2012 年 9 月毕业于上海交通大学获得博士学位(化学,导师孙淮教授)。同年,赴美国加州理工学院进行博士后研究工作(合作导师 William A. Goddard III 教授、院士)。2015年,在美国光合成联合研究中心任职研究科学家。2018 年 11 月加盟苏州大学功能纳米与软物质学院 ( FUNSOM),独立PI。
应用多尺度计算模拟+人工智能解决催化和先进材料中关键的科学问题。重点关注电化学界面,即材料模拟中“最关键的一百纳米”。截止至2024年3月,在同行评议的科学杂志上发表研究论文170余篇。部分论文以第一或通讯作者发表在《Nature Energy》、《Nature Catalysis》、《Nature Chemistry》、《Proc. Natl. Acad. Sci. U.S.A.》, 以及《J. Am. Chem. Soc.》。根据Web of Science统计,引用率超过14000余次,H-index 59,I10-index 145。
入选国家重大人才工程-青年项目(2023)、江苏省特聘教授(2019) 、 江苏省“六大人才高峰”(2019)、 江苏省双创博士 (2019)。获得美国亚马逊机器学习研究奖 2018 等奖励。
社会职务
应用多尺度计算模拟+人工智能解决催化和先进材料中关键的科学问题。重点关注电化学界面,即材料模拟中“最关键的一百纳米”。以多尺度模拟方法开发为基础,探索电化学界面的反应和结构演变。在方法开发方面:开发了高精度分子力学力场;发展了自由能计算、先进采样方法;以及设计了巨正则电子化学系综等算法,并将这些算法应用于模拟真实时间尺度和空间尺度的电化学界面和电化学反应。具体应用包括:二氧化碳电还原、燃料电池、以及高比能电池界面等。
苏州大学功能纳米与软物质研究院(FUNSOM)是成立于2008年的一所高起点的独立研究院,其目标是创建具有国际一流水准的高水平研究机构。FUNSOM与成立于2010年12月的纳米科学技术学院(教育部首批17所“试点学院”之一)、成立于2011年5月的苏州大学—滑铁卢大学纳米技术联合研究院三位一体,实现科研、教学、产业化的有机结合。2013年4月,以苏州大学为牵头单位,依托苏州工业园区,联合西安交通大学、中国科技大学、中科院苏州纳米所等单位参与共同组建的“苏州纳米科技协同创新中心”,成功获批为教育部首批“2011计划”国家协同创新中心。2016年,我院又获批为高等学校学科创新引智基地(111计划)——光功能纳米材料、教育部碳基功能材料与器件国际合作联合实验室,进一步为我院纳米科学研究提供了支撑平台。2022年,由纳米科学技术学院(国家试点学院)主导建设的苏州大学“材料科学与工程”继首轮入选后获批第二轮国家“双一流”建设学科,同年2月我院“纳米材料科学教师团队”入选“全国高校黄大年式教师团队”,实现了我院国家级教师团队建设又一突破,也是我校首次获得该项荣誉。
FUNSOM由中国科学院院士、发展中国家科学院院士李述汤教授担任院长,凝聚了一支科研创新能力强、教学实践经验丰富的国际化精英科研教学队伍。目前学院拥有教职员工150余人,其中教授63人,副教授/副研究员29人,讲师/助理研究员7人、语言中心教师6人。核心成员全部具有海外/境外工作经历。
FUNSOM面向21世纪的重点和热点科学研究领域,在新能源、新材料、光电技术、纳米生物医学和绿色环保等诸多方向展开跨学科交叉研究,培养适应国际前沿研究需要的高素质复合型科研人才。招生方向涵盖物理学、化学、生物学和材料科学与工程四个一级学科。FUNSOM现有研究生710名,年招收硕士研究生230人左右。
本课题组依托FUNSOM招收物理、化学、材料、电子等各专业的本科学生。
博士后全球招聘
1. Efficient Orange–Red Delayed Fluorescence Organic Light‐Emitting Diodes with External Quantum Efficiency over 26%
Xie FM; Wu P; Zou SJ; Li YQ; Cheng T; Xie M; Tang JX*; Zhao X*;
Adv. Electron. Mater. 2019, , ASAP.
https://doi.org/10.1002/aelm.201900843
2. Design of a One-Dimensional Stacked Spin Peierls System with Room Temperature Switching from QM Predictions
Yang H; Cheng T*; Goddard WA*; Ren XM*;
J. Phys. Chem. Lett. 2019, , ASAP.
https://doi.org/10.1021/acs.jpclett.9b02219
3. Weakening Hydrogen Adsorption on Nickel via Interstitial Nitrogen Doping Promotes Bifunctional Hydrogen Electrocatalysis in Alkaline Solution
Wang TT; Wang M; Yang H; Xu MQ; Zuo GD; Feng K; Xie M; Deng J; Zhong J; Zhou W; Cheng T*; Li YG*;
Energy Environ. Sci. 2019, , ASAP.
https://doi.org/10.1039/C9EE01743G
4. Rational Molecular Design of Dibenzo[a,c]phenazine-based Thermally Activated Delayed Fluorescence Emitters for Orange-Red OLEDs with EQE up to 22.0%
Xie FM; Li HZ; Dai GL; Li YQ; Cheng T; Xie M; Tang JX*; Zhao X*;
ACS Appl. Mater. Interfaces 2019, 11, 26144-26151.
https://doi.org/10.1021/acsami.9b06401
5. Identifying Active Sites for CO2 Reduction on Dealloyed Gold Surfaces by Combining Machine Learning with Multiscale Simulations
Chen YL; Huang YF; Cheng T; Goddard WA*;
J. Am. Chem. Soc. 2019, 141, 11651-11657.
https://doi.org/10.1021/jacs.9b04956
6. Formation of Carbon-Nitrogen Bonds in Carbon Monoxide Electrolysis
Jouny M; Lv JJ; Cheng T; Ko BH; Zhu JJ; Goddard WA*; Jiao F*;
Nat. Chem. 2019, 11, 846-851.
https://doi.org/10.1038/s41557-019-0312-z
(Jouny M, Lv JJ, and Cheng T contributed equally)
7. Benzo-Fused Periacenes or Double Helicenes? Different Cy-clodehydrogenation Pathways on Surface and in Solution
Zhong QG; Hu YB; Niu KF; Zhang HM; Biao Y; Daniel E; Jalmar T; Cheng T; Andre S; Akimitsu N*; Klaus M*; Chi LF*;
J. Am. Chem. Soc. 2019, 141, 7399-7406.
https://doi.org/10.1021/jacs.9b01267
8. Single Atom Tailoring Platinum Nanocatalysts for High Performance Multifunctional Electrocatalysis
Li MF; Duanmu KN; Wan CZ; Cheng T; Zhang L; Dai S; Chen WX; Zhao ZP; Li P; Fei HL; Zhu YM; Yu R; Luo J; Zang KT; Lin ZY; Ding MN; Huang J; Sun HT; Pan XQ; Guo JH; Goddard WA; Sautet P*; Huang Y*; Duan XF*;
Nat. Catal. 2019, 2, 495–503.
https://doi.org/10.1038/s41929-019-0279-6
(Li MF, Duanmu KN, Wan CZ and Cheng T contributed equally)
https://www.nature.com/articles/s41929-019-0302-y
9. Electrocatalysis at Organic-Metal Interfaces: Identification of Structure-Reactivity Relationships for CO2 Reduction at Modified Cu Surfaces
Buckley AK; Lee M; Cheng T; Kazantsev RV; Larson DM; Goddard WA; Tostel FD*; Toma FM*;
J. Am. Chem. Soc 2019, 141, 7355–7364.
https://doi.org/10.1021/jacs.8b13655
10. Dramatic Differences in Carbon Dioxide Adsorption and Initial Steps of Reduction Between Silver and Copper
Ye YF; Yang H; Qian J; Su HY; Lee KJ; Cheng T; Xiao H; Yano J*; Goddard WA*; Crumlin EJ*;
Nat. Commun. 2019, 10, 1875.
https://doi.org/10.1038/s41467-019-09846-y
11. Reaction Intermediates During Operando Electrocatalysis Identified from Full Solvent Quantum Mechanics Molecular Dynamics
Cheng T; Fortunelli A; Goddard WA*;
Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 7718-7722.
https://doi.org/10.1073/pnas.1821709116
2018
12. Discrete Dimers of Redox-Active and Fluorescent Perylene Diimide-Based Rigid Isosceles Triangles in the Solid State
Nalluri SKM; Zhou JW; Cheng T; Liu ZC; Nguyen MT; Chen TY; Patel HA; Krzyaniak MD; Goddard WA; Wasielewski MR*; Stoddart JF*;
J. Am. Chem. Soc. 2018, 141, 1290–1303.
https://doi.org/10.1021/jacs.8b11201
13. Highly Active Star Decahedron Cu Nanocatalyst for Hydrocarbon Production at Low Overpotentials
Choi C; Cheng T; Expinosa MF; Fei HL; Duan XF; Goddard WA; Huang Y*;
Adv. Mater. 2019, 31, 1805405.
https://doi.org/10.1002/adma.201805405
14. Identification of the Selective Sites for Electrochemical Reduction of CO to C2+ Products on Copper Nanoparticles by Combining Reactive Force Fields, Density Functional Theory, and Machine Learning
Huang YF; Chen YL; Cheng T; Goddard WA*;
ACS Energy Lett. 2018, 3, 2983–2988.
https://doi.org/10.1021/acsenergylett.8b01933
15. Molecular Russian Dolls
Cai K; Lipke MC; Liu ZC; Nelson J; Shi Y; Cheng T; Cheng CY; Shen DK; Han JM; Vemuri S; Feng YN; Stern CL; Goddard WA; Wasielewski MR; Stoddart JF*;
Nat. Commun. 2018, 9, 5275.
https://doi.org/10.1038/s41467-018-07673-1
16. The Neighboring Component Effect in a Tristable [2]Rotaxane
Wang YP; Cheng T; Sun JL; Liu ZC; Frasconi M; Goddard WA; Stoddart JF*;
J. Am. Chem. Soc. 2018, 140, 13827–13834.
https://doi.org/10.1021/jacs.8b08519
17. First Principles Based Reaction Kinetics from Reactive Molecular Dynamics Simulations: Application to Hydrogen Peroxide Decomposition
Ilyin DV; Goddard WA*; Oppenheim JJ; Cheng T;
Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 18202-18208.
https://doi.org/10.1073/pnas.1701383115
18. In silico Optimization of Organic-inorganic Hybrid Perovskites for Photocatalytic Hydrogen Evolution Reaction in Acidic Solution
Wang L; Goddard WA*; Cheng T; Xiao H; Li YY*;
J. Phys. Chem. C 2018, 122, 20918-20922.
https://doi.org/10.1021/acs.jpcc.8b07380
19. Electrochemical CO Reduction Builds Solvent Water into Oxygenate Products
Lum YW; Cheng T; Goddard WA*; Ager JW*;
J. Am. Chem. Soc. 2018, 140, 9337-9340.
https://doi.org/10.1021/jacs.8b03986
(Lum YW and Cheng T contributed equally)
20. First Principles Based Multiscale Atomistic Methods for Input into First Principles Non-equilibrium Transport Across Interfaces
Cheng T; Jaramillo-Botero A; An Q; Ilyin DV; Naserifar S; Goddard WA*;
Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 18193-18201.
https://doi.org/10.1073/pnas.1800035115
21. Explanation of Dramatic pH-Dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High pH.
Cheng T; Wang L; Boris MV; Goddard WA*;
J. Am. Chem. Soc. 2018, 140, 7787-7790.
http://dx.doi.org/10.1021/jacs.8b04006
(J. Am. Chem. Soc. Spotlights)
https://pubs.acs.org/doi/pdfplus/10.1021/jacs.8b05954
22. Surface Ligand Promotion of Carbon Dioxide Reduction through Stabilizing Chemisorbed Reactive Intermediates
Wang ZJ*; Wu LN; Sun K; Chen T; Jiang ZH; Cheng T*; Goddard WA*;
J. Phys. Chem. Lett. 2018, 9, 3057-3061.
http://dx.doi.org/10.1021/acs.jpclett.8b00959
23. Ordered Three-fold Symmetric Graphene Oxide/Buckled Graphene/Graphene Heterostructures on MgO (111) by Carbon Molecular Beam Epitaxy
Ladewig C; Cheng T; Randle MD; Bird J; Olanipekun O; Dowben PA; Kelber J*; Goddard WA*;
J. Mater. Chem. C 2018, 6, 4225-4233.
http://dx.doi.org/10.1039/C8TC00178B
(Ladewig C and Cheng T contributed equally)
24. Reaction Mechanisms and Sensitivity for Silicon Nitrocarbamate and Related Systems from Quantum Mechanics Reaction Dynamics
Zhou TT; Cheng T; Zybin SZ; Goddard WA*; Huang FL;
J. Mater. Chem. A 2018, 6, 5082-5097.
http://dx.doi.org/10.1039/C7TA10998A
(2018 Journal of Materials Chemistry A HOT Papers)
25. Pb-activated Amine-assisted Photocatalytic Hydrogen Evolution Reaction on Organic-Inorganic Perovskites
Wang L*; Xiao H; Cheng T; Li YY*; Goddard WA*;
J. Am. Chem. Soc. 2018, 140, 1994–1997.
http://dx.doi.org/10.1021/jacs.7b12028
(J. Am. Chem. Soc. Cover Publication)
https://pubs.acs.org/toc/jacsat/140/6
26. Predicted Detonation Properties at the Chapman-Jouguet State for Proposed Energetic Materials (MTO and MTO3N) from Combined ReaxFF and Quantum Mechanics Reactive Dynamics
Zhou T; Zybin SV; Goddard WA*; Cheng T; Naserifar S; Jaramillo-Botero A; Huang FL;
Phys. Chem. Chem. Phys. 2018, 20, 3953-3969.
http://dx.doi.org/10.1039/C7CP07321F
2017
27. Bulk Properties of Amorphous Lithium Dendrites
Aryanfar A*; Cheng T; Goddard WA;
ECS Trans. 2017, 80, 365-370.
http://dx.doi.org/10.1149/08010.0365ecst
28. Ultrahigh Mass Activity for Carbon Dioxide Reduction Enabled by Gold-iron Core-shell Nanoparticles
Sun K; Cheng T; Wu LN; Hu YF; Zhou JG; Maclennan A; Jiang ZH; Gao YZ; Goddard WA*; Wang ZJ*;
J. Am. Chem. Soc. 2017, 139, 15608–15611.
http://dx.doi.org/10.1021/jacs.7b09251
(Sun K and Cheng T contributed equally)
(J. Am. Chem. Soc. Cover Publication)
http://pubs.acs.org/subscribe/covers/jacsat/jacsat_v139i044-2.jpg?0.7583455086716329
29. Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance
Cheng T; Xiao H; Goddard WA*;
J. Am. Chem. Soc. 2017, 139, 11642-11645.
http://dx.doi.org/10.1021/jacs.7b03300
30. Predicted Structures of the Active Sites Responsible for the Improved Reduction of Carbon Dioxide by Gold Nanoparticles
Cheng T; Huang YF; Xiao H; Goddard WA*;
J. Phys. Chem. Lett. 2017, 8, 3317-3320.
http://dx.doi.org/10.1021/acs.jpclett.7b01335
31. Quantum Mechanics Reactive Dynamics Study of Solid Li-Electrode/Li6PS5Cl-Electrolyte Interface
Cheng T; Merinov BV*; Morozov S; Goddard WA;
ACS Energy Lett. 2017, 2, 1454-1459.
http://dx.doi.org/10.1021/acsenergylett.7b00319
32. Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects
Hajilar S; Shafei B*; Cheng T; Jaramillo-Botero A;
J. Phys. Chem. A 2017, 121, 4688-4697.
http://dx.doi.org/10.1021/acs.jpca.7b02824
33. Epitaxial Growth of Cobalt Oxide Phases on Ru(0001) for Spintronic Device Applications
Olanipekun O; Ladewig C; Kelber J*; Randle MD; Nathawat J; Kwan CP; Bird JP; Chakraborti P; Dowben PA; Cheng T; Goddard WA;
Semicond. Sci. Technol. 2017, 32, 095011.
https://doi.org/10.1088/1361-6641/aa7c58
34. The Cu Metal Embedded in Oxidized Matrix Catalyst to Promote CO2 Activation and CO Dimerization for Efficient and Selective Electrochemical Reduction of CO2
Xiao H; Goddard WA*; Cheng T; Liu YY;
Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 6685-6688.
http://dx.doi.org/10.1073/pnas.1702405114
35. Subsurface Oxide Plays a Critical Role in CO2 Activation by Copper (111) Surfaces to Form Chemisorbed CO2, the First Step in Reduction of CO2
Favaro M; Xiao H; Cheng T; Goddard WA*; Yano J*; Crumlin EJ*;
Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 6706-6711.
http://dx.doi.org/10.1073/pnas.1701405114
36. Intramolecular Energy and Electron Transfer Within a Diazaperopyrenium-Based Cyclophane
Gong XR; Young RM; Hartlieb KJ; Miller C; Wu YL; Xiao H; Li P; Hafezi N; Zhou JW; Ma L; Cheng T; Goddard WA; Farha OK; Hupp JT; Wasielewski MR*; Stoddart JF*;
J. Am. Chem. Soc. 2017, 139, 4107-4116.
http://dx.doi.org/10.1021/jacs.6b13223
37. Size-Matched Radical Multivalency
Lipke MC; Cheng T; Wu YL; Arslan H; Xiao H; Wasielewski MR; Goddard WA; Stoddart JF*;
J. Am. Chem. Soc. 2017, 139, 3986-3998.
http://dx.doi.org/10.1021/jacs.6b09892
38. Full Atomistic Reaction Mechanism with Kinetics for CO Reduction on Cu(100) from ab initio Molecular Dynamics Free-energy Calculations at 298 K.
Cheng T; Xiao H; Goddard WA*;
Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 1795-1800.
http://dx.doi.org/10.1073/pnas.1612106114
(direct submission)
39. Mechanism and Kinetics of the Electrocatalytic Reaction Responsible for the High Cost of Hydrogen Fuel Cells
Cheng T; Goddard WA*; An Q; Xiao H; Merinov B; Morozov S;
Phys. Chem. Chem. Phys. 2017, 19, 2666-2673.
http://dx.doi.org/10.1039/C6CP08055C
(2017 PCCP HOT Articles)
40. Atomistic Mechanisms Underlying Selectivities in C1 and C2 Products from Electrochemical Reduction of CO on Cu(111)
Xiao H; Cheng T; Goddard WA*;
J. Am. Chem. Soc. 2017, 139, 130-136.
http://dx.doi.org/10.1021/jacs.6b06846
41. Nucleation of Graphene Layers On Magnetic Oxides: Co3O4 (111) and Cr2O3 (0001) from Theory and Experiment
Beatty J; Cheng T; Cao Y; Driver M; Goddard WA*; Kelber J*;
J. Phys. Chem. Lett. 2017, 8, 188-192.
http://dx.doi.org/10.1021/acs.jpclett.6b02325
(Beatty J and Cheng T contributed equally)
2016
42. Ultrafine Jagged Platinum Nanowires Enable Ultrahigh Mass Activity for the Oxygen Reduction Reaction
Li MF; Zhao ZP; Cheng T; Fortunelli A; Chen CY; Yu R; Zhang QH; Gu L; Merinov B; Lin ZY; Zhu EB; Yu T; Jia QY; Guo JH; Zhang L; Goddard WA*; Huang Y*; Duan XF*;
Science 2016, 354, 1414-1419.
http://dx.doi.org/10.1126/science.aaf9050
43. Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water
Cheng T; Xiao H; Goddard WA*;
J. Am. Chem. Soc. 2016, 138, 13802-13805.
http://dx.doi.org/10.1021/jacs.6b08534
(Reported by JCAP highlight with linkage below)
https://solarfuelshub.org/102016-rh-qm-with-explicit-water
44. Influence of Constitution and Charge on Radical Pairing Interactions in Trisradical Tricationic Complexes
Cheng CY; Cheng T; Xiao H; Krzyaniak MD; Wang YP; McGonigal PR; Frasconi M; Barnes JC; Fahrenbach AC; Wasielewski MR; Goddard WA; Stoddart JF*;
J. Am. Chem. Soc. 2016, 138, 8288-8300.
http://dx.doi.org/10.1021/jacs.6b04343
45. Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu(111)
Xiao H; Cheng T; Goddard WA*; Sundararaman R;
J. Am. Chem. Soc. 2016, 138, 483-486.
http://dx.doi.org/10.1021/jacs.5b11390
2015
46. Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0
Cheng T; Xiao H; Goddard WA*;
J. Phys. Chem. Lett. 2015, 6, 4767-4773.
http://dx.doi.org/10.1021/acs.jpclett.5b02247
47. Annealing Kinetics of Electrodeposited Lithium Dendrites
Aryanfar A*; Cheng T; Colussi AJ; Goddard WA; Hoffmann MR;
J. Chem. Phys. 2015, 143, 134701.
http://dx.doi.org/10.1063/1.4930014
(reported by AIP publishing Extending a Battery's Lifetime with Heat)
https://phys.org/news/2015-10-battery-lifetime.html
48. Rescaling of Metal Oxide Nanocrystals for Energy Storage Having High Capacitance and Energy Density with Robust Cycle Life
Jeong HM; Choi KM; Cheng T; Lee DK; Zhou RJ; Ock IW; Milliron DJ; Colussi AJ; Goddard WA*; Kang JK*;
Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 7914-7919.
http://dx.doi.org/10.1073/pnas.1503546112
49. Initial Decomposition Reactions of Bicyclo-HMX [BCHMX or cis-1,3,4,6 Tetranitrooctahydroimidazo-[4,5-d]imidazole] from Quantum Molecular Dynamics Simulations
Ye CC; An Q; Goddard WA*; Cheng T; Zybin ZV; Ju XH;
J. Phys. Chem. C 2015, 119, 2290-2296.
http://dx.doi.org/10.1021/jp510328d
50. Anisotropic Impact Sensitivity and Shock Induced Plasticity of TKX-50 (Dihydroxylammonium 5,5-bis(tetrazole)-1,1-diolate) Single Crystals: From Large-Scale Molecular Dynamics Simulations
An Q; Cheng T; Goddard WA*; Zybin ZV;
J. Phys. Chem. C 2015, 119, 2196-2207.
http://dx.doi.org/10.1021/jp510951s
(An Q and Cheng T contributed equally)
51. Reaction Mechanism from Quantum Molecular Dynamics for the Initial Thermal Decomposition of 2, 4, 6-triamino-1, 3, 5-triazine-1, 3, 5-trioxide (MTO) and 2, 4, 6-trinitro-1, 3, 5-triazine-1, 3, 5-trioxide (MTO3N), Promising Green Energetic Materials
Ye CC; An Q; Cheng T; Zybin ZV; Naserifar S; Goddard WA*;
J. Mater. Chem. A 2015, 3, 12044-12050.
http://dx.doi.org/10.1039/C5TA02486B
52. Initial Decomposition Reaction of Di-tetrazine-tetroxide (Dtto) from Quantum Molecular Dynamics: Implications for a Promising Energetic Material
Ye CC; An Q; Goddard WA*; Cheng T; Liu WG; Zybin ZV; Ju XH;
J. Mater. Chem. A 2015, 3, 1972-1978.
http://dx.doi.org/10.1039/C4TA05676K
2014
53. Initial Steps of Thermal Decomposition of Dihydroxylammonium 5,5 -bistetrazole-1,1 -diolate Crystals from Quantum Mechanics
An Q; Liu WG; Goddard WA*; Cheng T; Zybin ZV; Xiao H;
J Phys. Chem. C 2014, 118, 27175-27181.
http://dx.doi.org/10.1021/jp509582x
54. Atomistic Explanation of Shear-Induced Amorphous Band Formation in Boron Carbide
An Q; Goddard WA*; Cheng T;
Phys. Rev. Lett. 2014, 113, 095501.
http://dx.doi.org/10.1103/PhysRevLett.113.095501
55. Deformation Induced Solid/Solid Phase Transitions in Gamma Boron
An Q; Goddard WA*; Xiao H; Cheng T;
Chem. Mater. 2014, 26, 4289-4298.
http://dx.doi.org/10.1021/cm5020114
56. Adaptive Accelerated ReaxFF Reactive Dynamics with Validation from Simulating Hydrogen Combustion
Cheng T; Goddard WA*; Goddard WA*; Jaramillo-Botero A*; Sun H*;
J. Am. Chem. Soc. 2014, 136, 9434-9442.
http://dx.doi.org/10.1021/ja5037258
before 2014
57. Adsorption of Ethanol Vapor on Mica Surface under Different Relative Humidities: A Molecular Simulation Study
Cheng T; Sun H*;
J. Phys. Chem. C 2012, 116, 16436-16446.
http://dx.doi.org/10.1021/jp3020595
58. Prediction of the Mutual Solubility of Water and Dipropylene Glycol Dimethyl Ether Using Molecular Dynamics Simulation
Cheng T; Li F; Dai JX; Sun H*;
Fluid Phase Equilibria. 2012, 314, 1-6.
http://dx.doi.org/10.1016/j.fluid.2011.10.013
59. Molecular Engineering of Microporous Crystals: (Iv) Crystallization Process of Microporous Aluminophosphate Alpo4-11
Cheng T; Xu J; Li X; Zhang B; Yan WF*; Yu JH; Sun H; Deng F; Xu RR*;
Micropor. Mesopor. Mater. 2012, 152, 190-207.
http://dx.doi.org/10.1016/j.micromeso.2011.11.034
60. Classic Force Field for Predicting Surface Tension and Interfacial Properties of Sodium Dodecyl Sulfate
Cheng T; Chen Q; Li F; Sun H*;
J. Phys. Chem. B 2010, 114, 13736-13744.
http://dx.doi.org/10.1021/jp107002x
61. On the Accuracy of Predicting Shear Viscosity of Molecular Liquids Using the Periodic Perturbation Method
Zhao LF; Cheng T; Sun H*;
J. Chem. Phys. 2008, 129, 144501.
http://dx.doi.org/10.1063/1.2936986
62. One Force Field for Predicting Multiple Thermodynamic Properties of Liquid and Vapor Ethylene Oxide
Li XF; Zhao LF; Cheng T; Liu LC; Sun H*;
Fluid Phase Equilib. 2008, 274, 36-43.
http://dx.doi.org/10.1016/j.fluid.2008.06.021
Postdoctoral scholar positions available in the Soochow University-Caltech International Center of Multiscale nanoMaterials Genome (SC-nMG), Soochow University in Suzhou, Directed by Professor William A. Goddard III
Professor William A. Goddard III from SC-nMGwould like to interview exceptional candidates for several postdoctoral scholar positions at Soochow. Interviews can be conducted via Zoom.
The SC-nMG joint center focuses on using both Quantum Mechanics (QM) and QM based multiscale reactive molecular dynamics (MD) to predict and explain the properties and performance of
·Electrocatalysts for CO2 reduction to organics, water splitting (hydrogen evolution reaction and oxygen evolution reaction), nitrogen evolution reaction to NH3, and oxygen reduction reaction (fuel cell cathode)
·Two-dimensional materials for electronics and catalysis
·Membrane proteins for signaling
·Other nanoscale materials
The SC-nMG joint center also focuses on developing new methods for more accurate methods for Quantum Mechanics (QM) and QM based multiscale reactive molecular dynamics (MD).
This requires the ability to write and modify computer programs written in languages such as C and scripting languages such python.
Examples of research areas being pursued can be found in recently published papers:
https://caltech-msc.github.io/publications/pubs-current.html
Applicant background expected:
1.PhD in chemistry, physics, materials science, chemical engineering, biosciences, or computer science;
2.Research Experience in computer based atomistic simulations using QM and/or MD
3.Proficiency in using established MD software package such as LAMMPS, GROMACS, NAMD, and AMBER
4.Proficiency in using established QM software package such as VASP, Quantum Expresso, Gaussian, and Jaguar
5.Knowledge of enhanced sampling methods and free energy calculations.
6.Knowledge of and Experience in machine learning methods
7.able to reason about molecules and solids in terms of atomistic structures;
8.Strong learning ability, able to complete routine research projects independently;
9.Careful, responsible, hardworking, with good teamwork
10.Excellent communication in spoken and written English.
Most important is to be very smart, resourceful, and unafraid to tackle impossible problems.
Qualified applicants should send:
1. CV with contact information and list of publications
2. Three personal references familiar with your background and accomplishments. Include phone numbers, fax numbers, and e-mail addresses, so we can contact them.
3. One paragraph description of how your background is appropriate for our projects
4. Two paragraph description of your career goals and how this position would be consistent with your goals.
5. pdf files for your best 3 publications
These materials should be sent in a single PDF file via e-mail to wag@caltech.edu with a copy to wag@suda.edu.cn and tcheng@suda.edu.cn
Salary and benefits:
The salary is 200,000-300,000 China Yuan;
May require visiting universities and national laboratories abroad (Such as Caltech);
Support for applying for post-doctoral funds, the National Natural Science Foundation of China, etc.;
The SC-nMG research team has sufficient funds and a good research environment.
2012 年 9 月毕业于上海交通大学获得博士学位(化学,导师孙淮教授)。同年,赴美国加州理工学院进行博士后研究工作(合作导师 William A. Goddard III 教授、院士)。2015年,在美国光合成联合研究中心任职研究科学家。2018 年 11 月加盟苏州大学功能纳米与软物质学院 ( FUNSOM),独立PI。
应用多尺度计算模拟+人工智能解决催化和先进材料中关键的科学问题。重点关注电化学界面,即材料模拟中“最关键的一百纳米”。截止至2024年3月,在同行评议的科学杂志上发表研究论文170余篇。部分论文以第一或通讯作者发表在《Nature Energy》、《Nature Catalysis》、《Nature Chemistry》、《Proc. Natl. Acad. Sci. U.S.A.》, 以及《J. Am. Chem. Soc.》。根据Web of Science统计,引用率超过14000余次,H-index 59,I10-index 145。
入选国家重大人才工程-青年项目(2023)、江苏省特聘教授(2019) 、 江苏省“六大人才高峰”(2019)、 江苏省双创博士 (2019)。获得美国亚马逊机器学习研究奖 2018 等奖励。
社会职务
应用多尺度计算模拟+人工智能解决催化和先进材料中关键的科学问题。重点关注电化学界面,即材料模拟中“最关键的一百纳米”。以多尺度模拟方法开发为基础,探索电化学界面的反应和结构演变。在方法开发方面:开发了高精度分子力学力场;发展了自由能计算、先进采样方法;以及设计了巨正则电子化学系综等算法,并将这些算法应用于模拟真实时间尺度和空间尺度的电化学界面和电化学反应。具体应用包括:二氧化碳电还原、燃料电池、以及高比能电池界面等。
苏州大学功能纳米与软物质研究院(FUNSOM)是成立于2008年的一所高起点的独立研究院,其目标是创建具有国际一流水准的高水平研究机构。FUNSOM与成立于2010年12月的纳米科学技术学院(教育部首批17所“试点学院”之一)、成立于2011年5月的苏州大学—滑铁卢大学纳米技术联合研究院三位一体,实现科研、教学、产业化的有机结合。2013年4月,以苏州大学为牵头单位,依托苏州工业园区,联合西安交通大学、中国科技大学、中科院苏州纳米所等单位参与共同组建的“苏州纳米科技协同创新中心”,成功获批为教育部首批“2011计划”国家协同创新中心。2016年,我院又获批为高等学校学科创新引智基地(111计划)——光功能纳米材料、教育部碳基功能材料与器件国际合作联合实验室,进一步为我院纳米科学研究提供了支撑平台。2022年,由纳米科学技术学院(国家试点学院)主导建设的苏州大学“材料科学与工程”继首轮入选后获批第二轮国家“双一流”建设学科,同年2月我院“纳米材料科学教师团队”入选“全国高校黄大年式教师团队”,实现了我院国家级教师团队建设又一突破,也是我校首次获得该项荣誉。
FUNSOM由中国科学院院士、发展中国家科学院院士李述汤教授担任院长,凝聚了一支科研创新能力强、教学实践经验丰富的国际化精英科研教学队伍。目前学院拥有教职员工150余人,其中教授63人,副教授/副研究员29人,讲师/助理研究员7人、语言中心教师6人。核心成员全部具有海外/境外工作经历。
FUNSOM面向21世纪的重点和热点科学研究领域,在新能源、新材料、光电技术、纳米生物医学和绿色环保等诸多方向展开跨学科交叉研究,培养适应国际前沿研究需要的高素质复合型科研人才。招生方向涵盖物理学、化学、生物学和材料科学与工程四个一级学科。FUNSOM现有研究生710名,年招收硕士研究生230人左右。
本课题组依托FUNSOM招收物理、化学、材料、电子等各专业的本科学生。
博士后全球招聘
1. Efficient Orange–Red Delayed Fluorescence Organic Light‐Emitting Diodes with External Quantum Efficiency over 26%
Xie FM; Wu P; Zou SJ; Li YQ; Cheng T; Xie M; Tang JX*; Zhao X*;
Adv. Electron. Mater. 2019, , ASAP.
https://doi.org/10.1002/aelm.201900843
2. Design of a One-Dimensional Stacked Spin Peierls System with Room Temperature Switching from QM Predictions
Yang H; Cheng T*; Goddard WA*; Ren XM*;
J. Phys. Chem. Lett. 2019, , ASAP.
https://doi.org/10.1021/acs.jpclett.9b02219
3. Weakening Hydrogen Adsorption on Nickel via Interstitial Nitrogen Doping Promotes Bifunctional Hydrogen Electrocatalysis in Alkaline Solution
Wang TT; Wang M; Yang H; Xu MQ; Zuo GD; Feng K; Xie M; Deng J; Zhong J; Zhou W; Cheng T*; Li YG*;
Energy Environ. Sci. 2019, , ASAP.
https://doi.org/10.1039/C9EE01743G
4. Rational Molecular Design of Dibenzo[a,c]phenazine-based Thermally Activated Delayed Fluorescence Emitters for Orange-Red OLEDs with EQE up to 22.0%
Xie FM; Li HZ; Dai GL; Li YQ; Cheng T; Xie M; Tang JX*; Zhao X*;
ACS Appl. Mater. Interfaces 2019, 11, 26144-26151.
https://doi.org/10.1021/acsami.9b06401
5. Identifying Active Sites for CO2 Reduction on Dealloyed Gold Surfaces by Combining Machine Learning with Multiscale Simulations
Chen YL; Huang YF; Cheng T; Goddard WA*;
J. Am. Chem. Soc. 2019, 141, 11651-11657.
https://doi.org/10.1021/jacs.9b04956
6. Formation of Carbon-Nitrogen Bonds in Carbon Monoxide Electrolysis
Jouny M; Lv JJ; Cheng T; Ko BH; Zhu JJ; Goddard WA*; Jiao F*;
Nat. Chem. 2019, 11, 846-851.
https://doi.org/10.1038/s41557-019-0312-z
(Jouny M, Lv JJ, and Cheng T contributed equally)
7. Benzo-Fused Periacenes or Double Helicenes? Different Cy-clodehydrogenation Pathways on Surface and in Solution
Zhong QG; Hu YB; Niu KF; Zhang HM; Biao Y; Daniel E; Jalmar T; Cheng T; Andre S; Akimitsu N*; Klaus M*; Chi LF*;
J. Am. Chem. Soc. 2019, 141, 7399-7406.
https://doi.org/10.1021/jacs.9b01267
8. Single Atom Tailoring Platinum Nanocatalysts for High Performance Multifunctional Electrocatalysis
Li MF; Duanmu KN; Wan CZ; Cheng T; Zhang L; Dai S; Chen WX; Zhao ZP; Li P; Fei HL; Zhu YM; Yu R; Luo J; Zang KT; Lin ZY; Ding MN; Huang J; Sun HT; Pan XQ; Guo JH; Goddard WA; Sautet P*; Huang Y*; Duan XF*;
Nat. Catal. 2019, 2, 495–503.
https://doi.org/10.1038/s41929-019-0279-6
(Li MF, Duanmu KN, Wan CZ and Cheng T contributed equally)
https://www.nature.com/articles/s41929-019-0302-y
9. Electrocatalysis at Organic-Metal Interfaces: Identification of Structure-Reactivity Relationships for CO2 Reduction at Modified Cu Surfaces
Buckley AK; Lee M; Cheng T; Kazantsev RV; Larson DM; Goddard WA; Tostel FD*; Toma FM*;
J. Am. Chem. Soc 2019, 141, 7355–7364.
https://doi.org/10.1021/jacs.8b13655
10. Dramatic Differences in Carbon Dioxide Adsorption and Initial Steps of Reduction Between Silver and Copper
Ye YF; Yang H; Qian J; Su HY; Lee KJ; Cheng T; Xiao H; Yano J*; Goddard WA*; Crumlin EJ*;
Nat. Commun. 2019, 10, 1875.
https://doi.org/10.1038/s41467-019-09846-y
11. Reaction Intermediates During Operando Electrocatalysis Identified from Full Solvent Quantum Mechanics Molecular Dynamics
Cheng T; Fortunelli A; Goddard WA*;
Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 7718-7722.
https://doi.org/10.1073/pnas.1821709116
2018
12. Discrete Dimers of Redox-Active and Fluorescent Perylene Diimide-Based Rigid Isosceles Triangles in the Solid State
Nalluri SKM; Zhou JW; Cheng T; Liu ZC; Nguyen MT; Chen TY; Patel HA; Krzyaniak MD; Goddard WA; Wasielewski MR*; Stoddart JF*;
J. Am. Chem. Soc. 2018, 141, 1290–1303.
https://doi.org/10.1021/jacs.8b11201
13. Highly Active Star Decahedron Cu Nanocatalyst for Hydrocarbon Production at Low Overpotentials
Choi C; Cheng T; Expinosa MF; Fei HL; Duan XF; Goddard WA; Huang Y*;
Adv. Mater. 2019, 31, 1805405.
https://doi.org/10.1002/adma.201805405
14. Identification of the Selective Sites for Electrochemical Reduction of CO to C2+ Products on Copper Nanoparticles by Combining Reactive Force Fields, Density Functional Theory, and Machine Learning
Huang YF; Chen YL; Cheng T; Goddard WA*;
ACS Energy Lett. 2018, 3, 2983–2988.
https://doi.org/10.1021/acsenergylett.8b01933
15. Molecular Russian Dolls
Cai K; Lipke MC; Liu ZC; Nelson J; Shi Y; Cheng T; Cheng CY; Shen DK; Han JM; Vemuri S; Feng YN; Stern CL; Goddard WA; Wasielewski MR; Stoddart JF*;
Nat. Commun. 2018, 9, 5275.
https://doi.org/10.1038/s41467-018-07673-1
16. The Neighboring Component Effect in a Tristable [2]Rotaxane
Wang YP; Cheng T; Sun JL; Liu ZC; Frasconi M; Goddard WA; Stoddart JF*;
J. Am. Chem. Soc. 2018, 140, 13827–13834.
https://doi.org/10.1021/jacs.8b08519
17. First Principles Based Reaction Kinetics from Reactive Molecular Dynamics Simulations: Application to Hydrogen Peroxide Decomposition
Ilyin DV; Goddard WA*; Oppenheim JJ; Cheng T;
Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 18202-18208.
https://doi.org/10.1073/pnas.1701383115
18. In silico Optimization of Organic-inorganic Hybrid Perovskites for Photocatalytic Hydrogen Evolution Reaction in Acidic Solution
Wang L; Goddard WA*; Cheng T; Xiao H; Li YY*;
J. Phys. Chem. C 2018, 122, 20918-20922.
https://doi.org/10.1021/acs.jpcc.8b07380
19. Electrochemical CO Reduction Builds Solvent Water into Oxygenate Products
Lum YW; Cheng T; Goddard WA*; Ager JW*;
J. Am. Chem. Soc. 2018, 140, 9337-9340.
https://doi.org/10.1021/jacs.8b03986
(Lum YW and Cheng T contributed equally)
20. First Principles Based Multiscale Atomistic Methods for Input into First Principles Non-equilibrium Transport Across Interfaces
Cheng T; Jaramillo-Botero A; An Q; Ilyin DV; Naserifar S; Goddard WA*;
Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 18193-18201.
https://doi.org/10.1073/pnas.1800035115
21. Explanation of Dramatic pH-Dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High pH.
Cheng T; Wang L; Boris MV; Goddard WA*;
J. Am. Chem. Soc. 2018, 140, 7787-7790.
http://dx.doi.org/10.1021/jacs.8b04006
(J. Am. Chem. Soc. Spotlights)
https://pubs.acs.org/doi/pdfplus/10.1021/jacs.8b05954
22. Surface Ligand Promotion of Carbon Dioxide Reduction through Stabilizing Chemisorbed Reactive Intermediates
Wang ZJ*; Wu LN; Sun K; Chen T; Jiang ZH; Cheng T*; Goddard WA*;
J. Phys. Chem. Lett. 2018, 9, 3057-3061.
http://dx.doi.org/10.1021/acs.jpclett.8b00959
23. Ordered Three-fold Symmetric Graphene Oxide/Buckled Graphene/Graphene Heterostructures on MgO (111) by Carbon Molecular Beam Epitaxy
Ladewig C; Cheng T; Randle MD; Bird J; Olanipekun O; Dowben PA; Kelber J*; Goddard WA*;
J. Mater. Chem. C 2018, 6, 4225-4233.
http://dx.doi.org/10.1039/C8TC00178B
(Ladewig C and Cheng T contributed equally)
24. Reaction Mechanisms and Sensitivity for Silicon Nitrocarbamate and Related Systems from Quantum Mechanics Reaction Dynamics
Zhou TT; Cheng T; Zybin SZ; Goddard WA*; Huang FL;
J. Mater. Chem. A 2018, 6, 5082-5097.
http://dx.doi.org/10.1039/C7TA10998A
(2018 Journal of Materials Chemistry A HOT Papers)
25. Pb-activated Amine-assisted Photocatalytic Hydrogen Evolution Reaction on Organic-Inorganic Perovskites
Wang L*; Xiao H; Cheng T; Li YY*; Goddard WA*;
J. Am. Chem. Soc. 2018, 140, 1994–1997.
http://dx.doi.org/10.1021/jacs.7b12028
(J. Am. Chem. Soc. Cover Publication)
https://pubs.acs.org/toc/jacsat/140/6
26. Predicted Detonation Properties at the Chapman-Jouguet State for Proposed Energetic Materials (MTO and MTO3N) from Combined ReaxFF and Quantum Mechanics Reactive Dynamics
Zhou T; Zybin SV; Goddard WA*; Cheng T; Naserifar S; Jaramillo-Botero A; Huang FL;
Phys. Chem. Chem. Phys. 2018, 20, 3953-3969.
http://dx.doi.org/10.1039/C7CP07321F
2017
27. Bulk Properties of Amorphous Lithium Dendrites
Aryanfar A*; Cheng T; Goddard WA;
ECS Trans. 2017, 80, 365-370.
http://dx.doi.org/10.1149/08010.0365ecst
28. Ultrahigh Mass Activity for Carbon Dioxide Reduction Enabled by Gold-iron Core-shell Nanoparticles
Sun K; Cheng T; Wu LN; Hu YF; Zhou JG; Maclennan A; Jiang ZH; Gao YZ; Goddard WA*; Wang ZJ*;
J. Am. Chem. Soc. 2017, 139, 15608–15611.
http://dx.doi.org/10.1021/jacs.7b09251
(Sun K and Cheng T contributed equally)
(J. Am. Chem. Soc. Cover Publication)
http://pubs.acs.org/subscribe/covers/jacsat/jacsat_v139i044-2.jpg?0.7583455086716329
29. Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance
Cheng T; Xiao H; Goddard WA*;
J. Am. Chem. Soc. 2017, 139, 11642-11645.
http://dx.doi.org/10.1021/jacs.7b03300
30. Predicted Structures of the Active Sites Responsible for the Improved Reduction of Carbon Dioxide by Gold Nanoparticles
Cheng T; Huang YF; Xiao H; Goddard WA*;
J. Phys. Chem. Lett. 2017, 8, 3317-3320.
http://dx.doi.org/10.1021/acs.jpclett.7b01335
31. Quantum Mechanics Reactive Dynamics Study of Solid Li-Electrode/Li6PS5Cl-Electrolyte Interface
Cheng T; Merinov BV*; Morozov S; Goddard WA;
ACS Energy Lett. 2017, 2, 1454-1459.
http://dx.doi.org/10.1021/acsenergylett.7b00319
32. Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects
Hajilar S; Shafei B*; Cheng T; Jaramillo-Botero A;
J. Phys. Chem. A 2017, 121, 4688-4697.
http://dx.doi.org/10.1021/acs.jpca.7b02824
33. Epitaxial Growth of Cobalt Oxide Phases on Ru(0001) for Spintronic Device Applications
Olanipekun O; Ladewig C; Kelber J*; Randle MD; Nathawat J; Kwan CP; Bird JP; Chakraborti P; Dowben PA; Cheng T; Goddard WA;
Semicond. Sci. Technol. 2017, 32, 095011.
https://doi.org/10.1088/1361-6641/aa7c58
34. The Cu Metal Embedded in Oxidized Matrix Catalyst to Promote CO2 Activation and CO Dimerization for Efficient and Selective Electrochemical Reduction of CO2
Xiao H; Goddard WA*; Cheng T; Liu YY;
Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 6685-6688.
http://dx.doi.org/10.1073/pnas.1702405114
35. Subsurface Oxide Plays a Critical Role in CO2 Activation by Copper (111) Surfaces to Form Chemisorbed CO2, the First Step in Reduction of CO2
Favaro M; Xiao H; Cheng T; Goddard WA*; Yano J*; Crumlin EJ*;
Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 6706-6711.
http://dx.doi.org/10.1073/pnas.1701405114
36. Intramolecular Energy and Electron Transfer Within a Diazaperopyrenium-Based Cyclophane
Gong XR; Young RM; Hartlieb KJ; Miller C; Wu YL; Xiao H; Li P; Hafezi N; Zhou JW; Ma L; Cheng T; Goddard WA; Farha OK; Hupp JT; Wasielewski MR*; Stoddart JF*;
J. Am. Chem. Soc. 2017, 139, 4107-4116.
http://dx.doi.org/10.1021/jacs.6b13223
37. Size-Matched Radical Multivalency
Lipke MC; Cheng T; Wu YL; Arslan H; Xiao H; Wasielewski MR; Goddard WA; Stoddart JF*;
J. Am. Chem. Soc. 2017, 139, 3986-3998.
http://dx.doi.org/10.1021/jacs.6b09892
38. Full Atomistic Reaction Mechanism with Kinetics for CO Reduction on Cu(100) from ab initio Molecular Dynamics Free-energy Calculations at 298 K.
Cheng T; Xiao H; Goddard WA*;
Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 1795-1800.
http://dx.doi.org/10.1073/pnas.1612106114
(direct submission)
39. Mechanism and Kinetics of the Electrocatalytic Reaction Responsible for the High Cost of Hydrogen Fuel Cells
Cheng T; Goddard WA*; An Q; Xiao H; Merinov B; Morozov S;
Phys. Chem. Chem. Phys. 2017, 19, 2666-2673.
http://dx.doi.org/10.1039/C6CP08055C
(2017 PCCP HOT Articles)
40. Atomistic Mechanisms Underlying Selectivities in C1 and C2 Products from Electrochemical Reduction of CO on Cu(111)
Xiao H; Cheng T; Goddard WA*;
J. Am. Chem. Soc. 2017, 139, 130-136.
http://dx.doi.org/10.1021/jacs.6b06846
41. Nucleation of Graphene Layers On Magnetic Oxides: Co3O4 (111) and Cr2O3 (0001) from Theory and Experiment
Beatty J; Cheng T; Cao Y; Driver M; Goddard WA*; Kelber J*;
J. Phys. Chem. Lett. 2017, 8, 188-192.
http://dx.doi.org/10.1021/acs.jpclett.6b02325
(Beatty J and Cheng T contributed equally)
2016
42. Ultrafine Jagged Platinum Nanowires Enable Ultrahigh Mass Activity for the Oxygen Reduction Reaction
Li MF; Zhao ZP; Cheng T; Fortunelli A; Chen CY; Yu R; Zhang QH; Gu L; Merinov B; Lin ZY; Zhu EB; Yu T; Jia QY; Guo JH; Zhang L; Goddard WA*; Huang Y*; Duan XF*;
Science 2016, 354, 1414-1419.
http://dx.doi.org/10.1126/science.aaf9050
43. Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water
Cheng T; Xiao H; Goddard WA*;
J. Am. Chem. Soc. 2016, 138, 13802-13805.
http://dx.doi.org/10.1021/jacs.6b08534
(Reported by JCAP highlight with linkage below)
https://solarfuelshub.org/102016-rh-qm-with-explicit-water
44. Influence of Constitution and Charge on Radical Pairing Interactions in Trisradical Tricationic Complexes
Cheng CY; Cheng T; Xiao H; Krzyaniak MD; Wang YP; McGonigal PR; Frasconi M; Barnes JC; Fahrenbach AC; Wasielewski MR; Goddard WA; Stoddart JF*;
J. Am. Chem. Soc. 2016, 138, 8288-8300.
http://dx.doi.org/10.1021/jacs.6b04343
45. Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu(111)
Xiao H; Cheng T; Goddard WA*; Sundararaman R;
J. Am. Chem. Soc. 2016, 138, 483-486.
http://dx.doi.org/10.1021/jacs.5b11390
2015
46. Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0
Cheng T; Xiao H; Goddard WA*;
J. Phys. Chem. Lett. 2015, 6, 4767-4773.
http://dx.doi.org/10.1021/acs.jpclett.5b02247
47. Annealing Kinetics of Electrodeposited Lithium Dendrites
Aryanfar A*; Cheng T; Colussi AJ; Goddard WA; Hoffmann MR;
J. Chem. Phys. 2015, 143, 134701.
http://dx.doi.org/10.1063/1.4930014
(reported by AIP publishing Extending a Battery's Lifetime with Heat)
https://phys.org/news/2015-10-battery-lifetime.html
48. Rescaling of Metal Oxide Nanocrystals for Energy Storage Having High Capacitance and Energy Density with Robust Cycle Life
Jeong HM; Choi KM; Cheng T; Lee DK; Zhou RJ; Ock IW; Milliron DJ; Colussi AJ; Goddard WA*; Kang JK*;
Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 7914-7919.
http://dx.doi.org/10.1073/pnas.1503546112
49. Initial Decomposition Reactions of Bicyclo-HMX [BCHMX or cis-1,3,4,6 Tetranitrooctahydroimidazo-[4,5-d]imidazole] from Quantum Molecular Dynamics Simulations
Ye CC; An Q; Goddard WA*; Cheng T; Zybin ZV; Ju XH;
J. Phys. Chem. C 2015, 119, 2290-2296.
http://dx.doi.org/10.1021/jp510328d
50. Anisotropic Impact Sensitivity and Shock Induced Plasticity of TKX-50 (Dihydroxylammonium 5,5-bis(tetrazole)-1,1-diolate) Single Crystals: From Large-Scale Molecular Dynamics Simulations
An Q; Cheng T; Goddard WA*; Zybin ZV;
J. Phys. Chem. C 2015, 119, 2196-2207.
http://dx.doi.org/10.1021/jp510951s
(An Q and Cheng T contributed equally)
51. Reaction Mechanism from Quantum Molecular Dynamics for the Initial Thermal Decomposition of 2, 4, 6-triamino-1, 3, 5-triazine-1, 3, 5-trioxide (MTO) and 2, 4, 6-trinitro-1, 3, 5-triazine-1, 3, 5-trioxide (MTO3N), Promising Green Energetic Materials
Ye CC; An Q; Cheng T; Zybin ZV; Naserifar S; Goddard WA*;
J. Mater. Chem. A 2015, 3, 12044-12050.
http://dx.doi.org/10.1039/C5TA02486B
52. Initial Decomposition Reaction of Di-tetrazine-tetroxide (Dtto) from Quantum Molecular Dynamics: Implications for a Promising Energetic Material
Ye CC; An Q; Goddard WA*; Cheng T; Liu WG; Zybin ZV; Ju XH;
J. Mater. Chem. A 2015, 3, 1972-1978.
http://dx.doi.org/10.1039/C4TA05676K
2014
53. Initial Steps of Thermal Decomposition of Dihydroxylammonium 5,5 -bistetrazole-1,1 -diolate Crystals from Quantum Mechanics
An Q; Liu WG; Goddard WA*; Cheng T; Zybin ZV; Xiao H;
J Phys. Chem. C 2014, 118, 27175-27181.
http://dx.doi.org/10.1021/jp509582x
54. Atomistic Explanation of Shear-Induced Amorphous Band Formation in Boron Carbide
An Q; Goddard WA*; Cheng T;
Phys. Rev. Lett. 2014, 113, 095501.
http://dx.doi.org/10.1103/PhysRevLett.113.095501
55. Deformation Induced Solid/Solid Phase Transitions in Gamma Boron
An Q; Goddard WA*; Xiao H; Cheng T;
Chem. Mater. 2014, 26, 4289-4298.
http://dx.doi.org/10.1021/cm5020114
56. Adaptive Accelerated ReaxFF Reactive Dynamics with Validation from Simulating Hydrogen Combustion
Cheng T; Goddard WA*; Goddard WA*; Jaramillo-Botero A*; Sun H*;
J. Am. Chem. Soc. 2014, 136, 9434-9442.
http://dx.doi.org/10.1021/ja5037258
before 2014
57. Adsorption of Ethanol Vapor on Mica Surface under Different Relative Humidities: A Molecular Simulation Study
Cheng T; Sun H*;
J. Phys. Chem. C 2012, 116, 16436-16446.
http://dx.doi.org/10.1021/jp3020595
58. Prediction of the Mutual Solubility of Water and Dipropylene Glycol Dimethyl Ether Using Molecular Dynamics Simulation
Cheng T; Li F; Dai JX; Sun H*;
Fluid Phase Equilibria. 2012, 314, 1-6.
http://dx.doi.org/10.1016/j.fluid.2011.10.013
59. Molecular Engineering of Microporous Crystals: (Iv) Crystallization Process of Microporous Aluminophosphate Alpo4-11
Cheng T; Xu J; Li X; Zhang B; Yan WF*; Yu JH; Sun H; Deng F; Xu RR*;
Micropor. Mesopor. Mater. 2012, 152, 190-207.
http://dx.doi.org/10.1016/j.micromeso.2011.11.034
60. Classic Force Field for Predicting Surface Tension and Interfacial Properties of Sodium Dodecyl Sulfate
Cheng T; Chen Q; Li F; Sun H*;
J. Phys. Chem. B 2010, 114, 13736-13744.
http://dx.doi.org/10.1021/jp107002x
61. On the Accuracy of Predicting Shear Viscosity of Molecular Liquids Using the Periodic Perturbation Method
Zhao LF; Cheng T; Sun H*;
J. Chem. Phys. 2008, 129, 144501.
http://dx.doi.org/10.1063/1.2936986
62. One Force Field for Predicting Multiple Thermodynamic Properties of Liquid and Vapor Ethylene Oxide
Li XF; Zhao LF; Cheng T; Liu LC; Sun H*;
Fluid Phase Equilib. 2008, 274, 36-43.
http://dx.doi.org/10.1016/j.fluid.2008.06.021
Postdoctoral scholar positions available in the Soochow University-Caltech International Center of Multiscale nanoMaterials Genome (SC-nMG), Soochow University in Suzhou, Directed by Professor William A. Goddard III
Professor William A. Goddard III from SC-nMGwould like to interview exceptional candidates for several postdoctoral scholar positions at Soochow. Interviews can be conducted via Zoom.
The SC-nMG joint center focuses on using both Quantum Mechanics (QM) and QM based multiscale reactive molecular dynamics (MD) to predict and explain the properties and performance of
·Electrocatalysts for CO2 reduction to organics, water splitting (hydrogen evolution reaction and oxygen evolution reaction), nitrogen evolution reaction to NH3, and oxygen reduction reaction (fuel cell cathode)
·Two-dimensional materials for electronics and catalysis
·Membrane proteins for signaling
·Other nanoscale materials
The SC-nMG joint center also focuses on developing new methods for more accurate methods for Quantum Mechanics (QM) and QM based multiscale reactive molecular dynamics (MD).
This requires the ability to write and modify computer programs written in languages such as C and scripting languages such python.
Examples of research areas being pursued can be found in recently published papers:
https://caltech-msc.github.io/publications/pubs-current.html
Applicant background expected:
1.PhD in chemistry, physics, materials science, chemical engineering, biosciences, or computer science;
2.Research Experience in computer based atomistic simulations using QM and/or MD
3.Proficiency in using established MD software package such as LAMMPS, GROMACS, NAMD, and AMBER
4.Proficiency in using established QM software package such as VASP, Quantum Expresso, Gaussian, and Jaguar
5.Knowledge of enhanced sampling methods and free energy calculations.
6.Knowledge of and Experience in machine learning methods
7.able to reason about molecules and solids in terms of atomistic structures;
8.Strong learning ability, able to complete routine research projects independently;
9.Careful, responsible, hardworking, with good teamwork
10.Excellent communication in spoken and written English.
Most important is to be very smart, resourceful, and unafraid to tackle impossible problems.
Qualified applicants should send:
1. CV with contact information and list of publications
2. Three personal references familiar with your background and accomplishments. Include phone numbers, fax numbers, and e-mail addresses, so we can contact them.
3. One paragraph description of how your background is appropriate for our projects
4. Two paragraph description of your career goals and how this position would be consistent with your goals.
5. pdf files for your best 3 publications
These materials should be sent in a single PDF file via e-mail to wag@caltech.edu with a copy to wag@suda.edu.cn and tcheng@suda.edu.cn
Salary and benefits:
The salary is 200,000-300,000 China Yuan;
May require visiting universities and national laboratories abroad (Such as Caltech);
Support for applying for post-doctoral funds, the National Natural Science Foundation of China, etc.;
The SC-nMG research team has sufficient funds and a good research environment.
