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• A dynamic inactivation model for pro
biotics survival prediction during drying 

• Effective learning of historical data by a 
convolutional self-attention neural 
network 

• A double-branch architecture allows 
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dynamics 
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improved cell viability and sufficient 
solvent removal  
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Dairy products containing probiotics are often dried to improve shelf life and facilitate transportation. A reliable 
dynamic inactivation model has long been pursued to optimize the production by maximizing probiotics’ sur
vival during drying. How to take care of the dynamic drying process experienced by the cells for precise pre
diction of their survival remains a challenging task. In this work, a multi-task convolutional self-attention 
network (CSAN) has been developed for dynamic modeling of probiotics inactivation during single droplet 
drying (SDD). The convolution self-attention approach together with a unique double-branch architecture allows 
the neural network (NN) to learn effectively from historical data and predict inactivation dynamics throughout 
the whole drying process. In terms of prediction accuracy, our model (R2 > 0.96) outperforms many other 
existing models (R2 < 0.6 in most circumstances). By resorting to this model, two optimal SDD conditions have 
been identified with the resultant terminal solid contents higher than 90 wt% and cell survival ratios higher than 
0.65.   
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1. Introduction 

As functional ingredients, probiotics are commonly used in dairy 
products, including those in a powder form produced by spray drying. 
After being dried, they become easier for transportation and can have 
prolonged shelf life of up to decades. Such a practice can result in 
“anhydrobiosis” of probiotics. Upon rehydration, they will swell quickly 
and be reactivated [1]. While freeze drying is often applied to the 
dehydration of heat-sensitive constituents like probiotics for higher re
sidual viability [2], hot air spray drying (hereafter referred to as spray 
drying) has drawn more attention than ever these years due to its cost 
efficiency [3]. Nevertheless, poor residual viability caused by spray 
drying remains a problem that limits its wide application [4]. It becomes 
crucial for the producer of these dairy products to seek a viable approach 
that can minimize damage to the cells from heat and dehydration and 
maximize probiotic viability at the dryer outlet. 

There is an urgent need to develop a predictive model for the process 
of probiotic inactivation during spray drying. Tremendous efforts in 
multiphysics modeling of spray drying can be identified [5–8], which 
allowed us to track the dynamic drying process (hereafter referred to as 
drying history) of a large number of discrete droplets. Those models can 
predict particles’ trajectory, size, moisture content, and temperature 
dynamics. Inactivation of probiotics in spray-dried droplets, however, 
was not considered in those models. Fu and Chen [9] summarized nine 
factors that can influence inactivation dynamics, including two hot air 
properties (i.e., temperature Ta and humidity), five drying kinetics pa
rameters (i.e., droplet temperature Td, initial moisture content X0, rates 
of droplet temperature rise and water removal, and exposure time t), and 
two carrier properties (composition and the cell location). As two main 
stresses, heat and dehydration inactivate the probiotics by different 
mechanisms: the former (reflected by Td) denatures the gene that is 
crucial to cell reproduction [10], while the latter (reflected by X) can 
lead to increased osmotic pressure [11] and hence cell destabilization 
[12]. 

Different inactivation models have been developed, which can be 
generally classified into two categories (see Table S1.1 and Table S1.2 in 
the supplementary material). The first type is the reaction kinetics 
model. For over 100 years, the survival ratio of microbial cells has been 
found to decline exponentially with the exposure time according to a 
large number of experiments [13,14]. As a result, it is a common practice 
to model the process as a first-order reaction, and present cell inacti
vation in a lgs vs. t plot. The general form of the kinetics model is: 

−
dst

dt
= kd,t t (1)  

where kd denotes the inactivation rate constant and the subscript t refers 
to a time instant t. Rahn [10] claimed that the first-order inactivation 

kinetics should result from the denaturation of the gene responsible for 
reproduction. In most cases, kd,t is correlated to the surroundings (like 
the ambient temperature) by the Arrhenius’ equation, and is considered 
time-independent in the simplest model of this type [15] (Model 1 in 
Table S1.1). This model, however, was criticized to be an “exception 
rather than the rule” [16] owing to frequent deviations from theoretical 
log-linearity (i.e., the inactivation rate constant kd,t stays unchangeable) 
[17,18]. Such deviations are commonly shown in the form of a plateau 
near the start or the end of the lgs-t curve, which is named the “shoulder” 
or “tailing” respectively (see Fig. 1). A few modifications have been 
made to correlate kd,t with drying kinetics (Models 2–9) [19–23], 
whereas the tailing is still hard to capture. 

The second type is the probabilistic model. The death of viable cells 
is viewed as probabilistic rather than deterministic events in these 
models, e.g., the Weibull model (Model 10) [16], the logistic model 
(Model 11) [24], and the modified Gompertz model (Model 12) [25], 
where shoulder and tailing were well predicted. 

The log scale and linear scale plots have their unique advantages in 
presenting a survival dynamics curve. As shown in Fig. 1, survival ratio 
values close to zero at the final stage of drying are differentiable on a log 
scale plot, which is not the case for the linear scale plot. Nevertheless, 
quite a few diagrams adopted linear scale plots [20,21], which can 
better capture cell inactivation in the initial stage of drying. Unfortu
nately, few models can fulfil the two tasks well simultaneously, namely 
predicting accurately on both the linear scale and the log scale. 

Moreover, Marechal et al. [26] proved experimentally that the dy
namic heating process could have prominent influence on bacterial 
survival. Hence, Statet (described by kd, t or the survival rate st) should be 
a cumulative effect of the drying history. Specifically, the dynamic 
values of x from time zero to t should have influences on the current state 
to different degrees, i.e., 

Statet = f (x0, x1,⋯, xt) (2)  

where xt can be Td, t, Xt, and pHt, etc. 
The artificial neural network (ANN), as a machine learning tech

nology, has demonstrated excellent performance in recent years in 
various research areas including chemical engineering [27]. With a 
large number of neurons, the ANN can approximate any arbitrarily 
complex function with any desired precision [28,29]. Additionally, it 
can extract information and learn knowledge from the given data 
automatically. The multilayer perceptron (MLP) [30] is the earliest and 
simplest ANN. MLP has been introduced into predictive microbiology 
since the last century for the prediction of microbial growth [31], where 
states at different time instants were merely regarded as independent 
samples. Few efforts can be identified to take into account the historical 
influence and the relations between different states. Over the past de
cades, more ANN architectures have been developed for time series 

Fig. 1. Comparison between the diagram of the survival ratios versus time (a) on the linear scale and (b) the log scale. The lines in two subplots correspond to one 
data set. 
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prediction, e.g., time-delay neural network (TDNN) [32], which is 
nearly equivalent to one-dimensional convolutional neural network (1- 
D CNN) and the simple recurrent neural network (S-RNN) [33]. As a 
variant of S-RNN, the long short-term memory network (LSTM) [34] has 
been widely applied to modeling chemical engineering processes. Kim 
et al. [35] employed LSTM to locate the leakage source of a chemical 
plant. Fang et al. [36] used the same method to predict the moisture 
content of biomass during drying. 

Transformer [37] has shown excellent performance and over
shadowed all the other modules in computer vision and natural lan
guage processing since its invention in 2017. Compared with LSTM, 
Transformer with self-attention is much more powerful and efficient in 
learning arbitrarily long-term dependencies and making predictions at 
different time instants in parallel. Li et al. [38] improved Transformer by 
introducing convolution and developed the so-called convolutional self- 
attention network (CSAN). This new network can focus more on the 
short-term dependencies (through convolution) while learning the long- 
term ones (through self-attention) simultaneously. Very few ANN-based 
models can be identified for dynamic modeling of probiotics inactiva
tion during spray drying. CSAN is a promising network for modeling this 
dynamic process. 

Spray drying is often regarded as a black box process since it is 
difficult to measure online droplets’ dynamic information from inlet to 
outlet through experiments. Even if Td and X can be estimated by a 
reliable computational fluid dynamics (CFD) model, it is impossible to 
count the viable cells in real time. Moreover, the drying media condi
tions vary along the droplets’ flying trajectories, and the drying time of 
droplets cannot be uniformly and precisely controlled [39,40]. In this 
work, to obtain dynamic experimental data, we chose to start with the 
single droplet drying (SDD) experiment [41]. It is a well-developed 
technique and allows us to measure Td, X, and s throughout the drying 
process of a single droplet suspended on a glass filament. For the SDD 
setup, drying conditions can be well controlled, including drying air 
temperature, air velocity, air humidity, chamber pressure, and the total 
drying time. 

In this work, a CSAN model will be developed for dynamic modeling 
of probiotic inactivation during the whole process of SDD. The influence 
of drying history on probiotics survival will be fully taken into account. 
Moreover, our model will be compared with the existing ones to 
demonstrate its performance. Finally, such a model will be applied to the 
identification of optimal drying conditions that can offer enhanced cell 
viability with sufficient solvent removal. 

2. Raw data acquisition and preprocessing 

2.1. Data acquisition 

Single droplet drying (SDD) experiments were carried out on the 
Dong Concept SDD platform [41] to obtain the dynamic data. As shown 
in Fig. 2, a droplet is suspended by a glass filament with hot air flowing 
upwards. The following data were obtained. Droplet temperature Td was 
monitored in situ by a thermocouple. Moisture content X was calculated 
based on the droplet mass change measured through the displacement of 
the filament. Since counting viable cells is difficult and laborious, the 
viable cell count N is acquired by counting the colony forming unit 
(CFU) on the plate at a certain time interval. The survival ratio s was 
then calculated by dividing N by the initial cell count N0. Therefore, the 
dynamic measurement data of Td and X are dense and available every 
second during the drying process (see Fig. 3(a1)), but the data of s are 
sparse and only available at certain time instants (see Fig. 3(b1)). For 
more experimental details, please refer to Fu et al. [19]. 

The Lactococcus lactis ssp. cremoris (LLC) and Lactobacillus rhamnosus 
GG (LGG) were selected as experimental subjects with reconstituted 
skim milk as the carrier. The data set consists of data from nine groups of 
samples with four dynamic quantities, namely time (t), the droplet 
temperature (Td), the average moisture content on the dry basis (X) and 

the survival ratio (s) during the process of SDD lasting for 120 to 400 s. 
Among them, G1-G6 are retrieved from Fu et al. [19], and G7-G9 from 
Mao et al. [42]. Experimental conditions are listed in Table 1. The air 
pressure was kept at 101325 Pa. 

2.2. Data preprocessing 

In this part, a notation with a tilde symbol “~” indicates the pre
processed quantity. 

2.2.1. Data set split 
The data are split into two groups respectively for training and 

testing. With different environmental temperatures and solid contents, 
G3 does not show the tailing but G5 does. These two representative 
groups are included in the testing data. Also, to inspect the generaliza
tion performance of our model over different probiotic strains, G9 
(carried out for LGG) is selected as the testing data, with the remaining 
six to form the training-validation data, i.e., 

D test = {G3,G5,G9},
D train+vali = {G1,G2,G4,G6,G7,G8}

(3)  

2.2.2. Standardization of inputs 
Among four types of dynamic quantities, the first three, i.e., t, Td, X, 

form the input data; while the remainder, i.e., the survival ratio s, forms 
the ground truth (see discussions in Section 2.2.3). It is believed that our 
ANN can calculate the gradients implicitly with given Td history, X 
history, and sampling time instants if the rates are of any significance. 

To facilitate convergence of simulation, z-score standardization is 
performed on t, Td, X respectively, giving dimensionless ̃t, T̃d, X̃, 

x̃ =
x − μtrain+vali

σtrain+vali
, x : t or Td or X (4)  

where the mean (μtrain+vali) and standard deviation (σtrain+vali) of a 
certain variable x are calculated with all x data in D train+vali. 

2.2.3. Creation of labels 
In our study, the “ground truth” denotes the experimental survival 

ratio. The interpolation over the ground truth will be discussed soon, 
after which the “label” will denotes both the experimental and the 
interpolated survival ratios. The labels will be used for the NN training, 
validation and test. 

As to the ground truth sgrd, some abnormal results exist, in which LLC 
seems to “revive” and sgrd is greater than one at some time instants. It 
may be attributed to either cell breakup or measurement error. 

Fig. 2. A schematic diagram of the drying chamber of a SDD rig.  
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Abnormal fluctuations will confuse our ANN. Theoretically, s is by 
definition to be non-negative, and it is reasonable to assume that pro
biotics do not propagate, let alone revive after inactivation. Accordingly, 
sgrd is first clamped to ensure ̃sgrd

≥ 10− 7. Note that a sufficiently small 
number 10− 7 is used instead of zero because we want to know how 
inactivation goes on in a lgs-t graph, and lgs requires s to be positive. 
Another constraint is that ̃sgrd should be monotonically decreasing. If ̃sgrd

t[i]

is used to denote the preprocessed ground truth at the i-th sampling 
point, it follows that ̃sgrd

t[0] = 1, and for each ̃sgrd
t[i] (i ≥ 1), 

s̃grd
t[i] =

⎧
⎪⎨

⎪⎩

s̃grd
t[i− 1], if sgrd

t[i] > s̃grd
t[i− 1];

max
{

sgrd
t[i] , 10− 7

}
, else.

(5) 

According to our description in Section 2.1, the input (every second) 
is much denser than the ground truth (every >15 s). With hundreds of 
thousands of neurons, our ANN is inclined to overfit the data with only 
95 (the sum of sampling numbers in Table 1) samples, which requires 
the data set to be augmented somehow. As described above, s has been 
assumed to be monotonically decreasing with time. It inspired us to 
continualize sgrd by a monotonic interpolation. The Piecewise Cubic 
Hermite (PCH) interpolation can achieve monotonicity and smoothness 
simultaneously. So in this study, we chose to fill the preprocessed 

ground truth at each second by PCH interpolation. Then 95 original 
labels (ground truth) sgrd and 2454 interpolated labels s̃itp together 
formed the label set. G1 is used as an example to show our preprocessed 
data in Fig. 3 (a2 and b2). For convenience, the tilde symbol “~” of ̃s will 
be omitted henceforth. 

3. CSAN model development 

3.1. Capturing historical information 

The self-attention mechanism is depicted graphically in Fig. 4. As 
discussed in Introduction, we want to know the relation between two 
states at two arbitrary time points, e.g., Statei and Statej. This can be 
achieved by the matrices Q and K. For the ease of understanding, they 
can be simply viewed as a “query” base and a “key” base respectively. 
Let l be the duration of drying. For each i from 0 to l, Statei suggests a 
query qi to each Statej (0 ≤ j ≤ l) on how it is influenced by Statej, and 
Statej replies with a key kj. Mathematically, our ANN just needs to 
calculate the inner product qi ⋅ kj. In this way, the correlation between 
two arbitrary states can be acquired. The model can make multi-step 
time series prediction in parallel by matrix multiplication (abbreviated 
as “matmul” in Fig. 4) QKT. At the same time, it can avoid the problem of 
vanishing gradient due to long-term dependencies. The side effect, 

Fig. 3. The first group (G1) of experimental data before and after preprocessing: (a1) original input; (a2) preprocessed input; (b1) original ground truth; (b2) 
preprocessed labels. 

Table 1 
Experimental conditions of nine groups of samples.  

Index Strain Hot air 
temperature 
(◦C) 

Hot air 
velocity  
(m/s) 

Initial solid content 
(wt%) 

Initial droplet volume 
(μL) 

Duration 
(s) 

Absolute humidity 
(kg/kg) 

Sampling number of survival 
ratio 

G1 LLC 70 0.75 10 2 270 0.0001 12 
G2 LLC 90 0.75 10 2 270 0.0001 12 
G3 LLC 110 0.75 10 2 120 0.0001 7 
G4 LLC 70 0.75 20 2 300 0.0001 13 
G5 LLC 90 0.75 20 2 300 0.0001 13 
G6 LLC 110 0.75 20 2 120 0.0001 7 
G7 LLC 70 0.45 20 1 400 0.0005 10 
G8 LLC 70 0.45 20 2 400 0.0005 10 
G9 LGG 70 1.00 20 2 360 0.0005 11  
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however, is that the influence of the future will also be considered. To 
block the influence of the future, a subsequent mask is added, or rather, 
off-diagonal elements of the upper right of the scaled QKT are set to 
zeros, resulting finally in a lower triangular attention matrix A. 

Then, canonical self-attention generates Q and K by affine 
transformation 

Q = WQX+bQ, K = WKX+ bK (6)  

where X denotes the input matrix, WQ and WK the weight matrices, bQ 

and bK the bias vectors. Li et al. [38] introduced causal convolution to 
the self-attention module to enhance the significance of the local 
context. As shown in Fig. 4, there are dX (i.e., 3 in this case corre
sponding to the three input variables) input channels and dK output 
channels, and the shape of the kernel is dK × dX × 3, where the number 3 
is called the “kernel size”. For each output channel c (1 ≤ c ≤ dK), the 
corresponding convolutional kernel ϕc,⋆, ⋆ scans from the start to the 
end over the input vector X to generate the corresponding output Qc, ⋆ or 
Kc, ⋆, where the subscript ⋆ denotes all the elements of one dimension. 
To obtain the Q and K elements mathematically, for each c and each time 
instant i, carry out Hadamard product (aka point-wise product) of the 
kernel ϕc,⋆, ⋆ and the input submatrix X⋆, i− 1:i+1 containing the i − 1-th 
to i + 1-th elements of X and then sum up, i.e., 

Qc,i = conv
(

X,ϕQ
c,⋆,⋆

)

i
+ bQ

c = bQ
c +

∑
X⋆,i− 1:i+1 ⊙ ϕQ

c,⋆,⋆

Kc,i = conv
(

X,ϕK
c,⋆,⋆

)

i
+ bK

c = bK
c +

∑
X⋆,i− 1:i+1 ⊙ ϕK

c,⋆,⋆

(7)  

where ⊙ denotes the Hadamard product. Because such an operation 
with a kernel of size 3 will reduce the sequence length from l to l − 2, the 

input is extended in advance at the start with zero paddings of length 
two to maintain the sequence length, which is called “causal convolu
tion” [43]. 

Generally, compared with self-attention attending to two arbitrary 
positions, causal convolution can pay more attention to the locality, 
namely the previous two states Statei− 1 and Statei− 2 in our study. 
Therefore, the CSAN architecture is able to capture both long-term and 
short-term historical information. 

3.2. Multi-task prediction on the linear scale and log scale 

From this part, a superscript “^” will be used to denote a predicted 
value. As mentioned earlier, our model needs to predict well on both 
linear and log scales, which is a difficult task for a single CSAN. Multi- 
task learning with multi-label data is needed. A possible scheme is to 
train two scale-specific CSANs individually, one for the linear scale and 
the other for the log scale, and finally integrate them. Notwithstanding, 
now that the only difference between the two CSANs lies in the scale, 
there is a reasonable prospect that representations learned by the bot
tom layer, namely the convolutional self-attention layers (CSALs, see 
Fig. 4) of the two CSANs should be similar. Hence, a better scheme is to 
design a double-branch CSAN with shared CSALs near the input, but 
individual MLPs near the output (see Fig. 5), to produce linear and log 
output separately. In this way, our CSANs is expected to learn more 
general representation when computing time and costs are saved. In the 
double-branch model, each branch will pay close attention to the local 
features near the start or the end of the inactivation process. Integrating 
them will give us reliable prediction of the dynamics. 

For simplicity here, the two branches are combined linearly to pro

Fig. 4. The working principle of CSAN.  
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duce the coupled output ŝcp. To measure comprehensively whether the 
output is closer to zero or one, the arithmetical mean s of the linear 
output ŝlnr and the log output on the linear scale ŝlg is used in Eq. (8). 

ŝcp =
[
1 − wlg(s)

]
× ŝlnr + wlg(s) × ŝlg,

s =
ŝlnr + ŝlg

2

(8) 

How to design the weight function of the log branch wlg depends on 
our confidence in each branch. Through training, it is believed that the 
linear branch is more reliable near the start of the process whereas the 
log branch is more reliable near the end, with 1/ ln 10 as the cut-off 
point where they are equally reliable (see the explanation in the Sec
tion S2 in the supplementary material). Therefore, wlg should satisfy 
three conditions:  

i) wlg monotonically decreases with the increase of the arithmetical 
mean s;  

ii) wlg ranges from zero to one;  
iii) 1 − wlg(1/ ln 10) = wlg(1/ ln 10) 

A sigmoidal function is obtained according to the above con
straints (see a graph in Fig. 5). 

wlg(s) =
1.008

1 + 9.428 × 10− 3exp(10.78s)
(9)   

3.3. Human intervention 

Human-in-the-loop learning should be adopted to correct prediction 
errors, bringing a priori knowledge to our model. The intervention in
cludes three steps:  

Step 1. set the initial survival ratio ŝ0 to be one;  
Step 2. clamp ŝ between 10− 7 and 1;  
Step 3. exert the constraint of monotonic decreasing on ŝ. 

3.4. Training, validation and test methods 

3.4.1. Performance metrics 
In Fig. 5, there are two places where performance metrics are 

needed. One is to compare the model output after intervention with the 
ground truth, and the other is to compare branch outputs with the labels. 

We shall discuss the model output first. For one certain group of 
samples, R-Squared value R2 is used for accuracy quantification because 
it eliminates the impact of dimension compared to Mean Squared Error 
(MSE). R2 is calculated as follows in our work. 

Fig. 5. The working flow of our double-branch CSAN from training and validation to testing.  
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R2 = 1 −

∑n

i=1

(
ygrd

i − ŷgrd
i

)2

∑n

i=1

(

ygrd
i − 1

n

∑n

j=1
ygrd

j

)2, y : s or lgs (10) 

Here only the ground truth ygrd values are involved when calculating 
R2. This is because the augmented labels yitp are less reliable than ygrd 

since they are generated by interpolation. 
Branch output is compared with labels to calculate the value of the 

loss function L for the ensuing backward propagation. R2 is inappro
priate for L calculation since the denominator term may lead to nu
merical instability during gradient descending. In comparison, MSE is 
more appropriate due to its simplicity, with the following general 
expression, 

MSE(y, ŷ) =
1
n
∑n

i=1
(yi − ŷi)

2
, y : s or lgs (11) 

Note that it is not suggested to calculate L with the coupled output 
ŝcp or the model output ŝ because the former after linear combination 
may lead to gradient exploding, and the latter after human intervention 
may lead to zero gradients. See Section S3 in the supplementary material 
for the proof. 

To weaken the influence of sitp, a new loss function Interpolated MSE 
(IMSE) is defined by introducing an interpolation weight coefficient witp 

with the following expression, 

IMSE(y, ŷ)=def 1
ngrd

∑ngrd

i=1

(
ygrd

i − ŷgrd
i

)2
+

witp

nitp

∑nitp

j=1

(
yitp

j − ŷitp
j

)2
, y : s or lgs

(12)  

where the possible values of witp are between zero and one. 
Specifically, IMSE will be reduced to MSE if and only if witp = 1. For 

the two branches, let 

L lnr = IMSE(s, ŝlnr), L lg = IMSE
(
lgs, lgŝlg

)
(13) 

Regardless of the scale difference of L lnr and L lg, it was found that 
the total loss converged well when L lnr and L lg were summed up 
directly, 

L = L lnr +L lg (14)  

3.4.2. Hyperparameter optimization 
Hyperparameters (aka algorithm parameters) are those parameters 

that cannot be optimized by the gradient descending method [44]. In 
our algorithm, nine hyperparameters are to be optimized. They are the 
batch size nb (1 or 2), the learning rate η (2 × 10− 4 to 10− 2), the weight 
decay coefficient λ (10− 6 to 10− 3), the flood level bf [45] (10− 3 to 5 ×
10− 2), witp (0 to 1), the feature number of K, dK (30 to 150), the feature 
number of V, dV (30 to 150), the number of heads nh (1 to 6) w.r.t. multi- 
head self-attention and the dropout ratio pd (0.1 to 0.7). All of them 
except the above-defined witp are commonly used in ANN training and 
will not be explained any further. The optimization was carried out with 
the help of the Optuna framework [46]. 

3.4.3. Training and leave-one-out validation 
With D test kept unseen during training, validation is necessary to 

prevent overfitting. D train+vali was further split into D train and D vali. To 
make the most of the available data and get a more accurate model, the 
Leave-One-Out method [44] was used to acquire six trials of split 
training-validation data, i.e., 

Trial 1D vali,1 = {G1}, D train,1 = {G2,G4,G6,G7,G8}
… 
Trial iD vali,i = {Gi}, D train,i = D train+vali − D vali,i 

… 
Trial 6D vali,6 = {G8}, D train,6 = {G1,G2,G4,G6,G7}

During Trial i, with the optimum combination of hyperparameters, 
train and validate the CSAN simultaneously for 2000 epochs1 with 
PyTorch [47]. As Fig. 5 shows, update the optimum CSAN with the 
current one once the weighted mean of the R2 values on the two scales 
over D train,i and D vali,i, i.e. 

∑

i
wiR2

i where i ∈ {(lnr, train), (lnr,vali), (lg, 

train), (lg,vali)}, exceeds its current maximum. 
Six optimum models CSAN1, CSAN2, …, CSAN6 will be acquired 

through six trials. Multi-person decision is employed once again by 
taking the arithmetical mean of their predicted results as our final 
output, which is termed Bagging in ensemble learning [44]. The Bagging 
model will be used for the following testing and evaluation. 

4. Results and discussion 

4.1. Training and validation 

After hyperparameter optimization, we trained each of the six CSANs 
for 2000 epochs. The Bagging CSAN predicted accurately over D train+vali 
on both scales and the lowest R2 reached 0.9673. 

4.2. Model testing and comparison 

In this part, we will test the model by running it over D test. At the 
same time, we shall make comparison by fitting and testing models re
ported in the literature (see Table S1.1 and Table S1.2 in the supple
mentary material) to demonstrate the outstanding performance of our 
Bagging CSAN model. 

It can be seen from Fig. 6 that the shoulder and tailing in G3 and G5 
are both well predicted with R2 >0.98 on the linear scale and >0.99 on 
the log scale. Even for a different strain LGG which is not seen by our 
model before, we still get quite good R2 values >0.94. All these good 
results demonstrate the effectiveness of our modeling methods and that 
our CSAN has learned some universal knowledge about inactivation 
beyond the LLC strain. 

Other models have been adopted and compared. In terms of the ki
netic ones, the required kd should be calculated from the previous PCH 
interpolated survival curves to ensure consistency with the data pre
processing in Section 2.2.3. Also, the non-positive kd values were dis
carded to acquire valid lgkd as what Fu et al. [19] did. For the remaining 
probabilistic ones, we first fitted each survival curve with the Weibull, 
logistic, or the modified Gompertz equation and then correlated the 
equation parameters with the drying conditions, i.e., Ta, hot air velocity 
va, the initial solid content of the carrier ws,0 and the initial droplet 
volume Vd,0 by means of the multivariate linear regression. 

The fitted parameter values are listed in Table S1.1 and Table S1.2, 
among which the parameter values of Model 8 are not given due to the 
failure of convergence. The R-Squared values are compared in Fig. 7. It 
can be concluded that:  

i) It is also harder for other models to make reliable prediction on the 
log scale than on the linear one. Such a difference between scales 
demonstrates the need for a multi-task model.  

ii) Our CSAN model outperforms the other models with the highest R2 

values under all four circumstances. The probabilistic models 
perform better than the kinetic ones in terms of Rtest, lg

2 . An expla
nation is that most probabilistic models (except Model 10) have 
lower asymptotes but the kinetic ones do not, making the prediction 
of the former more reasonable in most cases. 

Models 1–9 (kinetics models): lim
t→∞

lgst = lim
t→∞

− 1
2.303kd,t t = − ∞ 

Model 11 (probabilistic model): lim
t→∞

lgst = lim
t→∞

{
α +

1 An epoch is completed when all samples in D train and D vali have been seen 
once. 
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ω− α
1+exp[4σ(τ− lgt)/(ω− α) ]

}
= ω 

Model 12 (probabilistic model): lim
t→∞

lgst = lim
t→∞

{Cexp[ − exp(A +

Bt) ] − Cexp[ − exp(A) ] } = − Cexp[ − exp(A) ]
Model 0 (CSAN): st ≥ 10− 7 (∀t ≥ 0) ⇒  lg st ≥ − 7 (∀t ≥ 0) 
Notwithstanding the lower asymptotes, the probabilistic models 

Fig. 6. The predicted results of the Bagging model over D test on (a) the linear scale and (b) the log scale.  

Fig. 7. R-Squared values of different models over D train+vali and D test on two scales. Model 0 represents the CSAN model developed in this work. The R2 here is the 
arithmetical mean of the six (G1, G2, G4, G6, G7 and G8 of D train+vali) or three (G3 and G5 of D test) R2 values. 
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cannot predict well in terms of Rfit, lg
2 . This is because the unfitted ω of 

Model 11 and the badly fitted A and C of Model 12 (R2 < 0.52) which 
all decide the lower asymptotes. 

An exception is Model 10 with no lower asymptote but the second 
highest Rfit, lg

2 , demonstrating the applicability of the Weibull model 
to describing the survival curve. Meanwhile, the much lower Rtest, lg

2 

shows that it has overfitted the data. It implies that the model pa
rameters, α and β, were not properly correlated with the drying 
conditions. 

In summary, the listed kinetic models fail to describe the tailing, 
and most listed probabilistic ones are not suitable for such multi-task 
prediction as well. 

4.3. Quantitative analysis of the historical influence 

The attention matrix is natural to show the correlation between any 
two states, or rather, the influence of Statej on Statei, which is exactly the 
value of Ai, j. Ai, j is normalized to the range of [0,1] so that an Ai, j nearer 
to one implies a greater influence. Here two attention matrices are 
visualized in Fig. 8, one from D train+vali and the other from D test, to 
explore what our CSANs have learned about the inactivation history. 

Generally, the places nearer to the diagonal appear lighter, with the 
diagonal being the lightest and the left bottom corner being the darkest. 
From this result, it is deemed by our CSANs that the nearer a past state is, 
the stronger influence it will have on the current state. This is in line 
with common sense that the past influence may diminish with time. It is 
also to be noted that the colors do not always become lighter from the 
left bottom to the right top, which is partly because the initial degree and 
the decay rate of the influence from each state may vary from one 
another. From this perspective, our CSANs did learn some intrinsic 
knowledge about the inactivation process. Also, influences of the past 
states, especially those near past ones, should never be neglected. 

4.4. Optimization of SDD towards enhanced cell viability and solvent 
removal 

The developed CSAN model was utilized to optimize the single 
droplet drying process. It was formulated as a bi-objective optimization 
problem with an expectation to simultaneously improve cell viability 
and solvent removal level. The design variables include hot air tem
perature (Ta), hot air velocity (va), initial solid content (ws, 0), initial 
droplet volume (Vd, 0), and duration of drying (t). Many models have 
been proposed to predict the drying kinetics of a single droplet [40], 
among which the Reaction Engineering Approach (REA) [48,49] was 
chosen due to its power of prediction. The predicted drying kinetics, i.e., 
the dynamic evolution of Td and X, were then fed into CSAN to predict 

the inactivation dynamics. The terminal solid content was calculated 
from the terminal moisture content as, 

ws =
1

X + 1
(15) 

Coupling the two models in series gives an REA-CSAN model, which 
can predict the terminal solid content and survival ratio with specified 
drying conditions. 

The design space S was specified as {(Ta,va,ws, 0,Vd, 0, t) | 50 ≤ Ta 
(◦C) ≤ 90,0 ≤ va (m/s) ≤ 2,5 ≤ ws, 0 (wt%) ≤ 30,0.5 ≤ Vd, 0 (μL) ≤ 3,50 
≤ t (s) ≤ 300}. Other drying conditions were fixed: the air humidity was 
0.0001 kg/kg and the chamber pressure was 101,325 Pa. S was thor
oughly explored by Monte Carlo sampling using a uniform distribution. 
As a result, a total of 50,000 in-silico experiments were carried out. For 
each experiment, the corresponding terminal solid content and cell 
survival ratio (after drying) can be plotted as a data point in Fig. 9 (see 
green squares). After imposing minimum values of two objectives (i.e., 
0.65 survival ratio and 90 wt% solid content), one can identify two 
optimal solutions from this plot (see red stars in the figure). The values 
of decision variables corresponding to these two optimal solutions are 

Fig. 8. Heatmaps of the lower triangular attention matrices of the CSALs: (a) G2 from D train+vali; (b) G5 from D test.  

Fig. 9. Solution candidates and optimal solutions of the bi-objective optimi
zation problem. Each data point in this plot shows the values of two objectives 
(i.e. the survival ratio and the terminal solid content) of one specific experi
ment, which can be either in silico or physical. The shaded area shows a space 
for desirable solutions. 
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listed in Table 2. Experimental measurements are also plotted in the 
same figure as blue triangles to show the superiority of the identified 
optimal solutions. 

Note that, each data point in this figure only shows values of two 
objectives of a specific experiment. The corresponding values of five 
decision variables can be found in a user-interactive interface in the 
HTML file uploaded as a supplementary material, where people can 
hover the mouse over a data point to check decision variable values. 

5. Conclusion 

A multi-task CSAN model was developed to predict the probiotic 
survival dynamics during SDD. It was found that the CSALs can capture 
and utilize effectively the historical drying information, whose in
fluences should not be neglected. Compared with kinetics and proba
bilistic models, our model performed well on both linear- and log-scales 
predictions. It successfully captured the shoulder and tailing features 
commonly demonstrated by the experimental survival curves. It has 
been shown to be generalized well even for a new strain LGG whose data 
have not been used for training. This capability implies that our model 
has learned some intrinsic knowledge about cell inactivation. By thor
ough exploration of the design space with the developed model, two 
optimal conditions of SDD have been found, under which the terminal 
solid content and the cell survival ratio can reach up to 91 wt% and 0.71 
respectively. We want to point out that the focus and unique contribu
tion of this work is the characterization of the inactivation of probiotics. 
The particle morphology, which is for sure important, has not been 
studied here. It will be addressed in our future work. Moreover, in 
future, coupled with CFD models for spray dryers, such a neural network 
model is expected to be able to guide industrial-scale production of 
powders containing active probiotics through spray drying. 

Notation 

Latin letter 

T temperature (◦C) 
t exposure time (s) 
kd inactivation rate constant (s-1) 
x a certain property of the cell surroundings (the unit is decided 

by the quantity it denotes) 
Q query matrix (− ) 
q query vector (− ) 
A attention matrix (− ) 
W weight matrix (− ) 
d number of channels (− ) 
wlg weight function of the log branch 
y a general term to denote s or lgs (− ) 
bf flood level (− ) 
pd dropout ratio (− ) 
w content (wt%) 
V volume (μL) 
X average moisture content on a dry basis (kg/kg) 
s survival ratio (− ) 
State state of a cell (− ) 
N cell count (cfu/mL) 
K key matrix (− ) 
k key vector (− ) 
X input matrix (− ) 
b bias vector (− ) 
s arithmetic mean of ŝlnr and ŝlg (− ) 
R2 R-Squared value (− ) 
L loss function (− ) 
nb batch size (− ) 
nh number of heads regarding the attention mechanism (− ) 

v velocity (m/s) 
S design space 

Greek letter 

μ mean of x (the same as that of x) 
ϕ convolutional kernel (− ) 
λ coefficient of weight decay (− ) 
σ standard deviation (the same as that of x) 
η learning rate (− ) 

Superscript 

~ preprocessed 
grd ground truth 
^ predicted 
itp interpolated 

Subscript 

d droplet 
0 time zero 
vali validation 
t[i] time instant of the i-th sampling point 
⋆ all the elements along one dimension 
lnr linear scale 
cp coupling 
s solid 
t time instant t 
train training 
test testing 
c a certain channel 
i − 1 : i + 1 the i − 1-th to i + 1-th elements along one dimension 
lg log scale 
a ambient; air 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.powtec.2022.118042. 

Table 2 
The values of objectives and decision variables corresponding to the two optimal 
solutions.  

ws (wt%) s Ta (◦C) va (m/s) ws,0 (wt%) Vd,0 (μL) t (s) 

91.0 0.71 50 1.93 5.2 0.7 278 
91.7 0.69 51 1.67 5.4 0.6 265  
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