the introduced methodology. The related physi-
ological parameters are given in Table 2.

4.1 | Base case study

A base case with settings of villi length h, = 0.5 mm, pendular fre-

~1 and flow velocity v=1x 10"*m/s has been

quency f=0.6s
selected to demonstrate the procedure to obtain the consumption
rate coefficient K. According to Equations (12) and (17), the area-
increase ratio o and volume-decrease ratio  can be calculated,
respectively as 3.03 and 0.95.

By resorting to the 2D axisymmetric rat duodenum model, the
absorptive flux J can be quantified. Figure 4A shows the spatial distri-
butions of J along the rough surface of the intestine at two represen-
tative time instants (i.e., T/2 and T) during one cycle of the pendular
movement. The nonuniform distribution of absorption flux indicates
the nonuniform mass transfer behavior along the villi occupied intesti-
nal surface (see insets in Figure 4A). According to Equation (18), mass-
transfer coefficient k demonstrates the same distribution (see the
right y-axis in Figure 4A). Maximum k can be identified at the top of
the villi and the intervillous space has a k value close to zero. This
observation implied that in this special case, nutrients can hardly reach
the bottom of the villi.

The distribution of k evolves with time as well. Figure 4B shows
the spatial average of k quantified by Equation (19) as a function of
time. At T/2, maximum k can be identified. The temporal average in a
pendular movement cycle k can then be computed using Equation (20),
which gives 2.61 x 10~" m/s. Finally, Equation (21) offers the con-

sumption rate coefficient K, that is, 5.76 x 10~%s 2.

4.2 | Theinfluence of morphology

As one most important morphological parameter, the length of a villus

was selected to explore its influence on mass transfer and absorption
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(A) FIGURE 4 Distributions of absorptive
- flux and mass-transfer coefficient during
@ one cycle of the pendular movement.

NE (A) absorptive flux and mass-transfer
% coefficient distributions at T/2 and T, and
g (B) spatial average mass-transfer
?3 coefficient as a function of time.
'; T = 1.67 s in this case.
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FIGURE 6 Concentration contours and mass-transfer coefficient distributions at T/2 when villi length is 0.1 mm (A) and 0.9 mm (B).
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FIGURE 7 Influence of pendular frequency on the average mass-

transfer coefficient and the consumption rate coefficient.

in the intestine. It was reported that the normal length of rat villi var-
ies among individuals from 0.35 to 0.67 mm.**"*” Some illnesses
(e.g., sepsis, cholera, and noninfectious inflammation), however, can
lead to shortened villi with deteriorated absorptive capacity*® or
extended villi with widened intercellular space.*’ Thus, the villi length
explored in this work ranges from O to 0.9 mm.

It is interesting to find out that the consumption rate coefficient
K is not a monotonic function of the villi length h,, which indicates
that increasing villi length may not always enhance nutrient absorp-
tion. As shown in Figure 5A, when the villi length is less than 0.2 mm,
shorter villi offer a higher K value, that is, enhanced nutrient absorp-
tion. For the systems with villi greater than 0.2 mm, however, longer
villi are preferred for better nutrient absorption.

According to Equations (12) and (17), both the area-increase ratio
a and the volume-decrease ratio # are linear functions of the villi
length when h, 2 d,/2. Figure 5B shows that increasing the length of
villi leads to the increase of absorption area (and a) and the decrease
of the cavity volume (and p). Evidently, the case of h, = O corresponds
to an intestine with a smooth inner surface, where both « and f are
1. Equation (21) tells us both the increase of « and the decrease of
contribute positively to the consumption rate enhancement (i.e., the
increase of K).

As indicated earlier in Figure 2, in addition to the geometrical
influences on K (reflected by a and pg), varying villi length will also
influence the mass transfer behavior (reflected by the average mass-
transfer coefficient E). Evidenced by the data in Figure 5A, k changes
with h,. It seems counter-intuitive that longer villi inhibit mass transfer
in the intestine (see the decreasing k with the increase of villi length
in Figure 5A). To understand this phenomenon, the nutrient concen-
tration distribution in the lumen and the mass-transfer coefficient dis-
tribution along the intestinal rough surface at T/2 for the cases with
0.1 and 0.9 mm villi are respectively plotted in Figure 6A,B. Longer villi
can indeed lead to higher peak values of the mass-transfer coefficient
(see the greater nutrient concentration gradient and higher k values
close to the top part of 0.9 mm villi in Figure 6). It implies that the
pendular movement of longer villi exerts a greater impact on the sur-
rounding flow field and enhances mixing in the central region of the
lumen, promoting the absorption at the top of villi. However, intervil-
lous spaces increase with the increase of villi length (see the compari-
son between Figure 6A1,B1). Villi are closely distributed on the
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intestinal inner surface and stand at a right angle to the direction of
bulk flow through the intestinal lumen. The mixing of the fluid in the
intervillous space, particularly the bottom region, and hence the mass
transfer could be quite limited.>? The relatively stagnant intervillous
space expands as the villous length increases. The enlarged plots in
Figure 6A2,B2 show that although a 0.9 mm villus has a higher k value
at its top part, k drastically decreases to around O along the villous
body surface and remains to be negligible in the intervillous region. It
is not the case for the system with 0.1 mm villi, where nutrients can
be transferred to the intervillous region and be absorbed by the intes-
tinal surface between two adjacent villi (see the nonzero k between
two Vvilli in Figure 6A2). As a result, longer villi lead to smaller k
(Figure 5A). This comparison also tells us that although the intestine
with longer villi offers a larger total surface area, the effective surface
for absorption, however, is actually smaller as compared with the
shorter villi system due to the limitation on mass transfer in the inter-
villous space.

Now the mechanisms for the nonmonotonic relationship between
K and h, can be explained. K is influenced by both the geometric fac-
tor (@ and p) and the mass transfer behavior (E) (see Equation 21).
Increasing villi length leads to the increase of o/, but the decrease of
k. When the villi length is less than 0.2 mm, the influence of mass
transfer on K is dominant. But when villi are longer than 0.2 mm, the
geometric influence on K (caused by varying villi length) becomes
dominant instead.

4.3 | The influence of motility

The pendular movement is selected to explore motility influence on
mass transfer and absorption. The frequency of longitudinal contrac-
tions normally occurred along the rat duodenum has been measured
to be 0.56-0.64 s~ by the spatiotemporal mapping technology.*?
However, the longitudinal movement in the rat intestine is likely to be
affected by various factors, for example, acceleration by atropine®®
and inhibition by tetrodotoxin.** The frequency of pendular move-
ment investigated in this work ranges from 0.15 to 0.9 s~ 1.

As the size of villi does not change in this set of experiments
(i.e., 0.5 mm), the constant values of a and g are respectively 3.03 and
0.95. Figure 7 shows the average mass-transfer coefficient and con-
sumption rate coefficient against pendular frequency. Since the ratio
of these two coefficients remains unchanged, the two curves overlap
with each other (see Equation 21).

As shown in Figure 7, when the frequency is O (i.e., without villi
movement), the mass-transfer coefficient is lower than the cases with
villi movements. It suggests that the villi movement promotes mass
transfer, which is understandable because the movement of villi
enhances mixing of fluids adjacent to the intestinal inner wall. When

the frequency is higher than 0.15s7!

, a higher frequency of move-
ment leads to deteriorated mass transfer and hence lower absorption
rate. This finding seems counter-intuitive as well. Pendular movement
is a periodic lengthening and shortening of intestinal muscles in the

axial direction. A detailed description and characterization method for
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(A)

FIGURE 8 Comparison of two cases

at pendular frequencies of 0.2 s™* and
1.0 s~ (A) cross-sectional view of the rat
duodenum, (B) evolution of the length of
two adjacent sections that experience

B
(B) 12 ; — lengthening and shortening, respectively
— 20,02 S_l in one cycle, and (C) distribution of mass-
— — 21,105 transfer coefficient at T/2.
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the movement can be found in our previous publication.*? The veloc- Model R1: k =01 exp(—0sh, —Osf +04v) + 05 (24)
ity of the longitudinal movement of a villus at one position x is defined
by a sinusoidal function: Model R2: k = 01 (hy +62) % exp(—0af ) (v + 05)% (25)
20 . moN . = 0o, P
Vo(x,t) == Apsin (Zx sin(2xft) (23) Model R3: k =0 (h, + 02) % (v + 05" (26)
Model R4 :k = 01 (h, +02) % (f+04) % (v +05)" (27)

where I(m) is the initial length of a section of the intestine (at a relaxed
state in Figure 8A). This equation tells us that pendular frequency
f does not affect velocity magnitude. Moving of villi at a higher fre-
quency does not mean moving of villi at a higher velocity. Instead, a
system of higher f offers less time in one cycle for the muscle to con-
tract or expand, leading respectively to less intense shrinkage or
enlargement of the intervillous space (Figure 8B). The mass transfer
becomes less intense for the system at a higher frequency (Figure 8C).

44 | Empirical relationship for mass-transfer
coefficient

As shown in Figure 2, mass-transfer coefficient is influenced by mor-
phology, mobility, and ambient conditions. The previous two sections
show how we can use CFD simulation to quantify the impact of villi
length h, and pendular frequency f on the mass-transfer coefficient k.
CFD simulations are time-consuming, which motivates us to obtain an
empirical relationship between k and important independent variables
(i.e., hy, f, and ambient flow velocity v). A total number of 184 in silico
experiments were designed, which include 180 (6 x 6 x 5) ones with
experimental conditions respectively taken from the design spaces
h,€l0, 0.1, 0.3, 0.5, 0.7, 0.9] mm, fe[0.15, 0.2, 0.4, 0.6, 0.8, 1.0] s~ %,
and vel0, 0.5, 1, 1.5, 2] x 10~*m/s. Four additional cases were also
added to take care of short damaged villi with settings of [h,, f, v]=
[d,/8, 0.657, 1x10™*m/s], [2d,/8, 0.657%, 1 x10~*m/s], [3d,/8,
0.65°%,1x 10 *m/s], and [4d,/8,0.65 %, 1 x 10~*m/s]. All 184 simu-
lation results have been plotted as experimental data points in
Figure 9.

Four regression models were proposed to fit the 184 data points:

The principle of least squares was utilized to estimate param-
eter values (i.e., 6;), which means the summation of the squared devi-
ations (between experimental data and regression model predictions)
was minimized. The identified optimal parameter values for each
model are listed below. For model R1, 8;=3.73 x 1077, 6,=2628,
62=0.044, 04=5919, s=5.16 x 10~8; for model R2: 9;=1.74 x 108,
02,=1.62 x 107, 93=0.83, 0,=0.046, 95=1.09 x 10~8, 0,=0.35; for
model R3: 6;=1.17 x 1078, 6,=1.83x 107, 63=0.89, 6,=0.021,
05=1.37 x 1078,  9,=0.36; for model R4 6;=1.77 %1075
0,=1.57 x 1074, 6:=0.82, 04=2.54x 1077, 65s=0.022, 04=1.05
x 1078, 9;=0.35.

. 2.0x10* qn/s
o 1.5x10% m/s
o 1.0x10* m/s
< 5.0x10° m/s
« 0 m/s

oz

%, ()™ %

FIGURE 9 Evaluation of the proposed empirical function for the
average mass-transfer coefficient. Dots are data from simulations.
Surfaces are plotted using the derived empirical function.
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After identification of optimal values for ;, error analyses were
carried out to evaluate and compare the regression performance of
these four models. In addition to mean absolute error (MAE) and root
mean squared error (RMSE), two other metrics were also evaluated,
that is, R-squared and adjusted R-squared. It was found that regres-
sion model R3 can offer the lowest values of MAE (3.82 x 108 m/s)
and RMSE (3.94 x 1078m/s), and the highest values of R-squared
(0.9917) and Adjusted R-squared (0.9914). The value of Adjusted R-
squared can reach up to 0.9914, indicating a very satisfactory fitting
performance. Thus, model R3 was finally selected as the empirical

equation for k:

= -0.89 0.36
k=1.17x10"8 (hv +1.83x 10*4) f-o021 (v+ 1.37 x 10*8)
(28)

with hy, f and v, respectively in m, s~%, and m/s. Figure 9 shows model
predictions as compared with the experimental data.

Figure 9 shows that higher ambient flow velocity promotes mass
transfer (i.e., higher E), which is understandable. Equation (28) can
then be used readily in the sink term (Equation 6) of the 1D DCR
model to describe nutrient absorption in a rat duodenum featuring villi

and pendular movement.

5 | CONCLUSION

Aiming at a physically-sound and computationally-efficient absorption
model that can be used in a 1D DCR model, which governs mass con-
servation in the small intestine, this work critically reviewed existing
efforts in this area and introduced a generic procedure for model deri-
vation. By resorting to our derivation, the influence of 3D intestinal
surface structure on absorption area and cavity volume can be rigor-
ously quantified. The intricate correlations between the consumption
rate coefficient and three determinant factors (i.e., morphology, motil-
ity, and ambient conditions) can be clarified.

This work sheds new light on our understanding of mass transfer
and absorption in the small intestine. Rat duodenum which possesses
a villous structure and pendular movement was selected as an exam-
ple to demonstrate the power of this approach. It was found that villi
length influences nutrient absorption by two mechanisms, that is, geo-
metric impact and mass transfer impact. The geometric impact is dom-
inant for cases with longer villi and the mass transfer impact becomes
dominant for shorter villi systems. Results also show that a higher fre-
qguency of pendular movement leads to inhibited mass transfer and
hence deteriorated nutrient absorption, which is mainly due to less
intense volume change of intervillous space in such systems. Further-
more, an empirical correction between the consumption rate coeffi-
cient and three determinant factors has been obtained, which enables
a fast prediction of absorption behavior in the rat duodenum. Never-
theless, all these findings have to be experimentally validated in the
future when carrying out well-designed ex vivo or even in vivo intesti-

nal absorption experiments becomes possible. The current ex vivo

AICBE R AL 1201

53-55 heed to be improved to realize a better control of

techniques
physiological features and a reliable measurement of spatially-
distributed absorption data.

Note that the specific model (with the empirical relationship)
derived here is just applicable to the rat duodenum featuring pendular
movement. However, the idea and model derivation procedure are
generic. In the future, following our approach, one can capture the
influences of other physiological features (e.g., circular folds, segmen-
tation movement, etc.). Beyond mass transfer phenomena, the chemi-
cal reactions during food digestion in the small intestine can also be
taken into account in the future. Once coupled with an established
glucose-insulin regulation model, the current model can be used to
predict the blood glucose level. After experimental validation, it
should be able to facilitate the development of functional foods and
drugs for not only healthy adults but also specific groups of people
with special physiological features and nutritional needs, such as

infants, elderly, and patients with villous atrophy.
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