程涛

发布时间:2025-11-24浏览次数:4336

1.     Efficient Orange–Red Delayed Fluorescence Organic Light‐Emitting Diodes with External Quantum Efficiency over 26%

           Xie FM; Wu P; Zou SJ; Li YQ; Cheng T; Xie M; Tang JX*; Zhao X*;

           Adv. Electron. Mater. 2019, , ASAP.

           https://doi.org/10.1002/aelm.201900843

2.     Design of a One-Dimensional Stacked Spin Peierls System with Room Temperature Switching from QM Predictions

           Yang H; Cheng T*; Goddard WA*; Ren XM*;

           J. Phys. Chem. Lett. 2019, , ASAP.

           https://doi.org/10.1021/acs.jpclett.9b02219

3.     Weakening Hydrogen Adsorption on Nickel via Interstitial Nitrogen Doping Promotes Bifunctional Hydrogen Electrocatalysis in Alkaline Solution

Wang TT; Wang M; Yang H; Xu MQ; Zuo GD; Feng K; Xie M; Deng J; Zhong J; Zhou W; Cheng T*; Li YG*;

           Energy Environ. Sci. 2019, , ASAP.

           https://doi.org/10.1039/C9EE01743G

4.     Rational Molecular Design of Dibenzo[a,c]phenazine-based Thermally Activated Delayed Fluorescence Emitters for Orange-Red OLEDs with EQE up to 22.0%

           Xie FM; Li HZ; Dai GL; Li YQ; Cheng T; Xie M; Tang JX*; Zhao X*;

           ACS Appl. Mater. Interfaces 2019, 11, 26144-26151.

           https://doi.org/10.1021/acsami.9b06401

5.     Identifying Active Sites for CO2 Reduction on Dealloyed Gold Surfaces by Combining Machine Learning with Multiscale Simulations

           Chen YL; Huang YF; Cheng T; Goddard WA*;

           J. Am. Chem. Soc. 2019, 141, 11651-11657.

           https://doi.org/10.1021/jacs.9b04956

6.     Formation of Carbon-Nitrogen Bonds in Carbon Monoxide Electrolysis

           Jouny M; Lv JJ; Cheng T; Ko BH; Zhu JJ; Goddard WA*; Jiao F*;

           Nat. Chem. 2019, 11, 846-851.

           https://doi.org/10.1038/s41557-019-0312-z

           (Jouny M, Lv JJ, and Cheng T contributed equally)

7.     Benzo-Fused Periacenes or Double Helicenes? Different Cy-clodehydrogenation Pathways on Surface and in Solution

Zhong QG; Hu YB; Niu KF; Zhang HM; Biao Y; Daniel E; Jalmar T; Cheng T; Andre S; Akimitsu N*; Klaus M*; Chi LF*;

           J. Am. Chem. Soc. 2019, 141, 7399-7406.

    https://doi.org/10.1021/jacs.9b01267

8.     Single Atom Tailoring Platinum Nanocatalysts for High Performance Multifunctional Electrocatalysis

Li MF; Duanmu KN; Wan CZ; Cheng T; Zhang L; Dai S; Chen WX; Zhao ZP; Li P; Fei HL; Zhu YM; Yu R; Luo J; Zang KT; Lin ZY; Ding MN; Huang J; Sun HT; Pan XQ; Guo JH; Goddard WA; Sautet P*; Huang Y*; Duan XF*;

           Nat. Catal. 2019, 2, 495–503.

           https://doi.org/10.1038/s41929-019-0279-6

           (Li MF, Duanmu KN, Wan CZ and Cheng T contributed equally)

           https://www.nature.com/articles/s41929-019-0302-y

9.     Electrocatalysis at Organic-Metal Interfaces: Identification of Structure-Reactivity Relationships for CO2 Reduction at Modified Cu Surfaces

Buckley AK; Lee M; Cheng T; Kazantsev RV; Larson DM; Goddard WA; Tostel FD*; Toma FM*;

           J. Am. Chem. Soc 2019, 141, 7355–7364.

           https://doi.org/10.1021/jacs.8b13655

10.   Dramatic Differences in Carbon Dioxide Adsorption and Initial Steps of Reduction Between Silver and Copper

Ye YF; Yang H; Qian J; Su HY; Lee KJ; Cheng T; Xiao H; Yano J*; Goddard WA*; Crumlin EJ*;

           Nat. Commun. 2019, 10, 1875.

           https://doi.org/10.1038/s41467-019-09846-y

11.   Reaction Intermediates During Operando Electrocatalysis Identied from Full Solvent Quantum Mechanics Molecular Dynamics

           Cheng T; Fortunelli A; Goddard WA*;

           Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 7718-7722.

           https://doi.org/10.1073/pnas.1821709116

 

2018

 

12.   Discrete Dimers of Redox-Active and Fluorescent Perylene Diimide-Based Rigid Isosceles Triangles in the Solid State

Nalluri SKM; Zhou JW; Cheng T; Liu ZC; Nguyen MT; Chen TY; Patel HA; Krzyaniak MD; Goddard WA; Wasielewski MR*; Stoddart JF*;

           J. Am. Chem. Soc. 2018, 141, 1290–1303.

           https://doi.org/10.1021/jacs.8b11201

13.   Highly Active Star Decahedron Cu Nanocatalyst for Hydrocarbon Production at Low Overpotentials

           Choi C; Cheng T; Expinosa MF; Fei HL; Duan XF; Goddard WA; Huang Y*;

           Adv. Mater. 2019, 31, 1805405.

           https://doi.org/10.1002/adma.201805405

14.   Identification of the Selective Sites for Electrochemical Reduction of CO to C2+ Products on Copper Nanoparticles by Combining Reactive Force Fields, Density Functional Theory, and Machine Learning

           Huang YF; Chen YL; Cheng T; Goddard WA*;

           ACS Energy Lett. 2018, 3, 2983–2988.

           https://doi.org/10.1021/acsenergylett.8b01933

15.   Molecular Russian Dolls

Cai K; Lipke MC; Liu ZC; Nelson J; Shi Y; Cheng T; Cheng CY; Shen DK; Han JM; Vemuri S; Feng YN; Stern CL; Goddard WA; Wasielewski MR; Stoddart JF*;

           Nat. Commun. 2018, 9, 5275.

           https://doi.org/10.1038/s41467-018-07673-1

16.   The Neighboring Component Effect in a Tristable [2]Rotaxane

           Wang YP; Cheng T; Sun JL; Liu ZC; Frasconi M; Goddard WA; Stoddart JF*;

           J. Am. Chem. Soc. 2018, 140, 13827–13834.

           https://doi.org/10.1021/jacs.8b08519

17.   First Principles Based Reaction Kinetics from Reactive Molecular Dynamics Simulations: Application to Hydrogen Peroxide Decomposition

           Ilyin DV; Goddard WA*; Oppenheim JJ; Cheng T;

           Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 18202-18208.

           https://doi.org/10.1073/pnas.1701383115

18.   In silico Optimization of Organic-inorganic Hybrid Perovskites for Photocatalytic Hydrogen Evolution Reaction in Acidic Solution

           Wang L; Goddard WA*; Cheng T; Xiao H; Li YY*;

           J. Phys. Chem. C 2018, 122, 20918-20922.

           https://doi.org/10.1021/acs.jpcc.8b07380

19.   Electrochemical CO Reduction Builds Solvent Water into Oxygenate Products

           Lum YW; Cheng T; Goddard WA*; Ager JW*;

           J. Am. Chem. Soc. 2018, 140, 9337-9340.

           https://doi.org/10.1021/jacs.8b03986

           (Lum YW and Cheng T contributed equally)

20.   First Principles Based Multiscale Atomistic Methods for Input into First Principles Non-equilibrium Transport Across Interfaces

           Cheng T; Jaramillo-Botero A; An Q; Ilyin DV; Naserifar S; Goddard WA*;

           Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 18193-18201.

           https://doi.org/10.1073/pnas.1800035115

21.   Explanation of Dramatic pH-Dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High pH.

           Cheng T; Wang L; Boris MV; Goddard WA*;

           J. Am. Chem. Soc. 2018, 140, 7787-7790.

           http://dx.doi.org/10.1021/jacs.8b04006

           (J. Am. Chem. Soc. Spotlights)

           https://pubs.acs.org/doi/pdfplus/10.1021/jacs.8b05954

22.   Surface Ligand Promotion of Carbon Dioxide Reduction through Stabilizing Chemisorbed Reactive Intermediates

           Wang ZJ*; Wu LN; Sun K; Chen T; Jiang ZH; Cheng T*; Goddard WA*;

           J. Phys. Chem. Lett. 2018, 9, 3057-3061.

           http://dx.doi.org/10.1021/acs.jpclett.8b00959

23.   Ordered Three-fold Symmetric Graphene Oxide/Buckled Graphene/Graphene Heterostructures on MgO (111) by Carbon Molecular Beam Epitaxy

Ladewig C; Cheng T; Randle MD; Bird J; Olanipekun O; Dowben PA; Kelber J*; Goddard WA*;

           J. Mater. Chem. C 2018, 6, 4225-4233.

           http://dx.doi.org/10.1039/C8TC00178B

           (Ladewig C and Cheng T contributed equally)

24.   Reaction Mechanisms and Sensitivity for Silicon Nitrocarbamate and Related Systems from Quantum Mechanics Reaction Dynamics

           Zhou TT; Cheng T; Zybin SZ; Goddard WA*; Huang FL;

           J. Mater. Chem. A 2018, 6, 5082-5097.

    http://dx.doi.org/10.1039/C7TA10998A

           (2018 Journal of Materials Chemistry A HOT Papers)

25.   Pb-activated Amine-assisted Photocatalytic Hydrogen Evolution Reaction on Organic-Inorganic Perovskites

           Wang L*; Xiao H; Cheng T; Li YY*; Goddard WA*;

           J. Am. Chem. Soc. 2018, 140, 1994–1997.

           http://dx.doi.org/10.1021/jacs.7b12028

           (J. Am. Chem. Soc. Cover Publication)

           https://pubs.acs.org/toc/jacsat/140/6

26.   Predicted Detonation Properties at the Chapman-Jouguet State for Proposed Energetic Materials (MTO and MTO3N) from Combined ReaxFF and Quantum Mechanics Reactive Dynamics

Zhou T; Zybin SV; Goddard WA*; Cheng T; Naserifar S; Jaramillo-Botero A; Huang FL;

           Phys. Chem. Chem. Phys. 2018, 20, 3953-3969.

           http://dx.doi.org/10.1039/C7CP07321F

 

2017

 

27.   Bulk Properties of Amorphous Lithium Dendrites

           Aryanfar A*; Cheng T; Goddard WA;

           ECS Trans. 2017, 80, 365-370.

           http://dx.doi.org/10.1149/08010.0365ecst

28.   Ultrahigh Mass Activity for Carbon Dioxide Reduction Enabled by Gold-iron Core-shell Nanoparticles

Sun K; Cheng T; Wu LN; Hu YF; Zhou JG; Maclennan A; Jiang ZH; Gao YZ; Goddard WA*; Wang ZJ*;

           J. Am. Chem. Soc. 2017, 139, 15608–15611.

           http://dx.doi.org/10.1021/jacs.7b09251

           (Sun K and Cheng T contributed equally)

           (J. Am. Chem. Soc. Cover Publication)

           http://pubs.acs.org/subscribe/covers/jacsat/jacsat_v139i044-2.jpg?0.7583455086716329

29.   Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance

    Cheng T; Xiao H; Goddard WA*;

    J. Am. Chem. Soc. 2017, 139, 11642-11645.

    http://dx.doi.org/10.1021/jacs.7b03300

30.   Predicted Structures of the Active Sites Responsible for the Improved Reduction of Carbon Dioxide by Gold Nanoparticles

    Cheng T; Huang YF; Xiao H; Goddard WA*;

    J. Phys. Chem. Lett. 2017, 8, 3317-3320.

    http://dx.doi.org/10.1021/acs.jpclett.7b01335

31.   Quantum Mechanics Reactive Dynamics Study of Solid Li-Electrode/Li6PS5Cl-Electrolyte Interface

    Cheng T; Merinov BV*; Morozov S; Goddard WA;

    ACS Energy Lett. 2017, 2, 1454-1459.

    http://dx.doi.org/10.1021/acsenergylett.7b00319

32.   Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects

    Hajilar S; Shafei B*; Cheng T; Jaramillo-Botero A;

    J. Phys. Chem. A 2017, 121, 4688-4697.

    http://dx.doi.org/10.1021/acs.jpca.7b02824

33.   Epitaxial Growth of Cobalt Oxide Phases on Ru(0001) for Spintronic Device Applications

    Olanipekun O; Ladewig C; Kelber J*; Randle MD; Nathawat J; Kwan CP; Bird JP; Chakraborti P; Dowben PA; Cheng T; Goddard WA;

    Semicond. Sci. Technol. 2017, 32, 095011.

    https://doi.org/10.1088/1361-6641/aa7c58

34.   The Cu Metal Embedded in Oxidized Matrix Catalyst to Promote CO2 Activation and CO Dimerization for Efficient and Selective Electrochemical Reduction of CO2

    Xiao H; Goddard WA*; Cheng T; Liu YY;

    Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 6685-6688.

    http://dx.doi.org/10.1073/pnas.1702405114

35.   Subsurface Oxide Plays a Critical Role in CO2 Activation by Copper (111) Surfaces to Form Chemisorbed CO2, the First Step in Reduction of CO2

    Favaro M; Xiao H; Cheng T; Goddard WA*; Yano J*; Crumlin EJ*;

    Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 6706-6711.

    http://dx.doi.org/10.1073/pnas.1701405114

36.   Intramolecular Energy and Electron Transfer Within a Diazaperopyrenium-Based Cyclophane

    Gong XR; Young RM; Hartlieb KJ; Miller C; Wu YL; Xiao H; Li P; Hafezi N; Zhou JW; Ma L; Cheng T; Goddard WA; Farha OK; Hupp JT; Wasielewski MR*; Stoddart JF*;

    J. Am. Chem. Soc. 2017, 139, 4107-4116.

    http://dx.doi.org/10.1021/jacs.6b13223

37.   Size-Matched Radical Multivalency

    Lipke MC; Cheng T; Wu YL; Arslan H; Xiao H; Wasielewski MR; Goddard WA; Stoddart JF*;

    J. Am. Chem. Soc. 2017, 139, 3986-3998.

    http://dx.doi.org/10.1021/jacs.6b09892

38.   Full Atomistic Reaction Mechanism with Kinetics for CO Reduction on Cu(100) from ab initio Molecular Dynamics Free-energy Calculations at 298 K.

    Cheng T; Xiao H; Goddard WA*;

    Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 1795-1800.

    http://dx.doi.org/10.1073/pnas.1612106114

    (direct submission)

39.   Mechanism and Kinetics of the Electrocatalytic Reaction Responsible for the High Cost of Hydrogen Fuel Cells

    Cheng T; Goddard WA*; An Q; Xiao H; Merinov B; Morozov S;

    Phys. Chem. Chem. Phys. 2017, 19, 2666-2673.

    http://dx.doi.org/10.1039/C6CP08055C

    (2017 PCCP HOT Articles)

40.   Atomistic Mechanisms Underlying Selectivities in C1 and C2 Products from Electrochemical Reduction of CO on Cu(111)

    Xiao H; Cheng T; Goddard WA*;

    J. Am. Chem. Soc. 2017, 139, 130-136.

    http://dx.doi.org/10.1021/jacs.6b06846

41.   Nucleation of Graphene Layers On Magnetic Oxides: Co3O4 (111) and Cr2O3 (0001) from Theory and Experiment

    Beatty J; Cheng T; Cao Y; Driver M; Goddard WA*; Kelber J*;

    J. Phys. Chem. Lett. 2017, 8, 188-192.

    http://dx.doi.org/10.1021/acs.jpclett.6b02325

    (Beatty J and Cheng T contributed equally)

 

2016

 

42.   Ultrafine Jagged Platinum Nanowires Enable Ultrahigh Mass Activity for the Oxygen Reduction Reaction

    Li MF; Zhao ZP; Cheng T; Fortunelli A; Chen CY; Yu R; Zhang QH; Gu L; Merinov B; Lin ZY; Zhu EB; Yu T; Jia QY; Guo JH; Zhang L; Goddard WA*; Huang Y*; Duan XF*;

    Science 2016, 354, 1414-1419.

    http://dx.doi.org/10.1126/science.aaf9050

43.   Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water

    Cheng T; Xiao H; Goddard WA*;

    J. Am. Chem. Soc. 2016, 138, 13802-13805.

    http://dx.doi.org/10.1021/jacs.6b08534

    (Reported by JCAP highlight with linkage below)

    https://solarfuelshub.org/102016-rh-qm-with-explicit-water

44.   Influence of Constitution and Charge on Radical Pairing Interactions in Trisradical Tricationic Complexes

    Cheng CY; Cheng T; Xiao H; Krzyaniak MD; Wang YP; McGonigal PR; Frasconi M; Barnes JC; Fahrenbach AC; Wasielewski MR; Goddard WA; Stoddart JF*;

    J. Am. Chem. Soc. 2016, 138, 8288-8300.

    http://dx.doi.org/10.1021/jacs.6b04343

45.   Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu(111)

    Xiao H; Cheng T; Goddard WA*; Sundararaman R;

    J. Am. Chem. Soc. 2016, 138, 483-486.

    http://dx.doi.org/10.1021/jacs.5b11390

 

2015

 

46.   Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0

    Cheng T; Xiao H; Goddard WA*;

    J. Phys. Chem. Lett. 2015, 6, 4767-4773.

    http://dx.doi.org/10.1021/acs.jpclett.5b02247

47.   Annealing Kinetics of Electrodeposited Lithium Dendrites

    Aryanfar A*; Cheng T; Colussi AJ; Goddard WA; Hoffmann MR;

    J. Chem. Phys. 2015, 143, 134701.

    http://dx.doi.org/10.1063/1.4930014

    (reported by AIP publishing Extending a Battery's Lifetime with Heat)

    https://phys.org/news/2015-10-battery-lifetime.html

48.   Rescaling of Metal Oxide Nanocrystals for Energy Storage Having High Capacitance and Energy Density with Robust Cycle Life

    Jeong HM; Choi KM; Cheng T; Lee DK; Zhou RJ; Ock IW; Milliron DJ; Colussi AJ; Goddard WA*; Kang JK*;

    Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 7914-7919.

    http://dx.doi.org/10.1073/pnas.1503546112

49.   Initial Decomposition Reactions of Bicyclo-HMX [BCHMX or cis-1,3,4,6 Tetranitrooctahydroimidazo-[4,5-d]imidazole] from Quantum Molecular Dynamics Simulations

    Ye CC; An Q; Goddard WA*; Cheng T; Zybin ZV; Ju XH;

    J. Phys. Chem. C 2015, 119, 2290-2296.

    http://dx.doi.org/10.1021/jp510328d

50.   Anisotropic Impact Sensitivity and Shock Induced Plasticity of TKX-50 (Dihydroxylammonium 5,5-bis(tetrazole)-1,1-diolate) Single Crystals: From Large-Scale Molecular Dynamics Simulations

    An Q; Cheng T; Goddard WA*; Zybin ZV;

    J. Phys. Chem. C 2015, 119, 2196-2207.

    http://dx.doi.org/10.1021/jp510951s

    (An Q and Cheng T contributed equally)

51.   Reaction Mechanism from Quantum Molecular Dynamics for the Initial Thermal Decomposition of 2, 4, 6-triamino-1, 3, 5-triazine-1, 3, 5-trioxide (MTO) and 2, 4, 6-trinitro-1, 3, 5-triazine-1, 3, 5-trioxide (MTO3N), Promising Green Energetic Materials

    Ye CC; An Q; Cheng T; Zybin ZV; Naserifar S; Goddard WA*;

    J. Mater. Chem. A 2015, 3, 12044-12050.

    http://dx.doi.org/10.1039/C5TA02486B

52.   Initial Decomposition Reaction of Di-tetrazine-tetroxide (Dtto) from Quantum Molecular Dynamics: Implications for a Promising Energetic Material

    Ye CC; An Q; Goddard WA*; Cheng T; Liu WG; Zybin ZV; Ju XH;

    J. Mater. Chem. A 2015, 3, 1972-1978.

    http://dx.doi.org/10.1039/C4TA05676K

 

2014

 

53.   Initial Steps of Thermal Decomposition of Dihydroxylammonium 5,5 -bistetrazole-1,1 -diolate Crystals from Quantum Mechanics

    An Q; Liu WG; Goddard WA*; Cheng T; Zybin ZV; Xiao H;

    J Phys. Chem. C 2014, 118, 27175-27181.

    http://dx.doi.org/10.1021/jp509582x

54.   Atomistic Explanation of Shear-Induced Amorphous Band Formation in Boron Carbide

    An Q; Goddard WA*; Cheng T;

    Phys. Rev. Lett. 2014, 113, 095501.

    http://dx.doi.org/10.1103/PhysRevLett.113.095501

55.   Deformation Induced Solid/Solid Phase Transitions in Gamma Boron

    An Q; Goddard WA*; Xiao H; Cheng T;

    Chem. Mater. 2014, 26, 4289-4298.

    http://dx.doi.org/10.1021/cm5020114

56.   Adaptive Accelerated ReaxFF Reactive Dynamics with Validation from Simulating Hydrogen Combustion

    Cheng T; Goddard WA*; Goddard WA*; Jaramillo-Botero A*; Sun H*;

    J. Am. Chem. Soc. 2014, 136, 9434-9442.

    http://dx.doi.org/10.1021/ja5037258

 

before 2014

 

57.   Adsorption of Ethanol Vapor on Mica Surface under Different Relative Humidities: A Molecular Simulation Study

    Cheng T; Sun H*;

    J. Phys. Chem. C 2012, 116, 16436-16446.

    http://dx.doi.org/10.1021/jp3020595

58.   Prediction of the Mutual Solubility of Water and Dipropylene Glycol Dimethyl Ether Using Molecular Dynamics Simulation

    Cheng T; Li F; Dai JX; Sun H*;

    Fluid Phase Equilibria. 2012, 314, 1-6.

    http://dx.doi.org/10.1016/j.fluid.2011.10.013

59.   Molecular Engineering of Microporous Crystals: (Iv) Crystallization Process of Microporous Aluminophosphate Alpo4-11

    Cheng T; Xu J; Li X; Zhang B; Yan WF*; Yu JH; Sun H; Deng F; Xu RR*;

    Micropor. Mesopor. Mater. 2012, 152, 190-207.

    http://dx.doi.org/10.1016/j.micromeso.2011.11.034

60.   Classic Force Field for Predicting Surface Tension and Interfacial Properties of Sodium Dodecyl Sulfate

    Cheng T; Chen Q; Li F; Sun H*;

    J. Phys. Chem. B 2010, 114, 13736-13744.

    http://dx.doi.org/10.1021/jp107002x

61.   On the Accuracy of Predicting Shear Viscosity of Molecular Liquids Using the Periodic Perturbation Method

    Zhao LF; Cheng T; Sun H*;

    J. Chem. Phys. 2008, 129, 144501.

    http://dx.doi.org/10.1063/1.2936986

62.   One Force Field for Predicting Multiple Thermodynamic Properties of Liquid and Vapor Ethylene Oxide

    Li XF; Zhao LF; Cheng T; Liu LC; Sun H*;

    Fluid Phase Equilib. 2008, 274, 36-43.

    http://dx.doi.org/10.1016/j.fluid.2008.06.021