1. Transport of self-propelled particles across a porous medium: trapping, clogging, and the Matthew effect
Shen-jia Shi, Hui-shu Li, Guo-qiang Feng, Wen-de Tian* and Kang Chen*; Phys. Chem. Chem. Phys. 22, 14052 (2020)
DOI: 10.1039/d0cp01923b
2. Vortex formation of spherical self-propelled particles around a circular obstacle
Jun-xing Pan, Hua Wei, Mei-jiao Qi, Hui-fang Wang, Jin-jun Zhang*, Wen-de Tian* and Kang Chen*; Soft Matter 16, 5545 (2020)
DOI: 10.1039/d0sm00277a
3. Assembly structures and dynamics of active colloidal cells
Wen-jie Shan, Fei Zhang, Wen-de Tian* and Kang Chen*; Soft Matter 15, 4761 (2019)
DOI: 10.1039/c9sm00619b
4. Unfolding of a diblock chain and its anomalous diffusion induced by active particles
Yi-qi Xia, Zhuang-lin Shen, Wen-de Tian*, and Kang Chen*; J. Chem. Phys. 150, 154903 (2019)
DOI: 10.1063/1.5095850
5. Globule-stretch transition of a self-attracting chain in the repulsive active particle bath
Yi-qi Xia, Wen-de Tian*, Kang Chen*, and Yu-qiang Ma*; Phys. Chem. Chem. Phys. 21, 4487 (2019)
DOI: 10.1039/C8CP05976D
6. Shape transformation and manipulation of a vesicle by active particles
Chao Wang, Yong-kun Guo, Wen-de Tian*, and Kang Chen*; J. Chem. Phys.150, 044907 (2019)
DOI:10.1063/1.5078694
7. Microrotor of a chain-grafted colloidal disk immersed in the active bath: The impact of particle concentration, grafting density, and chain rigidity
Chao Wang, Hui-shu Li, Yu-qiang Ma, Wen-de Tian*, and Kang Chen*; J. Chem. Phys.149, 164902 (2018)
DOI: 10.1063/1.5051467
8. Molecular dynamics simulation of G-actin interacting with PAMAM dendrimers
Zhuang-lin Shen, Wen-de Tian*, Kang Chen*, Yu-qiang Ma*; Journal of Molecular Graphics and Modelling 84, 145-151 (2018)
DOI: 10.1016/j.jmgm.2018.06.012
9. Beating of grafted chains induced by active Brownian particles
Qiu-song Yang, Qing-wei Fan, Zhuang-lin Shen, Yi-qi Xia, Wen-de Tian*, and Kang Chen*; J. Chem. Phys. 148, 214904 (2018)
DOI: 10.1063/1.5029967
10. Spontaneous symmetry breaking induced unidirectional rotation of a chain-grafted colloidal particle in the active bath
Hui-shu Li, Chao Wang, Wen-de Tian*, Yu-qiang Ma, Cheng Xu, Ning Zheng* and Kang Chen*; Soft Matter13, 8031 – 8038 (2017)
DOI: 10.1039/C7SM01772C
*Cover article
11. Anomalous boundary deformation induced by enclosed active particles
Wen-de Tian*, Yan Gu, Yong-kun Guo, Kang Chen*; Chin. Phys. B 26 (10), 100502 (2017)
DOI: 10.1088/1674-1056/26/10/100502
12. Polymer-Nucleic Acid Interactions
Zhuang-lin Shen, Yi-qi Xia, Qiu-song Yang, Wen-de Tian*, Kang Chen* and Yu-qiang Ma*; Top. Curr. Chem. 375, 44 (2017)
DOI: 10.1007/s41061-017-0131-x
*Invited topical review article
13. 表面修饰富勒烯的聚酰胺-胺树枝状分子与生物膜的相互作用研究
郭永坤,王宛,田文得*,陈康*;高分子学报(Acta Polymerica Sinica)2016(10): 1418-1424
DOI: 10.11777/j.issn1000-3304.2016.16039
14. The unique role of bond length in the glassy dynamics of colloidal polymers
Bo-kai Zhang, Hui-shu Li, Jian Li, Kang Chen*, Wen-de Tian*, and Yu-qiang Ma*; Soft Matter 12, 8104-8111 (2016)
DOI: 10.1039/C6SM01386D
15. Transport coefficients and mechanical response in hard-disk colloidal suspensions
Bo-kai Zhang, Jian Li, Kang Chen, Wen-de Tian and Yu-qiang Ma; Chin. Phys. B 25, 161324 (2016)
DOI:10.1088/1674-1056/25/11/116101
16. Glassy dynamics of model colloidal polymers: The effect of “monomer” size
Jian Li, Bo-kai Zhang, Hui-shu Li, Kang Chen*, Wen-de Tian*, and Pei-qing Tong*; J. Chem. Phys. 144, 204509 (2016)
DOI: 10.1063/1.4952605
17. A New Self-Consistent Field Model of Polymer/Nanoparticle Mixture
Kang Chen*, Hui-shu Li, Bo-kai Zhang, Jian Li and Wen-de Tian*; Sci. Rep. 6, 20355 (2016)
DOI: 10.1038/srep20355
18. Brush in the bath of active particles: Anomalous stretching of chains and distribution of particles
Hui-shu Li, Bo-kai Zhang, Jian Li, Wen-de Tian*, and Kang Chen*; J. Chem. Phys. 143, 224903 (2015)
19. Interaction of fullerene chains and a lipid membrane via computer simulations
Wen-de Tian, Kang Chen and Yu-qiang Ma; RSC Adv. 4, 30215-30220 (2014)
DOI: 10.1039/C4RA04593A
20. Theory of activated dynamics and glass transition of hard colloids in two dimensions
Bo-kai Zhang, Hui-shu Li, Wen-de Tian, Kang Chen*, and Yu-qiang Ma*; J. Chem. Phys. 140, 094506 (2014)
21. Computational Investigations of a Peptide-Modified Dendrimer Interacting with Lipid Membranes
Chen-kun Tu, Kang Chen, Wen-de Tian, and Yu-qiang Ma; Macromol. Rapid Commun. 34, 1237 (2013)
DOI: 10.1002/marc.201300360
22. Theory of Yielding, Strain Softening, and Steady Plastic Flow in Polymer Glasses under Constant Strain Rate Deformation
Kang Chen and Kenneth S. Schweizer; Macromolecules 44, 3988 (2011)
DOI: 10.1021/ma200436w
23. Theory of aging, rejuvenation, and the nonequilibrium steady state in deformed polymer glasses
Kang Chen and Kenneth S. Schweizer; Phys. Rev. E 82, 041804 (2010)
DOI:10.1103/PhysRevE.82.041804
24. Molecular Theories of Segmental Dynamics and Mechanical Response in Deeply Supercooled Polymer Melts and Glasses
Kang Chen, Erica J. Saltzman and Kenneth S. Schweizer; Annu. Rev. Condens. Matter. Phys. 1, 277-300 (2010)
DOI: 10.1146/annurev-conmatphys-070909-104110
*Invited review article for the very first edition of Annual Review of Condensed Matter Physics
25. Segmental Dynamics in Polymers: From Cold Melts to Aging and Stressed Glasses
Kang Chen, Erica J. Saltzman and Kenneth S. Schweizer; J. Phys. Condens. Matter 21, 503101 (2009)
DOI:10.1088/0953-8984/21/50/503101
*Invited topical review article
26. Suppressed Segmental Relaxation as the Origin of Strain Hardening in Polymer Glasses
Kang Chen and Kenneth S. Schweizer; Phys. Rev. Lett. 102, 038301 (2009)
DOI:10.1103/PhysRevLett.102.038301
*Selected for the February 2, 2009 issue of Virtual Journal of Nanoscale Science & Technology
27. Theory of Nonlinear Creep in Polymer Glasses
Kang Chen, Kenneth S. Schweizer, Rebecca Stamm, Eunwoong Lee, and James M. Caruthers; J. Chem. Phys. 129, 184904 (2008)
DOI:10.1063/1.3008059
28. Theory of Physical Aging in Polymer Glasses
Kang Chen and Kenneth S. Schweizer; Phys. Rev. E 78, 031802 (2008)
DOI:10.1103/PhysRevE.78.031802
*Selected for the September 29, 2008 issue of Virtual Journal of Nanoscale Science & Technology
29. Microscopic Constitutive Equation Theory for the Nonlinear Mechanical Response of Polymer Glasses
Kang Chen and Kenneth S. Schweizer; Macromolecules 41, 5908-5918 (2008)
DOI:10.1021/ma800778v
30. Theory of relaxation, physical aging and mechanical properties of polymer glasses
Kenneth S. Schweizer and Kang Chen; Abstracts of Papers of The American Chemical Society 233, 22-POLY (2007)
31. Stress-enhanced Mobility and Dynamic Yielding in Polymer Glasses
Kang Chen and Kenneth S. Schweizer; Europhys. Lett. 79, 26006 (2007)
DOI:10.1209/0295-5075/79/26006
32. Molecular Theory of Physical Aging in Polymer Glasses
Kang Chen and Kenneth S. Schweizer; Phys. Rev. Lett. 98, 167802 (2007)
DOI:10.1103/PhysRevLett.98.167802
***Reported by medias in U.S., Australia, United Kingdom, Germany, Netherlands, South Korea, and China
33. Theory of Relaxation and Elasticity in Polymer Glasses
Kang Chen and Kenneth S. Schweizer; J. Chem. Phys. 126, 014904 (2007)
DOI:10.1063/1.2428306
34. Interactions Between Colloidal Particles Induced by Polymer Brushes Grafted onto the Substrate
Kang Chen and Yu-qiang Ma; J. Phys. Chem. B 109, 17617-17622 (2005)
DOI:10.1021/jp051403u
35. Ordering Mechanism of Asymmetric Diblock Copolymers Confined Between Polymer-grafted Surfaces
Chun-lai Ren, Kang Chen and Yu-qiang Ma; J. Chem. Phys. 122, 154904 (2005)
DOI:10.1063/1.1881012
36. Self-assembling Morphology Induced by Nanoscale Rods in a Phase-separating Mixture
Kang Chen and Yu-qiang Ma; Phys. Rev. E 65, 041501 (2002)
DOI:10.1103/PhysRevE.65.041501
37. Ordering Stripe Structures of Nanoscale Rods in Diblock Copolymer Scaffolds
Kang Chen and Yu-qiang Ma; J. Chem. Phys. 116, 7783-7786 (2002)
DOI:10.1063/1.1476313