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Recent trend in consumer preferences toward healthy and on-demand-to-make items has mandated food man-
ufacturers to seek more efficient production processes in order to make their businesses sustainable. For powder
producers in particular, the business models are drifting from ‘ready-made’ toward on-the-go items, thus requir-
ing an urgent attention. Here, we present a long short-term memory (LSTM) model for forecasting drying kinetics
histories of lactose, low-fat and high fat milk droplet solutions; covering a wide gas-and-material spectrum, uti-
lizing only their initial conditions. Within the examined range, results show that the forecast lactose temperature
and mass drying curves have accuracies within 0.9987 and 0.9841 respectively; that improve in the order of
training-material-blend/training-data-rows as thus: lactose/3612, lactose-fat/4515, lactose-protein/5317 and
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lactose-fat-protein/6220. This indicates the impact of data size on the model accuracy and generalization of the
trained LSTM network. For low/high fat milk (20-30% total solid), accuracy margins are within 0.0179 and
0.0655 in the range of 1-8 combined test samples. Beyond 8 samples up to 20 combined scenarios, accuracies
are capped at 0.9749 for temperature and 0.9000 for mass profiles. Since only the initial conditions are required
by the developed model to provide forecasting, this removes cost and time barriers inherent in traditional ap-
proaches during new product launch. Future application of deep learning models would integrate the presented

LSTM network to consider actual characteristics of material mixing such as colour, texture and taste.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

By natural instinct, humans understand that foods will soon start to
smell and attract microbes if they are wet or left open for a long time.
Therefore, ancient man had to improvise by harnessing the use of nature
(i.e., ice and sun), salt and fire for preserving meat, fish and other forms
of food items [1-3]. Consequent upon the advent of electricity and ad-
vancement in drying technology, the narrative soon changed from
what used to be the usual practice to automated drying. Although the
old methods of drying are still much alive, their scale of applications is
limited and are unable to cope with the expanding food stuffs that
must be preserved for the consumption needs of the increasing popula-
tion. Nowadays, drying techniques such as freeze drying, spray drying,
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super-critical drying, and drum drying are frequently employed to
cater for several tons of food dehydration annually. Detailed informa-
tion about each drying method can be found elsewhere [4-7]. Among
the drying techniques, spray, freeze and drum drying appear to be the
most prominent due to a high demand for powders and higher turn-
over in ton of dry items per annum compared to other drying tech-
niques. Milk, fruits and vegetables are in the top chart of powders in
high demand, with the global market share of about USD 31 billion
worth of milk powders in 2020. This is expected to reach USD 42 billion
by 2025, growing at a compound annual growth rate (CAGR) of 4.25%
[8]. Similarly, the global market value of fruit powders is expected at
USD 83 billion by the end of 2030 growing at a CAGR of ~7% [9]. The in-
creased awareness for healthy products coupled with changing con-
sumer preferences have all made commercialization of powders a
lucrative business. Despite the growing demand, manufacturers are
still obligated to deliver powders that can perform well both on the
line and offline. This requires series of analyses on droplet drying for
correct reconciliation of the material drying kinetics to the process


http://crossmark.crossref.org/dialog/?doi=10.1016/j.powtec.2022.117392&domain=pdf
https://doi.org/10.1016/j.powtec.2022.117392
mailto:oageorge@unilag.edu.ng
mailto:abdolreza.kharaghani@ovgu.de
https://doi.org/10.1016/j.powtec.2022.117392
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/powtec

0.A. George, A. Putranto, J. Xiao et al.

variables. Thus, thorough understanding of droplet drying rate curve is a
prerequisite for manufacturing high-grade powders. By definition, dry-
ing rate curve is a unique identity that characterizes material responses
to moisture removal and its functionalities during post drying opera-
tion. It is particularly important in the food and pharmaceutical indus-
tries of dry items as it influences the mode of storage, packaging
material and quality of the final product for market acceptability. Till
date, four main set-ups have been used to investigate droplet drying
histories for a wide array of products, namely single droplet drying by
glass suspension, acoustic levitator, freefall experiment and droplet de-
posited on a heated substrate. To a large extent, these apparatuses have
been successful at studying droplet drying kinetics (i.e., temperature,
mass and size profiles) for milk, fruits and vegetables powders or
other forms of powders. The experimental data have subsequently
been used in formulating drying models categorized as physics-based
and machine learning (ML) models.

The physics-based models are based on the conservation laws, and
are commonly employed in the analyses of droplet drying. A well de-
tailed review on the four main classes of physics-based drying models
applicable to various types of solution droplets can be found in Langrish
and Kockel [10], Chen and Lin [11], Mezhericher et al. [12], Dalmaz et al.
[13], Kuts et al. [14], Nesi¢ and Vodnik [15], among others. The physics-
based techniques, though reliable at capturing the engineering ap-
proach to drying in great detail, are not without their own shortcom-
ings. In recent time, there have been emergence of new trends in
consumer preferences and the demand for fast paced food powders
has skyrocketed. As general awareness on health increases, there is a
rise in demand for healthy foods. However, consumers demand for
healthy foods is unique and of wide variation in each product constitu-
ent. Powder formulation and development for such a scenario is not
practicable with the traditional powder processing method since it re-
quires distinct drying kinetics curves which cannot be extrapolated
with any known physics-based approach. As an additional burden,
when a blend of two or more dissimilar materials is desired, the tradi-
tional kinetics measurements approach is constrained by time and the
associated material complexities. The pressure for timely product deliv-
ery placed on powder producers and the impact on revenues necessi-
tate the need for the adoption of intelligent digital platform that can
reliably predict in real-time the drying curves of a wide range of powder
formulations.

There exists a large body of studies on intelligent drying systems
which have been addressed to tackle the shortcomings of the
physics-based techniques [16]. Notable mention among these studies
includes: (1) Jinescu and Lavri¢ [17] for sebacic acid powder;
(2) Kwapinska and Zbicinski [18] for Maltodextrin, cacao, and deter-
gent solutions; (3) Chegini et al. [19] for orange juice powder;
(4) Mihajlovic et al. [20] for naratriptan/ maltodextrin/lactose;
(5) Keshani et al. [21] for lactose solution; (6) Vieira et al. [22] for
milk powder; (7) Kamifiski et al. [22] for sliced potatoes, green peas
and silica gel saturated with ascorbic acid. An attempt for providing
a generalized model for drying was made by Hussain et al. [23].
While we acknowledge the contributions of the past authors on the
subject matter; from our observation, majority of the existing findings
are aimed at introducing new ML techniques for the purpose of
achieving a high-fidelity model. No doubt, R? score is a major metric
used in determining the accuracy of a model. Notwithstanding, a mar-
ginal improvement in accuracy relative to the established threshold
level may not constitute monumental development in the perfor-
mance or otherwise of a model. Other factors that may be beneficial
to a model include reproducibility, level of generalization, data
dynamics/variation, model run-time, compatibility with modern soft-
ware and ease of operation, etc. In addition, an upward and signifi-
cantly varying trend has been projected for the consumption of food
powders in the coming years [8,9]. And it is feared that the food man-
ufacturers may go bankrupt if they do not respond promptly to the
new market dynamics. In our opinion, a method that aims to optimize
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powder production at the least time expense irrespective of market
fluctuations would have a positive influence on revenue. Yet, there is
hardly any studies till date which has sought to quicken powder pro-
cessing cycle by combining different material components for the pur-
pose of predicting in real-time the drying kinetics of entirely new
products. This repeatedly poses a huge drawback, and has remained
a major reason as to why food digitalization is yet a matured industrial
process. For this reason, a generic droplet drying model is herein pro-
posed. Although, a generic model can be built using regression tech-
niques, MLP/RNN, or other ML techniques, this study introduces the
use of a special RNN, called Long-Short-Term-Memory (LSTM). It is
well established that RNNs are particularly suited for input-output
data with significant memory such as time series, i.e., an ordered se-
quence of the values of a variable measured in consistent, discrete
time intervals [24]. For very long time series however, RNNs usually
suffer from the vanishing gradient problem when fitting the training
parameters. In contrast, LSTM is distinguished for using a gating ap-
proach to greatly minimize the vanishing gradient problem and
achieve good performance irrespective of the length of the time series.
Hence, it has been deemed appropriate to forecast the time evolution
of liquid-solid scenario occurring in sequence [25].

The powder production life-cycle for two major drying kinetics
models' deployment is shown in Fig. 1, while comparison between the
current work and previously available studies is summarized in
Table 1. One key attribute of this initiative is that the method does not
always rely on measured material drying kinetics data to provide pre-
dictions. That is, reliable and/or ‘finger-tip’ forecasting of materials dry-
ing curves of any milk composition or material of interest is still possible
even when the actual drying kinetics data are not known. Wide material
spectra/constituents of lactose, fat and protein drying kinetics data have
been combined as the training materials while lactose, high-fat and
low-fat milk data represent the testing materials. Several combinations
of window size, neurons and hidden layers were simulated to arrive at
the optimum model performance. Apart from generalizing well, the
model results also show that it is reliable at forecasting material drying
rate history given only the initial conditions. This confers on LSTM net-
work the potential for use as a model for on-demand real-time powder
development.

2. Materials
2.1. Data gathering and preparation

Since this work is intended to be consumer-driven, it aims at provid-
ing quick response to varying demand for food powders. Under an ideal
situation, the materials inventory should be done at the manufacturers-
consumers interface (refer to Stage 1 in Fig. 1). In Stage 2, drying kinet-
ics experiments of the ordered products are performed. In this stage,
fresh experiments are usually a prerequisite in the formulation of
physics-based approaches, and only under a rare scenario is new exper-
iment required to develop a ML model. For this reason, Stage 2 has been
skipped in the current study. Lactose, fat, protein, skim milk and whole
milk materials drying kinetics data utilized in building LSTM network in
this work have been sourced from the literature. Also, due to the diffi-
culty in obtaining material drying history curves from large-scale drying
operations (e.g., spray drying), SDD experiments are usually employed
to collect data, which are then modelled for industrial powder process-
ing. Various experimental options are available to generate SDD kinetics
data. The materials drying kinetics data used in our analyses were ob-
tained from the SDD experiments conducted with a glass filament sus-
pension. Our readers are referred to [11,26-31], where materials
drying kinetics data for this work have been extracted. Two categories
of data were utilized for this study namely; (1) single material compo-
nent (i.e., lactose, fat and protein) data for the purpose of training and
testing and (2) multi-material components (i.e., whole or high-fat
milk and skim or low-fat milk) data, which served as testing only. The
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Fig. 1. Commercial powder production life-cycle with material drying kinetics models deployed via physics-based and machine learning techniques. In Stage 1, producers' interface with
consumers to receive material orders. In Stage 2, drying kinetics data for ordered materials are obtained either through abundant source in the literature or in rare cases, by conducting
fresh experimental analyses. Glass filament suspension, acoustic levitation, free fall method and droplet deposited on horizontal surfaces are typical experimental set-ups for single droplet
drying. In Stage 3, the material drying kinetics data profiles are used to formulate relevant drying models. In Stage 4, the models are to guide in large scale production, ensuring product

quality and yield are unaffected during the entire drying operation.

drying air temperature varied from 67.5 °C to 110 °C. Air velocity of components used for this study including their initial conditions. It
0.45-0.75 m/s, size in the range 1.24-2 mm and relative humidity of should be noted however that two protein qualities; that is, whey pro-
1-2% have been considered. Others include the initial solid composition tein concentrate (WPC) and whey protein isolate (WPI) were used for
in the range 10-30% and initial droplet temperature of ~22 °C. Pressure our analyses. In addition, both cream and the proteins contain traces
was kept at 1 atm. Table 2 gives the summary of the three material of other materials, such as lactose, moisture and ash [30].

Table 1

Summary of the existing models in comparison with the current study. The existing methods comprise of physics-based models (e.g., CDRC, reaction engineering approach (REA), diffusion
and receding interface-based models) and machine learning models (e.g., regression models and artificial neural networks such as multilayer perceptron and recurrent neural networks).
The current approach is a special kind of recurrent neural network, called Long Short-Term Memory (LSTM). Material: Precursor solution e.g., Lactose, Protein or Fat solution.

Existing models Drying kinetics

Temperature

Time (s)

Mass/size
>

Time (s)
(a) Physics-based Models Individual for Lactose, Protein or Fat only. Drying kinetics
CDRC, REA, diffusion and models for material mixtures only possible via fresh
receding interface-based models experimental analyses.
(b) ML Models Individually for Lactose, Protein or Fat only
Regression models, ANN models,
e.g., MLP, RNN
Current Approach/Solution Individual product and mixture of product possible,
Deep recurrent neural network e.g., Lactose, Protein, Fat or Lactose-Fat, Lactose-Protein and
models, e.g., LSTM Lactose-Fat-Protein possible.

Summary/challenges/solutions if any

Narrow validity window. Heavy reliant on experimental testing to obtain
drying kinetics. Hence, physics-based models do not support on-the-go
product for real-time powder processing and control.

Cover large validity window. However, ML models are not yet extended to
combine two or more dissimilar materials to predict drying kinetics for single
or mixture products.

Cover large validity window. One or more individual materials can be
combined to predict drying kinetics of single or mixture of products present
in the training set, thus allowing for generalization. Deep recurrent neural
network models can handle varying and fast-paced consumers need, and
easily deplored for on-the-go/real-time powder processing and control.
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Table 2

Conditions of the material components used to develop LSTM network. Input features correspond to the material compositions (i.e., lactose, protein and fat), air temperature, droplet initial
size, gas velocity, gas relative humidity, time, pressure and droplet initial temperature; while droplet temperature and mass drying profiles represent the output features. Both pressure
and droplet initial temperature are intentionally left out in the list of input features. Although droplet size profile is among the three-droplet drying kinetics, it has been excluded in the
current study. Calculation of size evolution can be obtained using the mass-density relationship. The test cases are shown in the lower part of the table; with low/high fat milk comprising

of lactose, protein and fat.

Input features

Output features

Training cases

Material Air Composition  Size Velocity Relative Time Droplet temperature (°C) Droplet mass (mg)
temperature (%) (mm) (m/s) humidity (s)
(°0) (%)

Lactose 67.5-110 10, 20 1.24-1.79 045, 1 0-400
0.75

Fat 67.5-110 30 1.45 0.45 1 0-400

WPC 67.5-110 30 1.45 0.45 1 0-400

WPI 65-85 9.3 2 0.5 2 0-400

High-Fat 67.5-110 20,30 1.24-1.79 045, 1 0-400

milk 0.75

Low-Fat milk ~ 67.5-110 20,30 1.24-1.79 045, 1 0-400 -

0.75 > . g
Time (5) Time (s)

Test cases

Lactose 110 10 1.79 0.75 1 0-400

High-Fat 67.5-110 20,30 1.24-1.79 045, 1 0-400

milk 0.75

Low-Fat milk ~ 67.5-110 20,30 1.24-1.79 045, 1 0-400

0.75 > >
Time (s) Time (s)
3. Methods was repeated several times until all time bounds are captured. As shown

3.1. LSTM architecture

In this study, LSTM network was trained to predict one-step ahead
temperature and mass drying profiles of lactose, skim milk and whole
milk for different compositions of these materials and under different
gas input conditions. Due to the nature of the employed drying kinetics
data, i.e., constant input features for time-dependent and varied tem-
perature and mass drying profiles of the output features, LSTM training

in Fig. 2, the first-time step, i.e., LTM® and STM© input vectors are es-
sentially the same or equal zero since there are no long-term or short-
term kinetics data memory information to be carried over at the initial
time. However, for a specified number of window size at some advanced
training times or data points, there always exist long-term and short-
term dependencies. This special feature of utilizing network of layers
to learn long-term dependencies while also efficient with short-term
operation distinguishes LSTM from other recurrent neural networks.
The experimented window size utilized for this study ranged from 1

LIW(O), Memo! Llw(l.) Memory — — LTM(t_Z) Memo: ij(t:l)
a)_P STM(®  cell STM(I) cell STM(t—Z) cell STMED
tE(D t E(2) t E(t=1)
= mmm e e e e e e e - = - -
| P —m e e e e e e = v :
_____ II1 |
LTME D L) ) —. - @ : L TM®
X -
: I: : reeTTT ?_ Tl : :
(b) : :: :: 11 * : 1 4 :
T | t tanh
(| |
'l o ' o tanh .
| |
stme-v_y - 4o t | ¥ s ®
] L ____ IO e STM
|
|

Fig. 2. LSTM architecture (a) Starting point for a network of repeated memory cell. (b) Enlarged view of the input vectors LTM‘~" and STM“~" and current event matrix £ representing
stages [-IV. tanh is the hyperbolic tangent function, ois the sigmoid activation function. The LTM and STM( input vectors equal zero at the first-time step. ® and ® represent the element
wise multiplication operator and matrix addition operator for long term memory output respectively.

4
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to 51 in step of 10 (further information on window size will be provided
in the results and discussion section). At each time step, the memory
cell is fed with the previous cell state or long-term memory (LTMS 1)
vector, previous hidden layer or short-term memory (STM‘~") vector
and a matrix of current events (E). The long-term memory is regarded
as those parameter features, constant for the entire time, such as the
input conditions of material compositions, air temperature, droplet ini-
tial size, gas velocity, gas relative humidity, pressure and droplet initial
temperature. Short-term memory can be depicted by the output fea-
tures such as changing temperature and mass drying profiles. Current
events refer to the combination of input and output features of temper-
ature and mass data points for the next LSTM input. The input vectors
and the current event matrix interact through series of network gates
in the memory cell to update the output vectors or input vectors for
the next memory cell (see I-IV in Fig. 2). Representative materials and
gas input conditions of defined window size were simultaneously
passed through the forget gate (Stage I), the learn gate (Stage II), the re-
member gate (Stage III) and the use gate (Stage IV) to output the next
data points of droplet temperature and mass conditions. The stage I of
the training process is given by

{f<g> = ()'(Wf/STM x SIM*™Y 4wy x B9 + bf) )

Foitpue = LTM N @f

where j@ is the forget gate; b is the bias; w is the weight matrix map-
ping STM~Yand E to the sigmoid function 0. As can be seen, x and
+ (i.e., matrix multiplication and matrix addition operators) first act
on STM“~ and E via a sigmoid function to produce f&. In the second
expression of Eq.1, LTM{~ " is then combined with f using the ele-
ment wise multiplication operator, ® to produce the forget gate output.
The sigmoid function assumes values between 0 and 1. A value of 0 im-
plies that the memory cell caries all the current information to the next
cell and none for o= 1. Subscripts f, STM and E retain their usual mean-
ings as forget, short-term memory and events, respectively.

In the learn stage (II), two functions via a separate route simulta-
neously act on STM~ " and E to produce the learn gate results.
(i) hyperbolic tangent function, tanh which introduces non-linearity
to the cell with an output range value between 1 and — 1 and (ii) the
sigmoid activation function (0 < o< 1), used for ignoring some insignif-
icant information in the cell. The combination of tanh and o functions
produce the learn gate output represented by

N<g> = tanh (WN/STM X STM<t7]> + Wn/E X E<[> + bN>
i<g> = O(Wi/S'IM X STM<t71> -+ Wi/E X E<t> + bl> (2)
lgi)tpu[ — N®@i®

where b, w and subscripts STM and E are as defined previously. Through
the element wise multiplication operator, ® the vector matrix, N ® ob-
tained as a result of the cell's non-linearity is combined with the ignored
factor i®’ generated due to sigmoid activation function to yield the learn
gate output, lf,%)[put. Subscripts N and i refer to the vector matrix and
ignore, respectively.

The remember stage (III) is characterized by the move from the pre-
vious cell state (LTM~ ") to the current long-term memory (LTM®). In
the first instance, STM~" and E® candidates are passed via o where
the decision to forget irrelevant information is made. Moving further
within the cell, STM~ " and E candidates are fed through o (i.e., to ig-
nore trivial information) and tanh, which introduces non-linearity to
the cell. In both scenarios, element wise multiplication operator ® is
used to obtain the output. Finally, the addition operator © is used to
connect respective outputs, and update the long-term memory of the
current time step (LTM‘?). The aforementioned procedure is simply
achieved by the combination of Eqs. 1 and 2 given as;
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LM = LTM NefP one @i 3)

where @ denotes the matrix addition operator for long term memory
output only.

To arrive at the use stage (IV) or the final stage, previous stage pro-
cedures are repeated, and with the addition of an extra tangent and sig-
moid activation functions. In order to avoid repetition, Eq. 3 is taken as
the output representation of stages I-IIl. To cater for the additional steps,
(i) Eq. 3 is passed through the hyperbolic tangent function to produce
an output labelled as U® and (i) STM~ " and E? are joined and passed
through the sigmoid activation function to generate another output
referred to as V. Both U® and V) are then operated upon by the ele-
ment wise multiplication operator, ® to give predictions of the material
temperature, size and moisture content profiles represented mathemat-
ically as;

U® = tanh (LI VefPen@ei®)
V<g) = U(WV/STM X STM(til) + Wy X E(t) + bv) (4)
STM® — y@gyie

3.2. Steps for LSTM drying model development

Having worked through the LSTM equation derivation in
Section 2.2.1., it is essential to provide detailed step-by-step procedures
for the prediction of materials drying kinetics profiles passing through
LSTM algorithm. The process is itemized as follows:

Step 1: Data preparation

A total of 10x10,220 (i.e., 10 columns by 10,220 rows) data points
were collected for lactose, protein, fat, high-fat milk and low-fat milk.
The collected drying kinetics data were cleaned and divided into differ-
ent training and testing arrangements. Though, not set in stones, the
commonest forms of data splitting are 70:10:20 (i.e., 70% training, 10%
validation and 20% testing) and 80:20 (i.e., 80% training and 20% testing
if validation is discarded) rule. In this study however, data splitting was
done mainly on the basis of the initial conditions rather than dividing
the total data points available for the given conditions. Unlike other se-
quential data where the input features vary alongside the target, only
the initial features defined the time varying outputs for droplet drying
examined in the current study. As such, there is a higher chance for er-
rors minimization as opposed to random data splitting since specific
input features must learn to map the entire drying profiles representing
the target outputs. In constructing the training dataset, the total number
of data points for each material was identified. Then the training-testing
rule ratio was applied. A data point (e.g., the temperature value at a cer-
tain time during a drying case) is a case. In this study, there were respec-
tively 10x4800; 10x1560 and 10x 1600 total number of lactose, high-
fat milk and low-fat milk data points. In addition, 10x7100 data points
were used as the learning or training cases; with the remaining data
points of 10x2260 corresponding to fat and protein data used solely
for the purpose of training. About 817 data points representing 17.02%
was used as the testing cases for lactose. The testing cases for high-fat
milk and low-fat milk correspond to 22% and 23% respectively of the
total learning cases.

Step 2: Programming language and computing software/hardware

The prepared data sets were saved in Excel format and processed
using software that contain libraries of Python programming language
i.e., Anaconda (run on the memory of a local computer) and cloud com-
puting platform of Google Colab. The simulation exercise for each uti-
lized software was performed independent of the other. Although
other options of programming languages such as R, Java Script/Java,
C/C++, Julia, are available for use, Python offers much flexibility in
terms of compatibility with several software environments.

Step 3: Seeding of the data
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Because weights/biases used to initialize LSTM models are generated
by randomness, it is not uncommon for such models to produce differ-
ent results when run multiple times. By design, neural networks employ
randomness to guarantee that they learn the function being approxi-
mated for the problem efficiently. However, there are instances when
it is desirous of a model to provide the same results regardless of
when it is trained as long as the same training data is used. In such a sit-
uation, seeding helps to control variation in weights each time the data
is trained by using the seed function to save the state of a random func-
tion. The same random weights are returned at each run of the data,
thus, ensuring results predictability and reproducibility. Seed value
can be any positive integers from 0 to 9 or even non integers. In this
study, a value of 123 has been used.

Step 4: Scaling/normalization of the data

In this study we scaled the entire data to avoid convergence issue
due to the significantly varying order of magnitude of the input/output
features. Without distorting the ranges of values, each feature of the
data was scaled separately using the same scaling algorithm to ensure
equal contribution to the model fitting and learn function. Several scal-
ing techniques have been discussed elsewhere [32]. Employed for the
current work is the Min-Max Scaler. This normalization algorithm
works by converting the numeric values of all features (both inputs
and outputs) into the range [0,1]. This is summarized as follows:

Given X; as the data point representing each feature; X;,;» and Xinax,
the minimum and maximum data points for each feature respectively.
Then, the scaled data point is given as

Xi_Xmin

caled = v _ v
Xmax—X min

Xs )

It is noteworthy that to achieve the objective of data scaling
(i.e., ease of model convergence), Eq. (5) should be applied separately
to scale each data feature making up the training/testing data.

Step 5: Training/testing the data and performance metric

LSTM muodels are trained by fitting the weights and biases to the net-
work model (usually by iteration), until the discrepancies between the
actual and the model (errors) values are minimized. Eqs. 1-4 are solved
in successive iteration through a forward pass, followed by a loss func-
tion which compares the difference in values between the experimental
and LSTM results. A backward pass process, thought of to be the oppo-
site of the forward pass is applied to estimate the contribution of each
network to the error. To initialize the forward pass process, all network
weights identified with the LSTM drying model are randomly selected.
Applicable loss functions for LSTM models include the mean absolute
error (MAE), the mean percentage error (MAPE) and the mean square
error (MSE). In this study, MSE was deemed appropriate to perform
error analysis because it has no outlier predictions with huge errors.
Mathematically, it is represented as

_1gw )
MSE =531 (v —57) (6)

where N is the number of data points, y*? and y“) are the actual and pre-
dicted data points respectively. To minimize the errors through the back-
ward propagation, several optimizers can be employed. The preferred
choice for this study is the efficient Adam optimizer. As mentioned in
Step 2, the LSTM network was implemented in Python programming
language using Keras with a Tensorflow as the backend. Other important
hyperparameters to complete training the LSTM model include:
(i) dropout, which defines the forget gate, f (ii) number of neurons
and layers, to fit the model (iii) batch size, defining the number of train-
ing data passing through the LSTM network per iteration, and (iv) num-
ber of epochs, which determines the number of times LSTM network is
trained to minimize the loss function. Since it is usual practice to set a
high number for epoch, early stopping criterion ensures LSTM training
does not continue indefinitely, and terminates depending on the defined
‘patience’ and ‘mode’ for the loss function. In this study, mode ='min’
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and patience = 10; implying that the training should stop if the loss
function has not decreased after 10 epochs have been used. Details on
the number of neurons and hidden layers used will be discussed in the
next section. To validate the network, sets of test data were passed
through the pretrained model. Coefficient of determination, R?, was used
to compare the training and testing accuracies with the measured data.
Eq. 7 is used to estimate the coefficient of determination as

o o)’

R=1-—>—" 7
S (79-5°)

where y“) denotes the mean of all the actual points.
4. Results and discussion

The aim of this work is to accelerate powder production process for
on-the-go consumers by providing generalized data-driven models that
can describe the drying kinetics of powders. One aspect of our analyses
considers a scenario where the LSTM network is modelled for powders
whose drying kinetics are known a priori. This scenario is termed as pre-
diction. In the second case, only the material and air initial conditions
are required to build the drying kinetics of powders. These initial condi-
tions correspond to a window of one LSTM memory cell used to forecast
subsequent data points. In both situations, the air and droplet tempera-
tures, the air pressure, the air velocity, the relative humidity of air, the
droplet size, the material compositions (i.e., lactose, protein and fat)
and time represent the input features, whereas the droplet temperature
and mass are the output features. There are two possibilities for the
input-output features, namely multi-input single-output and multi-
input multi-output. Here, a multi-input single-output has been used,
i.e., more than one input features were used to model one output of
droplet temperature and mass occurring separately. As previously
noted, a total of 10x10,220 lactose, protein, fat, high-fat milk and low-
fat milk drying kinetics data (for each output) obtained via single drop-
let drying (SDD) experiments were used for our analyses. Of the total
data collected, lactose, high-fat milk and low-fat milk have been used
as the testing case with a testing-training ratio of 17.02%, 22% and
23%, respectively (see Table 2 for the conditions of the test cases). Al-
though the three material components and the range of conditions
used for this study cannot be considered too narrow in itself, the possi-
bility of a better performing model when the data samples are increased
makes the extension of LSTM model to large variation in material com-
positions even more endless. In order to achieve optimum model fits,
analyses have also been extended to investigate the correct combina-
tion of window size, number of neurons and hidden layers that
produces the best results. The range of values considered for this proce-
dure is shown in Table 3.

To round up this section, situations where the training and testing
data are of different material input shapes have been considered using
the following case studies: (i) input shape of three material composi-
tions representing lactose, protein and fat training data versus input
shape of one depicting only lactose as the testing data, (ii) input shape
of three material compositions representing lactose, protein and fat

Table 3

Range of values for window size, neurons and hidden layers used to optimize the drying
scenario. The window size is in step of 10; the hidden layer is in step of 1 and the neurons
is in step of 2 from 2 to 30, step of 5 from 30 to 65. For each parameter, a loop operation is
performed to cover the range of values of the other two parameters.

Windows Layers Neurons

1-51 1-5 2-65

Layers Neurons Windows Neurons Windows Layers
1-5 2-65 1-51 2-65 1-51 1-5
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training data versus input shape of one depicting mixture of lactose-
protein-fat as the testing data. Unlike numerous other studies where
the input shapes for the training and testing data are usually the same,
this study is designed to generalize droplet drying irrespective of
whether the drying kinetics of a material is known apriori or not. Results
for both (i) and (ii) are summarized as follows, with consideration to
‘predict’ and ‘forecast’.

4.1. Different material inputs versus single component output

To investigate the generalizability of the LSTM drying network, three
material components were used at four different runs of training to out-
put a single material component. The training materials correspond to
lactose, lactose-protein, lactose-fat and lactose-protein-fat at separate
run to output lactose temperature and mass drying kinetics in each
case (refer to Table 2 for the conditions of the materials). Spray dried

Column A: Predict optimum conditions
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lactose, just like protein and fat, is a useful ingredient in many food (e.
g., sweetened condensed milk) and drug preparations (e.g., penicillin)
[33,34]. According to a published report by international market analysis
research and consulting (IMARC) [35], the global lactose powder market
reached an estimated volume of 865 kt in 2020. If 2026 predictions were
anywhere to go by, it is expected at 1047 kt. Since lactose demand is
scattered across various needs, its concentration in the final consumers
product is also bound to differ. There have been previous studies, both
experimental and theoretical, aimed at investigating the drying kinetics
of lactose [33,36]. However, when air and material conditions so far
apart and within are desired to generate relevant drying profiles, the pre-
vious approaches seem to pose a great difficulty. Provided in Fig. 3 are
the temperature and mass profiles results when drying history curves
of lactose, protein and fat materials are combined as the training data,
with lactose serving as the testing case. As shown in Fig. 3, the ‘predict’
scenario gives the best trialed window size, neurons and layers of 31,

Column B: Forecast optimum conditions
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Fig. 3. Optimum trialed window size, neurons and hidden layers for the generation of lactose droplet temperature and mass profiles. (a & ¢) In Column A, optimum conditions for ‘predict’
serve as the benchmark, and the forecast plots (blue) are for comparison as shown (b & d) Column B gives the optimum conditions for the ‘forecast’ scenarios, representing the control
curves, while the predict plots (red) are used for comparison under the same conditions. The conditions of the test case, i.e., lactose droplet correspond to 23 °C and 110 °C droplet and
air temperatures respectively, 0.75 m/s air velocity, 1.79 mm size, 1% relative humidity and 10% initial solid concentration. Only a few data points have been plotted as true representatives
of the entire data points. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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40, 2 and 1, 28, 1 for temperature and mass plots, respectively (Figs. 3
(a) and (c)). The optimum achievable temperature and mass drying pro-
files for ‘forecast’ corresponds to window size 1, neurons 55, layers 1 and
window size 1, neurons 60, layers 1 shown in Figs. 3 (b) and (d), respec-
tively. In each case, comparison ‘predict’ and ‘forecast’ plots for tempera-
ture and mass profiles as well as corresponding errors have been given.
For the sake of emphasis, the term ‘predict’ is used to indicate the reli-
ance of LSTM algorithm on the measured data at every step of the net-
work to give the next prediction. On the other hand, ‘forecast’ refers to
the dependence of LSTM network on the predicted value at every step
to give the next data point during drying. The MSE observed for ‘predict’
has a mean of 0.2474 and variance of 0.0034 and a mean of 0.0020 and
variance of 3.71 x 10~ for temperature and mass profiles, respectively.
Similarly, the mean 0.3115 and variance 0.0296 of MSE for forecasting
temperature and mass drying curves are 0.0033 and 6.98 x 10~7, respec-
tively. As can be observed, the MSE mean errors and variances for tem-
perature and mass differ significantly even though, the mean absolute
change in temperature is within 0.5 °C (i.e., 0.8%) compared to mass at
0.06 (i.e., 7.3%). This is due to higher penalization of large values for er-
rors generally attributed to MSE. To further uncover the pattern observed
by ‘forecast’ scenario, we took the mean representing the optimum con-
ditions for the temperature and mass curves. This is necessary seeing
that for real application of drying, the drying kinetics occur simulta-
neously with the product, and is thus not practicable to generate the
mass, size and temperature curves for the same product separately. Fur-
thermore, among the simulated categories, ‘forecast’ with a window size
of one is recommended for on-the-fly powder processing. The decision
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for this choice lies entirely on it being the closest similitude to the
main idea of the current work. That is, discarding the heavy reliance on
lengthy experimental trial to generate relevant drying kinetics curves
when new product orders too numerous arrive at the manufacturers
desk. Fig. 4 shows the ‘forecast’ results representing 1 window size, 58
neurons and 1 hidden layer. The simulated temperature and mass curves
give close match with the experimental data with a mean MSE of 0.3179
and variance of 0.0247; and mean MSE of 0.0047 and variance 4.13 x
107, respectively (Figs. 4(a) and (b)). Results for the generalizability
of the test cases are shown further down in Figs. 4(c and e) and Figs. 4
(d and f) for different material sets investigated. In Figs. 4 (a and c), lac-
tose constitutes the highest error and lowest R? score among the mate-
rials used for training, while in Figs. 4 (b and d), it only comes a close
second after lactose-fat. A natural question that arises at this point is,
why is it so given that purely lactose data were used for the training? Al-
though it is expected that using a pure data should give the best predic-
tion, however, a thorough examination of the training and testing
conditions reveal the following: (i) air temperature is bounded by 70-
90 °C for lactose training, whereas 110 °C air temperature was consid-
ered for testing. This implies that the LSTM training network for this cat-
egory was stretched beyond the scope of validity in the air temperature
range (ii) the addition of protein and then fat to lactose data extended
the range of temperature used for the training set to 106.6 °C and (iii)
the number of data rows for lactose, lactose-protein, lactose-fat and
lactose-protein-fat correspond to 3612, 5317, 4515 and 6220, respec-
tively, and is in consonance with the model accuracy. The lactose-
protein-fat and lactose-protein maintain first and second positions
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Fig. 4. Optimum trialed window size, neurons and hidden layers for the forecast scenario. (Column A) (a) Temperature versus time plot (c) Comparison error plots for L, L-P, L-F and L-P-F
(e) R? score for different material components (Column B) (b) Mass versus time plot (d) Comparison error plots for L, L-P, L-F and L-P-F (f) R? score for different material components. L is
lactose, L-P is lactose-protein, L-F is lactose-fat and L-P-F is lactose-protein-fat. The conditions of the test cases, i.e., lactose droplet correspond to 23 °C and 110 °C droplet and air temper-
atures respectively, 0.75 m/s air velocity, 1.79 mm size, 1% relative humidity and 10% initial solid concentration. Only a few data points have been plotted as true representatives of the

entire data points.
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respectively with the least error and highest R? score both in the temper- (a) 1 K
ature and mass plots. Our analyses have not been able to establish yet the y= 11'{92 1:4%"9'38'99288 F'T:
reason why there is a switch in positions occupied by lactose and lactose- ’ Y

fat in the temperature and mass plots for error and R? score. However,
general results trend suggests that the deep learning model tends to per-
form better when the number of training material component and data
size are increased. The simulated results can be used to guide updating
of deep learning model parameters.
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4.2. Different material inputs versus one output as multi-component
mixture

(al) oA ##*:5 combined test cases o .°

B Windows:1 L

Neurons: 10 e
Layers:2 b

Results given in Figs. 5 and 6 have shown the endless possibilities that
can be derived from using several trained single material components to
output one product; comprising of the mixture of all or some of the single
material components. To explore this scenario, diverse range of whole milk
and skim milk, which have been termed as the high-fat and low-fat milk
for convenience, were used as the testing materials. Table 2 gives the con-
ditions of lactose, protein and fat training materials used. Up to a total of
eight, high-fat and low-fat milk materials with 20% solid concentration
and temperature range of 67.5-106.6 °C have been considered for testing.
To obtain individual single component from the mixture, the bulk data
composition of the industrial milk powders taken from [11,27] was uti-
lized. Final compositions of lactose, protein and fat were achieved by mul-
tiplying each composition value with the initial concentration of the high-
fat and low-fat milk. Bearing in mind that whole milk and skim milk differ
only in terms of component compositions, it would be counter-productive y=15278x - 0.5518
to take them as two different entities when testing to achieve the best ac- R2=0.9292
curacy. Thus, one LSTM network has been constructed for both material
data. Furthermore, individual material droplet possesses a unique drying
characteristic curve that often exhibits some discrepancies in accuracy if (a3) %8 7.6.5 4.3 or2 P—
all the test datasets were simulated at once as opposed to testing individ-
ually. We also probed if addition of more cases to the test samples would
result in huge shift in accuracy compared to testing for individual sample.
The advantage of the scenarios presented above is that the same LSTM
training algorithm can be deployed to generate new mixture product
should there be need for additional material components. Given m as the
total number of materials available for testing, and r as the number of ma-
terial samples going through the LSTM network per test case. The number 0.9 1
of material combination corresponds to mg,. For the case in context with Optimum trialed R? for one test case
m = 8 test samples and r = 1, 2, ....,7, 8; we have 8¢;= 8 possibilities
(one sample per test); 8c,= 28 possibilities (two samples per test); ®) 1 =
...... , 8c7= 8 possibilities (seven samples per test) and 8cg = 1 . Peak R2 values for each
possibility (eight samples per test). Ideally, all the representative number combined cases
of material samples per test case should be simulated to determine the
best accuracy. In this study however, the material combinations for 8,
8c7 and 8¢g were exhausted; those from 8¢,to 8¢ have been randomly % | g
selected. The summary of this exercise is represented in Table 4. RZ2 | e -
scores for combined test cases against optimum trialed R? scores for each e !
of the eight materials are presented in Fig. 5(a). As shown, there are
three possibilities for the mass profiles, i.e, 1,16, 2; 1,20,3 and 1, 10, 2 cor- 0 1 2 3 4 5 6 7 8
responding to window size, neurons and hidden layers respectively. A line Sample case per test
has been drawn to fit the data with an accuracy of 0.9399. When the three
conditions were considered separately, the accuracy level differs by margin
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with window size of 1, neurons of 16 and hidden layers of 2 giving the best (c) 1 5 Temperature
accuracy of 0.9481 (see Figs. 5 (al, a2, and a3)). Average cumulative error, 0.996 P
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was performed on each of the conditions to further buttress the choice 0.98
for an optimum scenario. Estimated cumulative errors give 6.06%, o1 2 Sam3p1e C;‘se pe§ test 8

6.08% and 7.59% for 1, 16, 2; 1, 20, 3 and 1, 10, 2, respectively. In Eq. 8,
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Optimum condition: Windows: 1, Neurons:21, Layers:2
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Fig. 6. Temperature and mass drying kinetics profiles for milk generated at 1 window size, 21 neurons and 2 hidden layers (I) 20% initial solid concentration corresponding to 9.96% lactose;
7.30% protein and 0.12% fat for plots (a) and (c); and 5.23% lactose; 3.87% protein and 0.11% fat for plot (e) (II) 20% initial solid concentration corresponding to 7.36% lactose; 5.60% protein
and 5.30% fat for plots (b) and (d); and 3.81% lactose; 2.70% protein and 2.94% fat for plot (f) (III) 30% initial solid concentration corresponding to 11.04% lactose; 8.40% protein and 7.95%
fatat 0.45 m/s and 0.75 m/s gas velocities for (g) and (h) respectively (test samples not part of the eight test cases used to arrive at the optimum scenario and serve as validation test). Only

a few data points have been plotted as true representatives of the entire data points.

5. . . — 2.
R” is the optimum coefficient of determination for one test case, R " is the
realized coefficient of determination for one test case after material
combination has been performed to obtain optimum window size, neu-
rons and layers conditions. A-H denotes the identity of each sample test.
Similar operation was conducted for temperature plot (with 8 possibil-
ities) but skipped due to clustering of the data toward the same point.
Instead, average cumulative error analysis served as the main criterion
used, with errors ranging from 0.511% - 3.61%. For temperature profile,
a window size of 1; 26 neurons and 2 layers gives the least average cu-
mulative error at 0.511%. By gradually increasing the number of sample
test per case, the R? score has been fitted with the number of sample
test with a logarithmic function to investigate the possibility of a
diminishing accuracy when more test data are considered at once. For
simplicity, R? scores corresponding to the peak values in each sample
test combination have been used. As represented in Figs. 5 (b and c),
the logarithmic curve fitting functions have established that within
the limit of one and eight sample tests, the margin in accuracy does
not exceed 0.0179 and 0.0655 for temperature and mass profiles

Fig. 5. R? scores for sample test A-H obtained from the optimum window size, neurons and
layers conditions after material combination has been performed (a) plot of R? scores ob-
tained from 1, 16, 2; 1, 20, 3 and 1, 10, 2; window size, neurons and layers respectively
against optimum R? scores for materials A, B, C, D, E, F, G and H. (a1), (a2) and (a3) corre-
spondto1,10,2;1,20,3and 1, 16, 2 respectively. Plot showing highest realized R? score in
each mg, combination versus sample case per test for (b) mass and (c) temperature.
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respectively. Beyond eight sample test cases up to 20, the margin for ac-
curacy is within 0.0244 and 0.0956 for temperature and mass respec-
tively. This suggests that if as many as 20 sample tests were to be
passed through the trained LSTM network for testing simultaneously,
the model accuracy would be not less than 0.9749 for temperature
and 0.9000 for mass profiles. The average of 1, 16, 2 (mass) and 1, 26,
2 (temperature) gives the optimum realized condition (i.e., 1,21, 2) used
for the drying of milk solutions. Results of the test cases based on this
condition is shown in Fig. 6 for high and low-fat milk at different initial
conditions for the ‘forecast’ LSTM, with comparison made with the ac-
tual measurements. The mean MSE of LSTM model for temperature
plots lies within 2.3866 and 5.1982; and 1.3617 and 10.6715 for low-
fat and high-fat milk respectively. Similarly for mass profiles, the mean
MSE is in the range 2.9382 x 10~% < MSE < 0.0130; and 3.7552 x 107> <
MSE < 0.0126 for low-fat and high-fat milk respectively (see Fig. 6 (I and
I1)).In caselll (i.e., Fig. 6 (g and h)), two case scenarios are presented dif-
ferent from the eight observed test conditions to serve as validation
cases. For the same material and initial conditions except the gas condi-
tions, the effect of changing gas velocity from 0.45 m/s to 0.75 m/s can
be observed on the temperature and mass profiles. Although no notice-
able changes are observable for temperature plots, there is however a
significant decline in accuracy moving from 0.45 m/s to 0.75 m/s for
mass plots (Fig. 6 (g and h)). Examination of the training sets shows that
the training features at 0.75 m/s correspond to low initial solid concen-
trations whose equilibrium mass profiles are essentially small as op-
posed to the training features for 0.45 m/s. This implies that 30% total
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Table 4
Summary of the R? scores for combined test cases against optimum trialed R? scores for each of the eight materials.

Combined test samples No of occurrences/no of trial Optimum conditions R? score optimum/R? score for
one test sample

Windows neurons

layers

2 0/4 1 20 1 A:0.990/0.998
3 0/3 B: 0.987/0.997
4 1/2 C:0.990/0.999
5 1/4 D: 0.985/0.999
6 1/2 E: 0.999/0.999
7 0/8 F: 0.998/0.999
8 11 G: 0.991/0.997
H: 0.988/0.995

2 1/4 1 26 2 A: 0.985/0.988
3 1/3 B: 0.993/0.997
4 1/2 C:0.993/0.999
5 2/4 D: 0.998/0.999
6 0/2 E: 0.996/0.999
7 8/8 F: 0.998/0.999
8 0/1 G:0.994/0.997
H: 0.991/0.995

Temperature 2 0/4 1 24 1 A:0.992/0.998
3 0/3 B: 0.993/0.997
4 0/2 C: 0.988/0.999
5 0/4 D: 0.988/0.999
6 1/2 E: 0.999/0.999
7 0/8 F: 0.999/0.999
8 0/1 G: 0.992/0.997
H: 0.994/0.995

2 1/4 1 16 1 A:0.989/0.998
3 0/3 B: 0.995/0.997
4 0/2 C: 0.977/0.999
5 1/4 D: 0.983/0.999
6 0/2 E: 0.995/0.999
7 0/8 F: 0.996/0.999
8 0/1 G:0.983/0.997
H: 0.988/0.995

2 0/4 1 20 2 A:0.992/0.998
3 1/3 B: 0.994/0.997
4 0/2 C: 0.944/0.999
5 0/4 D: 0.930/0.999
6 0/2 E: 0.997/0.999
7 0/8 F: 0.989/0.999
8 0/1 G: 0.992/0.997
H: 0.980/0.995

2 0/4 1 22 1 A: 0.988/0.998
3 1/3 B: 0.989/0.997
4 0/2 C: 0.996/0.999
5 0/4 D: 0.980/0.999
6 0/2 E: 0.995/0.999
7 0/8 F: 0.997/0.999
8 0/1 G: 0.992/0.997
H: 0.990/0.995

2 0/4 1 10 5 A:0.949/0.998
3 0/3 B: 0.966/0.997
4 1/2 C:0.981/0.999
5 0/4 D: 0.880/0.999
6 0/2 E: 0.976/0.999
7 0/8 F: 0.988/0.999
8 0/1 G:0.981/0.997
H: 0.973/0.995

2 1/4 1 26 1 A: 0.994/0.998
3 0/3 B: 0.997/0.997
4 0/2 C: 0.988/0.999
5 0/4 D: 0.984/0.999
6 0/2 E: 0.998/0.999
7 0/8 F: 0.998/0.999
8 0/1 G: 0.987/0.997
H: 0.989/0.995

2 0/4 1 10 2 A: 0.986/0.996
3 0/3 B: 0.921/0.975
4 0/2 C:0.910/0.964
5 2/4 D: 0.828/0.924
6 0/2 E: 0.738/0.896
7 0/8 F: 0.680/0.824
8 0/1 G:0.948/0.975

H: 0.968/0.972

(continued on next page)
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Table 4 (continued)
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Combined test samples No of occurrences/no of trial

R? score optimum/R? score for
one test sample

Optimum conditions

Windows neurons

layers

Mass 2 3/4 1 2 16 A: 0.989/0.996
3 1/3 B: 0.917/0.975
4 1/2 C:0.913/0.964
5 1/4 D: 0.830/0.924
6 1/2 E: 0.765/0.896
7 7/8 F: 0.702/0.824
8 111 G:0.943/0.975
H: 0.957/0.972

2 1/4 1 3 20 A:0.984/0.996
3 2/3 B: 0.915/0.975
4 1/2 C: 0.907/0.964
5 1/4 D: 0.838/0.924
6 1/2 E: 0.789/0.896
7 1/8 F:0.731/0.824
8 0/1 G:0.952/0.975

H: 0.966/0.972

solid concentration at 0.75 m/s is outside the validity window of the
training set. Thus, passing it through the LSTM network resulted in over
estimation of the mass profile. In general, a higher accuracy was ob-
served for temperature plots compared to mass profiles, which can be
attributed to the validity range of testing features such as gas velocity
and component compositions for mass existing more outside the train-
ing validity range.

4.3. Potential industrial application

A reliable description of droplet drying characteristics plays a crucial
role in large-scale powder production by spray drying. The knowledge
as such ensures the integrity and yield of the final product stay unal-
tered. In this work, LSTM networks have been presented to forecast
temperature and mass drying kinetics, which by extension, can be
used to cover droplet size and moisture content profiles. Two case sce-
narios comprising single material component of lactose, protein and
fat as inputs to output (i) only lactose and (ii) lactose-protein-fat mix-
ture have been simulated. The work may be extended to train LSTM net-
works using the data obtained from well-controlled SDD experiments
(free falling droplets, acoustically levitated droplets and horizontally
deposited droplets) conducted for different materials and under a vari-
ety of process conditions.

Once trained, the LSTM networks may be used in a variety of ways.
Two suggestions are given below. First, they may be used for real-time
processing and development of new powders. As diverse new orders
are growing on manufacturers' menu, they constantly seek solutions
that bypass lengthy experimental drying kinetics measurements. For
example, lycopene and riboflavin hold the path to a healthy heart. At
the dictate of the market, the materials or any of their constituents
may be added to lactose-protein-fat mixture, processed through the
LSTM network and made available instantly as a new mixture product
provided all the new material additions already form part of the trained
datasets. Second, the LSTM network models may be re-configured to
capture datasets of actual characteristics of material mixing (such as
colour, texture and taste). It is yet unclear whether the combined mate-
rial sets whose drying kinetics forecasting has been provided by LSTM
would give rise to any coloration different from the one envisaged.
Same holds true for texture and taste. Leveraging on the modern com-
puter vision technology, collection of material images can serve as
markers for colour and texture, and electronic tongue sensor to charac-
terize taste. Datasets that include features of these parameters can be in-
corporated into the LSTM network models for real applications.

12

5. Conclusion

In this study, we employed a special kind of recurrent neural net-
work, i.e., LSTM network that could be seen as a tool to accelerate
powder production cycle, from conceptualization to realization. The
distinguishing features of the built model include material generali-
zation, independency of drying kinetics data (i.e., of desired output
powder), and on-time tailor-made product delivery. From series of
rigorous analyses conducted, the LSTM forecast model with a win-
dow size of one is herewith recommended for drying. In addition,
the LSTM forecast network predicted values at every stage to give
subsequent predictions, thereby obviating the need for kinetics
data of intended powder. This is unlike other existing methods that
suffer from lengthy processing time due to heavy reliant on drying
kinetics obtained from experimental trials, and are thus unsuitable
for keeping-up with the present-day trends and needs of consumers.

Going forward, new deep learning models would be sought to investi-
gate the actual attributes of materials mixing such as colour, texture and
taste. Attributes as such are important considerations in real application.

Notation

Al Artificial intelligence

ANN Artificial neural network
b Bias

CDRC Characteristic drying rate curve
E~*> Current event matrix

fs= Forget gate

LSTM Long short-term memory
LT™M Long-term memory

ML Machine learning

MLP Multilayer perceptron
MSE Mean square error

N Number of data points

R? Coefficient of determination
RNN Recurrent neural network
SDD Single droplet drying

STM Short-term memory

t Time (s)

U<~ LSTM output

V=& LSTM output

w Weight bias

WPC Whey protein concentrate
WPI Whey protein isolate

y<= Actual data points

7 Predicted data points
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