邓滔

发布时间:2025-09-04浏览次数:931

主要研究方向:大模型垂直领域应用、大模型终端部署微型机器学习模型、嵌入式人工智能


当前指导的研究生取得的成果:

1)Dongyu Chen, Tao Deng, He Huang, Juncheng Jia, Mianxiong Dong, Di Yuan, Keqin Li, “Mobility-Aware Multi-Task Decentralized Federated Learning for Vehicular Networks: Modeling, Analysis, and Optimization”, IEEE Transactions on Mobile Computing, accept, 2025. (CCF A类期刊)

2)Rong Li, Tao Deng, Siwei Feng, Mingjie Sun, Juncheng Jia, ConSense: Continually Sensing Human Activity with WiFi via Growing and Picking, in Proc. AAAI, 2025. (CCF A会议,Oral presentation, Top 4.6%)

3)Dongyu Chen,Tao Deng, Juncheng Jia, Siwei Feng, Di Yuan, Mobility-aware decentralized federated learning with joint optimization of local iteration and leader selection for vehicular networks, Computer Networks,2025(CCF B期刊

4)Zihao Jiang, Tao Deng, Rong Li, Dongyu Chen,"FECG-KD: Fisher Enhanced and Clustering Guided Knowledge Distillation for Low-Bit Post-training Quantization," International Conference on Intelligent Computing, 2025. (CCF C会议)



研究内容如下:

一. 基于WiFi信号的持续人体动作行为识别

  简介基于 WiFi 信号的持续人体动作行为识别技术不仅具有非接触式、无需佩戴额外设备的优点,能够为用户提供无感且便捷的体验,还具备较高的成本效益与易于部署的特性。随着相关技术的不断优化与完善,其将在智能家居、智能安防、医疗健康监测、智能办公等多个领域发挥更为关键的作用,为人们的生活与工作带来更多智能化的便利与安全保障。

  成果1) Rong Li, Tao Deng, Siwei Feng, Mingjie Sun, Juncheng Jia, "ConSense: Continually Sensing Human Activity with WiFi via Growing and Picking," in Proc. AAAI, 2025. (CCF A,Oral presentation, Top 4.6%,论文第一作者为研究生李荣同学)

                2) Rong Li, Tao Deng, Siwei Feng, He Huang, Juncheng Jia, Di Yuan, and Keqin Li, "WECAR: An End-Edge Collaborative Inference and Training Framework for WiFi-Based Continuous Human Activity Recognition," arXiv:2503.07669, 在审

                3)邓滔,李荣,冯思为,朱巧明,一种交互式持续学习轻量化模型训练与推理方法,发明专利,申请中。

                4)系统:下面的demo介绍了一种交互式持续学习轻量化模型协同训练与推理的框架,用Jestson nano作为边缘服务器训练增量模型,ESP32作为终端设备做持续模型推理




二. 面向车联网场景的联邦学习研究

简介随着车联网(Internet of Vehicles, IoV)技术的快速发展,车辆与车辆、车辆与基础设施之间的互联互通成为现实。车联网为自动驾驶和智能交通系统提供了强大的支持,但也面临着数据隐私保护、通信开销以及模型训练效率等挑战。联邦学习(Federated Learning, FL)作为一种新兴的分布式机器学习技术,为解决这些问题提供了新的思路


 成果1) Dongyu Chen, Tao Deng, Juncheng Jia, Siwei Feng, Di Yuan, "Mobility-aware decentralized federated learning with joint optimization of local iteration and leader selection for vehicular networks," Computer Networks,已录用(CCF B,论文第一作者为研究生陈东宇同学)

                2) Dongyu Chen, Tao Deng, He Huang, Jia Jia, Mianxiong Dong, Di Yuan, Keqin Li, "Mobility-Aware Multi-Task Decentralized Federated Learning for Vehicular Networks: Modeling, Analysis, and Optimization," arXiv:2503.06468, 在审


三. 大模型终端部署

       简介随着人工智能技术的飞速发展,大模型的应用场景不断拓展,从云端逐渐向终端设备渗透。大模型终端部署是指将大模型算法轻量化后,内嵌到终端设备中,使其能够在本地运行,从而实现更高效、更安全、更实时的智能服务

成果Zihao Jiang, Tao Deng, et al, "CoPruning: Exploring the Parameter-Gradient Nonlinear Correlation for Neural Network Pruning Using Copula Function," 在修改,(论文第一作者为研究生蒋子豪同学)


四. 最近,我们尝试利用大模型在做一些研究工作;在大模型垂直应用领域,也有些研究工作与系统样机已经完成和正在准备。