期刊论文
详见:谷歌学术 https://scholar.google.com/citations?user=FgjW1UQAAAAJ&hl=en
ResearchGate https://www.researchgate.net/profile/Nianqiang-Li
Year 2023
[1] Wu J, Zeng Y, Zhou P, et al. Broadband chaos generation in VCSELs with intensity-modulated optical injection[J]. Optics & Laser Technology, 2023, 159: 108994.
[2] Huang Y, Gu S, Zeng Y, et al. Numerical investigation of photonic microwave generation in an optically pumped spin-VCSEL subject to optical feedback[J]. Optics Express, 2023, 31(6): 9827-9840.
[3] Zhou P, Tang Z, Zhu J, et al. Instantaneous frequency measurement using photonics-assisted broadband signal generation and processing[J]. IEEE Microwave and Wireless Technology Letters, 2023.
[4] Zeng Y, Zhou P, Huang Y, et al. Wideband and high-dimensional chaos generation using optically pumped spin-VCSELs[J]. Optics Express, 2023, 31(2): 948-963.
[5] Wang Y, Huang Y, Zhou P, et al. Dual-channel secure communication based on wideband optical chaos in semiconductor lasers subject to intensity modulation optical injection[J]. Electronics, 2023, 12(3): 509.
Year 2022
[1] Huang Y, Zhou P, Yang Y, et al. Enhanced performance of reservoir computing using multiple self-injection and mutual injection VCSELs[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 29(2): 1700109.
[2] Yang Y, Zhou P, Chen T, et al. Optical neuromorphic computing based on a large-scale laterally coupled laser array[J]. Optics Communications, 2022, 521: 128599.
[3] Huang Y, Gu S, Zeng Y, et al. Spatiotemporal chaos induces extreme events in a three-element laterally coupled laser array[J]. Optics Letters, 2022, 47(18): 4632-4635.
[4] Cai D, Yang Y, Zhou P, et al. Enhanced prediction performance of reservoir computing based on mutually delay-coupled semiconductor lasers via parameter mismatch[J]. Electronics, 2022, 11(16): 2577.
[5] Chen T, Zhou P, Huang Y, et al. Boolean logic gates implemented by a single photonic neuron based on a semiconductor Fano laser[J]. Optics Continuum, 2022, 1(8): 1859-1866.
[6] Mu P, Huang Y, Zhou P, et al. Extreme events in two laterally-coupled semiconductor lasers[J]. Optics Express, 2022, 30(16): 29435-29448.
[7] Zhou P, Zhu J, Zhang R, et al. Bandwidth-enhanced LFM waveform generator based on dynamic control of an optically injected semiconductor laser[J]. Optics Letters, 2022, 47(15): 3864-3867.
[8] Xie Y, Zhou P, Jiang Z, et al. Wideband microwave phase noise analyzer based on all-optical microwave signal processing[J]. IEEE Photonics Journal, 2022, 14(4): 5538706.
[9] Fang Q, Zhou P, Li N. Mapping synchronization properties in a three-element laterally coupled laser array[J]. Optics Express, 2022, 30(11): 17858-17869.
[10] Zhou P, Zhang R, Li N, et al. An RF-source-free reconfigurable microwave photonic radar with high-resolution and fast detection capability[J]. Journal of Lightwave Technology, 2022, 40(9): 2862-2869.
[11] Huang Y, Zhou P, Zeng Y, et al. Evolution of extreme events in a semiconductor laser subject to chaotic optical injection[J]. Physical Review A, 2022, 105(4): 043521.
[12] Zhou P, Li N, Pan S. Period-one laser dynamics for photonic microwave signal generation and applications[J]. Photonics 2022, 9(4): 227.
[13] Yang Y, Zhou P, Mu P, et al. Time-delayed reservoir computing based on an optically pumped spin VCSEL for high-speed processing[J]. Nonlinear Dynamics, 2022, 107(3): 2619-2632.
[14] Zeng Y, Zhou P, Huang Y, et al. Extreme events in optically pumped spin-VCSELs[J]. Optics Letters, 2022, 47(1): 142-145.
Year 2021
[1] Huang Y, Zhou P, Yang Y, et al. High-speed photonic reservoir computer based on a delayed Fano laser under electrical modulation[J]. Optics Letters, 2021, 46(24): 6035-6038.
[2] Huang Y, Zhou P, Yang Y, et al. Time-delayed reservoir computing based on a two-element phased laser array for image identification[J]. IEEE Photonics Journal, 2021, 13(5): 1-9.
[3] Zhang R, Zhou P, Li K, et al. Photonic generation of high-performance microwave frequency combs using an optically injected semiconductor laser with dual-loop optoelectronic feedback[J]. Optics Letters, 2021, 46(18): 4622-4625.
[4] Huang Y, Zhou P, Torre M, et al. Optically pumped spin-VCSELs: toward high-frequency polarization oscillations and modulation[J]. IEEE Journal of Quantum Electronics, 2021, 57(6): 2400212.
[5] Huang Y, Zhou P, Li N. Broad tunable photonic microwave generation in an optically pumped spin-VCSEL with optical feedback stabilization[J]. Optics Letters, 2021, 46(13): 3147-3150.
[6] Huang Y, Zhou P, Li N. High-speed secure key distribution based on chaos synchronization in optically pumped QD spin-polarized VCSELs[J]. Optics Express, 2021, 29(13): 19675-19689.
[7] Jiang P, Zhou P, Li N, et al. Characterizing the chaotic dynamics of a semiconductor nanolaser subjected to FBG feedback[J]. Optics Express, 2021, 29(12): 17815-17830.
[8] Fang Q, Zhou P, Mu P, et al. Chaos time delay signature suppression assisted by a phased array with four different waveguide structures[J]. IEEE Journal of Quantum Electronics, 2021, 57(3): 1200109.
[9] Zeng Y, Zhou P, Huang Y, et al. Optical chaos generated in semiconductor lasers with intensity-modulated optical injection: a numerical study[J]. Applied Optics, 2021, 60(26): 7963-7972.
Year 2020
[1] Zhou P, Zhang R, Li K, et al. Generation of NLFM microwave waveforms based on controlled period-one dynamics of semiconductor lasers[J]. Optics Express, 2020, 28(22): 32647-32656.
[2] Jiang P, Zhou P, Li N, et al. Optically injected nanolasers for time-delay signature suppression and communications[J]. Optics Express, 2020, 28(18): 26421-26435.
[3] Zhou P, Chen H, Li N, et al. Photonic generation of tunable dual-chirp microwave waveforms using a dual-beam optically injected semiconductor laser[J]. Optics Letters, 2020, 45(6): 1342-1345.
[4] Zhang R, Zhou P, Yang Y, et al. Enhancing time-delay suppression in a semiconductor laser with chaotic optical injection via parameter mismatch[J]. Optics express, 2020, 28(5): 7197-7206.
[5] Zhou P, Fang Q, Li N. Phased-array assisted time-delay signature suppression in the optical chaos generated by an external-cavity semiconductor laser[J]. Optics Letters, 2020, 45(2): 399-402.
Year 2019
[1] Li N, Yao J. High dynamic range and wavelength-reused bidirectional radio-over-fiber link[J]. Optics Letters, 2019, 44(6): 1331-1334.
[2] Mu P, He P, Li N. Simultaneous chaos time-delay signature cancellation and bandwidth enhancement in cascade-coupled semiconductor ring lasers[J]. IEEE Access, 2019, 7: 11041-11048.
Year 2018
[1] Li N, Susanto H, Cemlyn B, et al. Modulation properties of solitary and optically injected phased-array semiconductor lasers[J]. Photonics Research, 2018, 6(9): 908-917.
[2] Mu P, Pan W, Li N. Analysis and characterization of chaos generated by free-running and optically injected VCSELs[J]. Optics Express, 2018, 26(12): 15642-15655.
[3] Li N, Nguimdo R, Locquet A, et al. Enhancing optical-feedback-induced chaotic dynamics in semiconductor ring lasers via optical injection[J]. Nonlinear Dynamics, 2018, 92: 315-324.
[4] Li N, Susanto H, Cemlyn B, et al. Nonlinear dynamics of solitary and optically injected two-element laser arrays with four different waveguide structures: a numerical study[J]. Optics Express, 2018, 26(4): 4751-4765.
[5] Li N, Susanto H, Cemlyn B, et al. Locking bandwidth of two laterally-coupled semiconductor lasers subject to optical injection[J]. Scientific Reports, 2018, 8(1): 109.
[6] Li N, Susanto H, Cemlyn B, et al. Mapping bifurcation structure and parameter dependence in quantum dot spin-VCSELs[J]. Optics Express, 2018, 26(11): 14636-14649.
Year 2017
[1] Li N, Susanto H, Cemlyn B, et al. Secure communication systems based on chaos in optically pumped spin-VCSELs[J]. Optics Letters, 2017, 42(17): 3494-3497.
[2] Li N, Susanto H, Cemlyn B, et al. Stability and bifurcation analysis of spin-polarized vertical-cavity surface-emitting lasers[J]. Physical Review A, 2017, 96(1): 013840.
Year 2016
[1] Li N, Alexandropoulos D, Susanto H, et al. Stability analysis of quantum-dot spin-VCSELs[J]. Electronics, 2016, 5(4): 83.
Year 2015
[1] Li N, Pan W, Locquet A, et al. Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection[J]. Optics letters, 2015, 40(19): 4416-4419.
[2] Li N, Zunino L, Locquet A, et al. Multiscale ordinal symbolic analysis of the Lang-Kobayashi model for external-cavity semiconductor lasers: a test of theory[J]. IEEE Journal of Quantum Electronics, 2015, 51(8): 2200206.
[3] Li N, Pan W, Locquet A, et al. Statistical properties of an external-cavity semiconductor laser: Experiment and theory[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 553-560.
[1] Li N, Kim B, Chizhevsky V, et al. Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser[J]. Optics express, 2014, 22(6): 6634-6646.
[2] Li N, Kim B, Locquet A, et al. Statistics of the optical intensity of a chaotic external-cavity DFB laser[J]. Optics Letters, 2014, 39(20): 5949-5952.
[3] Li N, Pan W, Xiang S, et al. Simulation of multi-bit extraction for fast random bit generation using a chaotic laser[J]. IEEE Photonics Technology Letters, 2014, 26(18): 1886-1889.
[4] Li N, Pan W, Xiang S, et al. Quantifying the complexity of the chaotic intensity of an external-cavity semiconductor laser via sample entropy[J]. IEEE Journal of Quantum Electronics, 2014, 50(9): 766-773.
[5] Li N, Pan W, Xiang S, et al. Influence of statistical distribution properties on ultrafast random-number generation using chaotic semiconductor lasers[J]. Optik, 2014, 125(14): 3555-3558.
[6] Li N, Pan W, Yan L, et al. Enhanced chaos synchronization and communication in cascade-coupled semiconductor ring lasers[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(6): 1874-1883.
Year 2013
[1] Li N, Pan W, Xiang S, et al. Hybrid chaos-based communication system consisting of three chaotic semiconductor ring lasers[J]. Applied optics, 2013, 52(7): 1523-1530.
[2] Li N, Pan W, Xiang S, et al. Bandwidth and unpredictability properties of semiconductor ring lasers with chaotic optical injection[J]. Optics & Laser Technology, 2013, 53: 45-50.
[3] Li N, Pan W, Luo B, et al. Multiuser optical communication system based on generalized and complete synchronization[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(17): 3149-3153.
Year 2012
[1] Li N, Pan W, Yan L, et al. Enhanced two-channel optical chaotic communication using isochronous synchronization[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 19(4): 0600109-0600109.
[2] Li N, Pan W, Xiang S, et al. Loss of time delay signature in broadband cascade-coupled semiconductor lasers[J]. IEEE Photonics Technology Letters, 2012, 24(23): 2187-2190.
[3] Li N, Pan W, Xiang S, et al. Photonic generation of wideband time-delay-signature-eliminated chaotic signals utilizing an optically injected semiconductor laser[J]. IEEE Journal of Quantum Electronics, 2012, 48(10): 1339-1345.
[4] Li N, Pan W, Yan L, et al. Chaotic optical cryptographic communication using a three-semiconductor-laser scheme[J]. Journal of the Optical Society of America B, 2012, 29(1): 101-108.
[5] Li N, Pan W, Luo B, et al. High bit rate fiber-optic transmission using a four-chaotic-semiconductor-laser scheme[J]. IEEE Photonics Technology Letters, 2012, 24(12): 1072-1074.
[6] Li N, Pan W, Luo B, et al. Numerical characterization of time delay signature in chaotic vertical-cavity surface-emitting lasers with optical feedback[J]. Optics Communications, 2012, 285(18): 3837-3848.
Year 2011
[1] Li N, Pan W, Yan L, et al. On joint identification of the feedback parameters for hyperchaotic systems: an optimization-based approach[J]. Chaos, Solitons & Fractals, 2011, 44(4-5): 198-207.
[2] Li N, Pan W, Yan L, et al. Parameter estimation for chaotic systems with and without noise using differential evolution-based method[J]. Chinese physics B, 2011, 20(6): 060502.
[3] Li N, Pan W, Yan L, et al. Analysis of nonlinear dynamics and detecting messages embedded in chaotic carriers using sample entropy algorithm[J]. Journal of the Optical Society of America B, 2011, 28(8): 2018-2024.
国产期刊
[1] 江芝东,谢溢锋,周沛,唐志刚,李念强。基于电吸收调制激光器的双功能微波光子系统[J]。光子学报,2023, 52(01): 107-113。
[2] 刘远,袁冀扬,周心雨,谷双全,周沛,穆鹏华,李念强。基于滤波反馈宽带平坦混沌信号的快速物理随机比特产生[J]。物理学报,2022, 71(22): 132-139。
[3] 周沛,张仁恒,朱尖,李念强。基于双路光电反馈下光注入半导体激光器的高性能线性调频信号产生[J]。物理学报,2022, 71(21): 195-202。
[4] 周沛,李念强,潘时龙。基于光注入半导体激光器的宽带雷达信号产生及应用[J]。半导体光电,2022, 43(01): 12-20.
[5] 黄于,周沛,杨一功,李念强,李孝峰。自旋激光器的动力学特性及应用研究进展[J]。强激光与粒子束,2021, 33(11): 52-65。
[6] 蒋培,周沛,李念强,穆鹏华,李孝峰。外场调控下的纳米激光时延隐藏及不可预测性提升[J]。物理学报,2021, 70(11): 115-124。
[7] 吴佳辰,宋峥,谢溢锋,周心雨,周沛,穆鹏华,李念强。基于激光器阵列后处理的混沌熵源获取高品质随机数[J]。物理学报,2021, 70(10): 157-164。
[8] 李念强,潘炜,闫连山,罗斌,徐明峰,江宁。Parameter estimation for chaotic systems with and without noise using differential evolution-based method[J].Chinese Physics B, 2011, 20(06): 76-81.
Appendix 3: Conference
[1] Li Nianqiang; Nonlinear dynamics and broadband chaos generation in spin-VCSELs (特邀报告), 15th International Workshop on Complex Systems for Future Technologies and Applications (15th IWCFTA), Guang Zhou, 2022-11-25至2022-11-28。
[2] Li Nianqiang; High-speed reservoir computing based on laser dynamics (特邀报告; 分会场主持), 20th International Conference on Optical Communications and Networks (ICOCN’2022), Shenzhen, 2022-8-15至2022-8-18。
[3] 李念强; 自旋激光器的动力学特性及应用探索(特邀报告), 2022年光学精密测量国际会议, 太原, 2022-9-17至2022-9-19。
[4] 李念强; 基于半导体激光器的高速储备池计算研究(特邀报告), 电子科学与技术大会(IFFS Conference on Electronic Science and Technology), 成都, 2021-9-24至2021-9-26。
[5] 李念强; 自旋激光器高速密钥分发(特邀报告), 第五届光信息与光网络大会, 北京, 2021-9-24至2021-9-26。
[6] 李念强; 基于激光器动力学储备池的图像识别研究(特邀报告), 第五届微纳光学技术与应用交流会, 广州, 2021-9-10至2021-9-12。
[7] Li Nianqiang; Study on dynamics of spin VCSELs and its applications (特邀报告), 19th International Conference on Optical Communications and Networks (ICOCN’2021), Online, 2021-8-23至2021-8-27。
[8] 李念强; 基于自旋VCSEL的高速储备池计算研究(特邀报告), 第23届全国半导体物理学术会议, 西安, 2021-7-8至2021-7-11。
[9] Li Nianqiang; Optically pumped spin-VCSELs(Keynote Speech, 主题报告), International Conference on Laser, Optics and Optoelectronic Technology (LOPET 2021), Xi’an, 2021-5-28至2021-5-30。
[10] 李念强; 高速高频光泵自旋VCSELs的研究(特邀报告), 第四届光信息与光网络大会, 上海, 2020-11-02至2020-11-04。
[11] 李念强; 激光混沌信号产生及应用进展(特邀报告), 2019全国光电子, 光子材料与器件学术会议, 重庆, 中国, 2019-12-13至2019-12-15。
[12] Li Nianqiang; Alexandropoulos Dimitris; Susanto Hadi; Henning Ian; Adams Michael; Quantum dot spin-V(E)CSELs: polarization switching and periodic oscillations(特邀报告), SPIE Nanoscience+Engineering, San Diego, California, United States, 2017-8-6至2017-8-10。
Appendix 4: Patents
[1] 李念强,潘炜,项水英,朱宏娜。一种基于半导体环形激光器的双路并行高速随机数产生装置。专利申请号:CN201320564599.2。申请日:2013.09.12。授权日:2017.05.10。
[2] 李念强,陈太一,周沛。模拟生物神经元动力学以实现逻辑运算的系统及方法。专利申请号:CN202210361462.0。申请日:2022.04.07。授权日:2022.11.25。
[3] 李念强,刘远,包华龙,黄于,周沛。耦合纳米激光器阵列周期振荡毫米波信号产生装置及方法。专利申请号:CN202210204362.7。申请日:2022.03.02。授权日:2022.11.08。
[4] 李念强,杨一功,周沛。一种基于光泵自旋VCSEL的储备池计算装置。专利申请号:CN202023241735.3。申请日:2020.12.29。授权日:2021.10.08。
[5] 李念强,黄于,周沛。光泵自旋VCSEL周期振荡毫米波信号产生装置。专利申请号:CN202120450049.2。申请日:2021.03.02。授权日:2021.09.14。
[6] 李念强,张仁恒,周沛。一种基于激光器相控阵列的线性啁啾微波信号产生装置。专利申请号:CN202021388992.7。申请日:2020.07.15。授权日:2021.02.09。
[7] 周沛,江芝东,李念强,唐志刚,谢溢锋。基于微波光子载波抑制的微波源相位噪声测量系统及方法。专利申请号:CN202210065149.2。申请日:2022.01.20。授权日:2022.04.05。
[8] 周沛,谢溢锋,李念强,江芝东,周志华。基于双向光相位调制器的微波源相位噪声测量装置。专利申请号:CN202111053545.5。申请日:2021.09.09。授权日:2021.11.30。
[9] 周沛,张仁恒,李念强,包华龙。基于半导体激光器单周期振荡的波形产生装置。专利申请号:CN202020858366.3。申请日:2020.05.21。授权日:2020.11.17。
[10] 周志华,周沛,李念强,张仁恒,韦孟杰,宋峥,谢溢锋。一种基于光注入半导体激光器的光电量化装置。专利申请号:CN202020932630.3。申请日:2020.05.28。授权日:2020.11.17。