1. Efficient Orange–Red Delayed Fluorescence Organic Light‐Emitting Diodes with External Quantum Efficiency over 26%
Xie FM; Wu P; Zou SJ; Li YQ; Cheng T; Xie M; Tang JX*; Zhao X*;
Adv. Electron. Mater. 2019, , ASAP.
https://doi.org/10.1002/aelm.201900843
2. Design of a One-Dimensional Stacked Spin Peierls System with Room Temperature Switching from QM Predictions
Yang H; Cheng T*; Goddard WA*; Ren XM*;
J. Phys. Chem. Lett. 2019, , ASAP.
https://doi.org/10.1021/acs.jpclett.9b02219
3. Weakening Hydrogen Adsorption on Nickel via Interstitial Nitrogen Doping Promotes Bifunctional Hydrogen Electrocatalysis in Alkaline Solution
Wang TT; Wang M; Yang H; Xu MQ; Zuo GD; Feng K; Xie M; Deng J; Zhong J; Zhou W; Cheng T*; Li YG*;
Energy Environ. Sci. 2019, , ASAP.
https://doi.org/10.1039/C9EE01743G
4. Rational Molecular Design of Dibenzo[a,c]phenazine-based Thermally Activated Delayed Fluorescence Emitters for Orange-Red OLEDs with EQE up to 22.0%
Xie FM; Li HZ; Dai GL; Li YQ; Cheng T; Xie M; Tang JX*; Zhao X*;
ACS Appl. Mater. Interfaces 2019, 11, 26144-26151.
https://doi.org/10.1021/acsami.9b06401
5. Identifying Active Sites for CO2 Reduction on Dealloyed Gold Surfaces by Combining Machine Learning with Multiscale Simulations
Chen YL; Huang YF; Cheng T; Goddard WA*;
J. Am. Chem. Soc. 2019, 141, 11651-11657.
https://doi.org/10.1021/jacs.9b04956
6. Formation of Carbon-Nitrogen Bonds in Carbon Monoxide Electrolysis
Jouny M; Lv JJ; Cheng T; Ko BH; Zhu JJ; Goddard WA*; Jiao F*;
Nat. Chem. 2019, 11, 846-851.
https://doi.org/10.1038/s41557-019-0312-z
(Jouny M, Lv JJ, and Cheng T contributed equally)
7. Benzo-Fused Periacenes or Double Helicenes? Different Cy-clodehydrogenation Pathways on Surface and in Solution
Zhong QG; Hu YB; Niu KF; Zhang HM; Biao Y; Daniel E; Jalmar T; Cheng T; Andre S; Akimitsu N*; Klaus M*; Chi LF*;
J. Am. Chem. Soc. 2019, 141, 7399-7406.
https://doi.org/10.1021/jacs.9b01267
8. Single Atom Tailoring Platinum Nanocatalysts for High Performance Multifunctional Electrocatalysis
Li MF; Duanmu KN; Wan CZ; Cheng T; Zhang L; Dai S; Chen WX; Zhao ZP; Li P; Fei HL; Zhu YM; Yu R; Luo J; Zang KT; Lin ZY; Ding MN; Huang J; Sun HT; Pan XQ; Guo JH; Goddard WA; Sautet P*; Huang Y*; Duan XF*;
Nat. Catal. 2019, 2, 495–503.
https://doi.org/10.1038/s41929-019-0279-6
(Li MF, Duanmu KN, Wan CZ and Cheng T contributed equally)
https://www.nature.com/articles/s41929-019-0302-y
9. Electrocatalysis at Organic-Metal Interfaces: Identification of Structure-Reactivity Relationships for CO2 Reduction at Modified Cu Surfaces
Buckley AK; Lee M; Cheng T; Kazantsev RV; Larson DM; Goddard WA; Tostel FD*; Toma FM*;
J. Am. Chem. Soc 2019, 141, 7355–7364.
https://doi.org/10.1021/jacs.8b13655
10. Dramatic Differences in Carbon Dioxide Adsorption and Initial Steps of Reduction Between Silver and Copper
Ye YF; Yang H; Qian J; Su HY; Lee KJ; Cheng T; Xiao H; Yano J*; Goddard WA*; Crumlin EJ*;
Nat. Commun. 2019, 10, 1875.
https://doi.org/10.1038/s41467-019-09846-y
11. Reaction Intermediates During Operando Electrocatalysis Identified from Full Solvent Quantum Mechanics Molecular Dynamics
Cheng T; Fortunelli A; Goddard WA*;
Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 7718-7722.
https://doi.org/10.1073/pnas.1821709116
2018
12. Discrete Dimers of Redox-Active and Fluorescent Perylene Diimide-Based Rigid Isosceles Triangles in the Solid State
Nalluri SKM; Zhou JW; Cheng T; Liu ZC; Nguyen MT; Chen TY; Patel HA; Krzyaniak MD; Goddard WA; Wasielewski MR*; Stoddart JF*;
J. Am. Chem. Soc. 2018, 141, 1290–1303.
https://doi.org/10.1021/jacs.8b11201
13. Highly Active Star Decahedron Cu Nanocatalyst for Hydrocarbon Production at Low Overpotentials
Choi C; Cheng T; Expinosa MF; Fei HL; Duan XF; Goddard WA; Huang Y*;
Adv. Mater. 2019, 31, 1805405.
https://doi.org/10.1002/adma.201805405
14. Identification of the Selective Sites for Electrochemical Reduction of CO to C2+ Products on Copper Nanoparticles by Combining Reactive Force Fields, Density Functional Theory, and Machine Learning
Huang YF; Chen YL; Cheng T; Goddard WA*;
ACS Energy Lett. 2018, 3, 2983–2988.
https://doi.org/10.1021/acsenergylett.8b01933
15. Molecular Russian Dolls
Cai K; Lipke MC; Liu ZC; Nelson J; Shi Y; Cheng T; Cheng CY; Shen DK; Han JM; Vemuri S; Feng YN; Stern CL; Goddard WA; Wasielewski MR; Stoddart JF*;
Nat. Commun. 2018, 9, 5275.
https://doi.org/10.1038/s41467-018-07673-1
16. The Neighboring Component Effect in a Tristable [2]Rotaxane
Wang YP; Cheng T; Sun JL; Liu ZC; Frasconi M; Goddard WA; Stoddart JF*;
J. Am. Chem. Soc. 2018, 140, 13827–13834.
https://doi.org/10.1021/jacs.8b08519
17. First Principles Based Reaction Kinetics from Reactive Molecular Dynamics Simulations: Application to Hydrogen Peroxide Decomposition
Ilyin DV; Goddard WA*; Oppenheim JJ; Cheng T;
Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 18202-18208.
https://doi.org/10.1073/pnas.1701383115
18. In silico Optimization of Organic-inorganic Hybrid Perovskites for Photocatalytic Hydrogen Evolution Reaction in Acidic Solution
Wang L; Goddard WA*; Cheng T; Xiao H; Li YY*;
J. Phys. Chem. C 2018, 122, 20918-20922.
https://doi.org/10.1021/acs.jpcc.8b07380
19. Electrochemical CO Reduction Builds Solvent Water into Oxygenate Products
Lum YW; Cheng T; Goddard WA*; Ager JW*;
J. Am. Chem. Soc. 2018, 140, 9337-9340.
https://doi.org/10.1021/jacs.8b03986
(Lum YW and Cheng T contributed equally)
20. First Principles Based Multiscale Atomistic Methods for Input into First Principles Non-equilibrium Transport Across Interfaces
Cheng T; Jaramillo-Botero A; An Q; Ilyin DV; Naserifar S; Goddard WA*;
Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 18193-18201.
https://doi.org/10.1073/pnas.1800035115
21. Explanation of Dramatic pH-Dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High pH.
Cheng T; Wang L; Boris MV; Goddard WA*;
J. Am. Chem. Soc. 2018, 140, 7787-7790.
http://dx.doi.org/10.1021/jacs.8b04006
(J. Am. Chem. Soc. Spotlights)
https://pubs.acs.org/doi/pdfplus/10.1021/jacs.8b05954
22. Surface Ligand Promotion of Carbon Dioxide Reduction through Stabilizing Chemisorbed Reactive Intermediates
Wang ZJ*; Wu LN; Sun K; Chen T; Jiang ZH; Cheng T*; Goddard WA*;
J. Phys. Chem. Lett. 2018, 9, 3057-3061.
http://dx.doi.org/10.1021/acs.jpclett.8b00959
23. Ordered Three-fold Symmetric Graphene Oxide/Buckled Graphene/Graphene Heterostructures on MgO (111) by Carbon Molecular Beam Epitaxy
Ladewig C; Cheng T; Randle MD; Bird J; Olanipekun O; Dowben PA; Kelber J*; Goddard WA*;
J. Mater. Chem. C 2018, 6, 4225-4233.
http://dx.doi.org/10.1039/C8TC00178B
(Ladewig C and Cheng T contributed equally)
24. Reaction Mechanisms and Sensitivity for Silicon Nitrocarbamate and Related Systems from Quantum Mechanics Reaction Dynamics
Zhou TT; Cheng T; Zybin SZ; Goddard WA*; Huang FL;
J. Mater. Chem. A 2018, 6, 5082-5097.
http://dx.doi.org/10.1039/C7TA10998A
(2018 Journal of Materials Chemistry A HOT Papers)
25. Pb-activated Amine-assisted Photocatalytic Hydrogen Evolution Reaction on Organic-Inorganic Perovskites
Wang L*; Xiao H; Cheng T; Li YY*; Goddard WA*;
J. Am. Chem. Soc. 2018, 140, 1994–1997.
http://dx.doi.org/10.1021/jacs.7b12028
(J. Am. Chem. Soc. Cover Publication)
https://pubs.acs.org/toc/jacsat/140/6
26. Predicted Detonation Properties at the Chapman-Jouguet State for Proposed Energetic Materials (MTO and MTO3N) from Combined ReaxFF and Quantum Mechanics Reactive Dynamics
Zhou T; Zybin SV; Goddard WA*; Cheng T; Naserifar S; Jaramillo-Botero A; Huang FL;
Phys. Chem. Chem. Phys. 2018, 20, 3953-3969.
http://dx.doi.org/10.1039/C7CP07321F
2017
27. Bulk Properties of Amorphous Lithium Dendrites
Aryanfar A*; Cheng T; Goddard WA;
ECS Trans. 2017, 80, 365-370.
http://dx.doi.org/10.1149/08010.0365ecst
28. Ultrahigh Mass Activity for Carbon Dioxide Reduction Enabled by Gold-iron Core-shell Nanoparticles
Sun K; Cheng T; Wu LN; Hu YF; Zhou JG; Maclennan A; Jiang ZH; Gao YZ; Goddard WA*; Wang ZJ*;
J. Am. Chem. Soc. 2017, 139, 15608–15611.
http://dx.doi.org/10.1021/jacs.7b09251
(Sun K and Cheng T contributed equally)
(J. Am. Chem. Soc. Cover Publication)
http://pubs.acs.org/subscribe/covers/jacsat/jacsat_v139i044-2.jpg?0.7583455086716329
29. Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance
Cheng T; Xiao H; Goddard WA*;
J. Am. Chem. Soc. 2017, 139, 11642-11645.
http://dx.doi.org/10.1021/jacs.7b03300
30. Predicted Structures of the Active Sites Responsible for the Improved Reduction of Carbon Dioxide by Gold Nanoparticles
Cheng T; Huang YF; Xiao H; Goddard WA*;
J. Phys. Chem. Lett. 2017, 8, 3317-3320.
http://dx.doi.org/10.1021/acs.jpclett.7b01335
31. Quantum Mechanics Reactive Dynamics Study of Solid Li-Electrode/Li6PS5Cl-Electrolyte Interface
Cheng T; Merinov BV*; Morozov S; Goddard WA;
ACS Energy Lett. 2017, 2, 1454-1459.
http://dx.doi.org/10.1021/acsenergylett.7b00319
32. Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects
Hajilar S; Shafei B*; Cheng T; Jaramillo-Botero A;
J. Phys. Chem. A 2017, 121, 4688-4697.
http://dx.doi.org/10.1021/acs.jpca.7b02824
33. Epitaxial Growth of Cobalt Oxide Phases on Ru(0001) for Spintronic Device Applications
Olanipekun O; Ladewig C; Kelber J*; Randle MD; Nathawat J; Kwan CP; Bird JP; Chakraborti P; Dowben PA; Cheng T; Goddard WA;
Semicond. Sci. Technol. 2017, 32, 095011.
https://doi.org/10.1088/1361-6641/aa7c58
34. The Cu Metal Embedded in Oxidized Matrix Catalyst to Promote CO2 Activation and CO Dimerization for Efficient and Selective Electrochemical Reduction of CO2
Xiao H; Goddard WA*; Cheng T; Liu YY;
Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 6685-6688.
http://dx.doi.org/10.1073/pnas.1702405114
35. Subsurface Oxide Plays a Critical Role in CO2 Activation by Copper (111) Surfaces to Form Chemisorbed CO2, the First Step in Reduction of CO2
Favaro M; Xiao H; Cheng T; Goddard WA*; Yano J*; Crumlin EJ*;
Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 6706-6711.
http://dx.doi.org/10.1073/pnas.1701405114
36. Intramolecular Energy and Electron Transfer Within a Diazaperopyrenium-Based Cyclophane
Gong XR; Young RM; Hartlieb KJ; Miller C; Wu YL; Xiao H; Li P; Hafezi N; Zhou JW; Ma L; Cheng T; Goddard WA; Farha OK; Hupp JT; Wasielewski MR*; Stoddart JF*;
J. Am. Chem. Soc. 2017, 139, 4107-4116.
http://dx.doi.org/10.1021/jacs.6b13223
37. Size-Matched Radical Multivalency
Lipke MC; Cheng T; Wu YL; Arslan H; Xiao H; Wasielewski MR; Goddard WA; Stoddart JF*;
J. Am. Chem. Soc. 2017, 139, 3986-3998.
http://dx.doi.org/10.1021/jacs.6b09892
38. Full Atomistic Reaction Mechanism with Kinetics for CO Reduction on Cu(100) from ab initio Molecular Dynamics Free-energy Calculations at 298 K.
Cheng T; Xiao H; Goddard WA*;
Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 1795-1800.
http://dx.doi.org/10.1073/pnas.1612106114
(direct submission)
39. Mechanism and Kinetics of the Electrocatalytic Reaction Responsible for the High Cost of Hydrogen Fuel Cells
Cheng T; Goddard WA*; An Q; Xiao H; Merinov B; Morozov S;
Phys. Chem. Chem. Phys. 2017, 19, 2666-2673.
http://dx.doi.org/10.1039/C6CP08055C
(2017 PCCP HOT Articles)
40. Atomistic Mechanisms Underlying Selectivities in C1 and C2 Products from Electrochemical Reduction of CO on Cu(111)
Xiao H; Cheng T; Goddard WA*;
J. Am. Chem. Soc. 2017, 139, 130-136.
http://dx.doi.org/10.1021/jacs.6b06846
41. Nucleation of Graphene Layers On Magnetic Oxides: Co3O4 (111) and Cr2O3 (0001) from Theory and Experiment
Beatty J; Cheng T; Cao Y; Driver M; Goddard WA*; Kelber J*;
J. Phys. Chem. Lett. 2017, 8, 188-192.
http://dx.doi.org/10.1021/acs.jpclett.6b02325
(Beatty J and Cheng T contributed equally)
2016
42. Ultrafine Jagged Platinum Nanowires Enable Ultrahigh Mass Activity for the Oxygen Reduction Reaction
Li MF; Zhao ZP; Cheng T; Fortunelli A; Chen CY; Yu R; Zhang QH; Gu L; Merinov B; Lin ZY; Zhu EB; Yu T; Jia QY; Guo JH; Zhang L; Goddard WA*; Huang Y*; Duan XF*;
Science 2016, 354, 1414-1419.
http://dx.doi.org/10.1126/science.aaf9050
43. Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water
Cheng T; Xiao H; Goddard WA*;
J. Am. Chem. Soc. 2016, 138, 13802-13805.
http://dx.doi.org/10.1021/jacs.6b08534
(Reported by JCAP highlight with linkage below)
https://solarfuelshub.org/102016-rh-qm-with-explicit-water
44. Influence of Constitution and Charge on Radical Pairing Interactions in Trisradical Tricationic Complexes
Cheng CY; Cheng T; Xiao H; Krzyaniak MD; Wang YP; McGonigal PR; Frasconi M; Barnes JC; Fahrenbach AC; Wasielewski MR; Goddard WA; Stoddart JF*;
J. Am. Chem. Soc. 2016, 138, 8288-8300.
http://dx.doi.org/10.1021/jacs.6b04343
45. Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu(111)
Xiao H; Cheng T; Goddard WA*; Sundararaman R;
J. Am. Chem. Soc. 2016, 138, 483-486.
http://dx.doi.org/10.1021/jacs.5b11390
2015
46. Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0
Cheng T; Xiao H; Goddard WA*;
J. Phys. Chem. Lett. 2015, 6, 4767-4773.
http://dx.doi.org/10.1021/acs.jpclett.5b02247
47. Annealing Kinetics of Electrodeposited Lithium Dendrites
Aryanfar A*; Cheng T; Colussi AJ; Goddard WA; Hoffmann MR;
J. Chem. Phys. 2015, 143, 134701.
http://dx.doi.org/10.1063/1.4930014
(reported by AIP publishing Extending a Battery's Lifetime with Heat)
https://phys.org/news/2015-10-battery-lifetime.html
48. Rescaling of Metal Oxide Nanocrystals for Energy Storage Having High Capacitance and Energy Density with Robust Cycle Life
Jeong HM; Choi KM; Cheng T; Lee DK; Zhou RJ; Ock IW; Milliron DJ; Colussi AJ; Goddard WA*; Kang JK*;
Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 7914-7919.
http://dx.doi.org/10.1073/pnas.1503546112
49. Initial Decomposition Reactions of Bicyclo-HMX [BCHMX or cis-1,3,4,6 Tetranitrooctahydroimidazo-[4,5-d]imidazole] from Quantum Molecular Dynamics Simulations
Ye CC; An Q; Goddard WA*; Cheng T; Zybin ZV; Ju XH;
J. Phys. Chem. C 2015, 119, 2290-2296.
http://dx.doi.org/10.1021/jp510328d
50. Anisotropic Impact Sensitivity and Shock Induced Plasticity of TKX-50 (Dihydroxylammonium 5,5-bis(tetrazole)-1,1-diolate) Single Crystals: From Large-Scale Molecular Dynamics Simulations
An Q; Cheng T; Goddard WA*; Zybin ZV;
J. Phys. Chem. C 2015, 119, 2196-2207.
http://dx.doi.org/10.1021/jp510951s
(An Q and Cheng T contributed equally)
51. Reaction Mechanism from Quantum Molecular Dynamics for the Initial Thermal Decomposition of 2, 4, 6-triamino-1, 3, 5-triazine-1, 3, 5-trioxide (MTO) and 2, 4, 6-trinitro-1, 3, 5-triazine-1, 3, 5-trioxide (MTO3N), Promising Green Energetic Materials
Ye CC; An Q; Cheng T; Zybin ZV; Naserifar S; Goddard WA*;
J. Mater. Chem. A 2015, 3, 12044-12050.
http://dx.doi.org/10.1039/C5TA02486B
52. Initial Decomposition Reaction of Di-tetrazine-tetroxide (Dtto) from Quantum Molecular Dynamics: Implications for a Promising Energetic Material
Ye CC; An Q; Goddard WA*; Cheng T; Liu WG; Zybin ZV; Ju XH;
J. Mater. Chem. A 2015, 3, 1972-1978.
http://dx.doi.org/10.1039/C4TA05676K
2014
53. Initial Steps of Thermal Decomposition of Dihydroxylammonium 5,5 -bistetrazole-1,1 -diolate Crystals from Quantum Mechanics
An Q; Liu WG; Goddard WA*; Cheng T; Zybin ZV; Xiao H;
J Phys. Chem. C 2014, 118, 27175-27181.
http://dx.doi.org/10.1021/jp509582x
54. Atomistic Explanation of Shear-Induced Amorphous Band Formation in Boron Carbide
An Q; Goddard WA*; Cheng T;
Phys. Rev. Lett. 2014, 113, 095501.
http://dx.doi.org/10.1103/PhysRevLett.113.095501
55. Deformation Induced Solid/Solid Phase Transitions in Gamma Boron
An Q; Goddard WA*; Xiao H; Cheng T;
Chem. Mater. 2014, 26, 4289-4298.
http://dx.doi.org/10.1021/cm5020114
56. Adaptive Accelerated ReaxFF Reactive Dynamics with Validation from Simulating Hydrogen Combustion
Cheng T; Goddard WA*; Goddard WA*; Jaramillo-Botero A*; Sun H*;
J. Am. Chem. Soc. 2014, 136, 9434-9442.
http://dx.doi.org/10.1021/ja5037258
before 2014
57. Adsorption of Ethanol Vapor on Mica Surface under Different Relative Humidities: A Molecular Simulation Study
Cheng T; Sun H*;
J. Phys. Chem. C 2012, 116, 16436-16446.
http://dx.doi.org/10.1021/jp3020595
58. Prediction of the Mutual Solubility of Water and Dipropylene Glycol Dimethyl Ether Using Molecular Dynamics Simulation
Cheng T; Li F; Dai JX; Sun H*;
Fluid Phase Equilibria. 2012, 314, 1-6.
http://dx.doi.org/10.1016/j.fluid.2011.10.013
59. Molecular Engineering of Microporous Crystals: (Iv) Crystallization Process of Microporous Aluminophosphate Alpo4-11
Cheng T; Xu J; Li X; Zhang B; Yan WF*; Yu JH; Sun H; Deng F; Xu RR*;
Micropor. Mesopor. Mater. 2012, 152, 190-207.
http://dx.doi.org/10.1016/j.micromeso.2011.11.034
60. Classic Force Field for Predicting Surface Tension and Interfacial Properties of Sodium Dodecyl Sulfate
Cheng T; Chen Q; Li F; Sun H*;
J. Phys. Chem. B 2010, 114, 13736-13744.
http://dx.doi.org/10.1021/jp107002x
61. On the Accuracy of Predicting Shear Viscosity of Molecular Liquids Using the Periodic Perturbation Method
Zhao LF; Cheng T; Sun H*;
J. Chem. Phys. 2008, 129, 144501.
http://dx.doi.org/10.1063/1.2936986
62. One Force Field for Predicting Multiple Thermodynamic Properties of Liquid and Vapor Ethylene Oxide
Li XF; Zhao LF; Cheng T; Liu LC; Sun H*;
Fluid Phase Equilib. 2008, 274, 36-43.
http://dx.doi.org/10.1016/j.fluid.2008.06.021
