汤如俊,教授,博士生导师
2002年本科毕业于吉林大学, 2006和2010年分别获得电子科技大学微电子与固体电子学院硕士和博士学位(导师:李言荣,教授/院士;张万里教授)。2007至2009年在新加坡国立大学(NUS)材料科学与工程系博士联合培养学习(导师:Prof.Jingsheng Chen & Prof.Gan Moog Chow)。2011年起在苏州大学物理科学与技术学院、前沿材料物理与器件江苏省重点实验室工作。
研究方向:针对芯片系统小型化、集成化和智能化的方向,理解集成磁电材料的多维度物理性能,开发高性能磁学、电学功能材料与器件。在该方向,主持国家自然科学基金项目3项、国家重点研发计划项目子课题2项、教育部基金项目1项、国家重点实验室开放课题项目2项、苏州市重点产业前瞻性研究项目1项、其它科研项目6项。在Advanced Functional Materials、Angew.Chem.Int.Ed.、Physical Review Applied 和 Applied Physics Letters 等重要期刊上发表研究论文70余篇,获授权国家发明专利7项和实用新型专利2项。培养博士/硕士研究生20余名。兼任国家自然科学基金项目通讯评审专家、江苏省高新企业通讯评审专家和中国电子学会应用磁学分会高级会员。
教学方面,主编并出版《Introduction to Thin Film Materials and Technology(薄膜材料与技术导论)》英文教材一部,指导本科生获省级物理作品竞赛一等奖1次和二等奖2次,2021年获苏州大学建设银行教学奖。
主要研究领域为:磁电功能材料、物理与器件,具体包括
1. 氧化物薄膜磁学、电学和磁电耦合性质的多场调控(实验+微磁学模拟);
2. 面向6G通讯和新能源产业应用的高性能磁性材料;
3. 新型智能低维材料与智能传感器件;
每年招收博士研究生0-1名、硕士研究生2名。
欢迎对功能氧化物薄膜磁电物理性质(偏物理)、高性能磁性材料(偏材料)和智能传感器件(材料+物理+应用)感兴趣,并有志于科学研究的同学加入本实验室!优秀博士生可推荐去国外一流研究组联合培养。
1. 主持的纵向科研项目:
(1)国家自然科学基金面上项目(2024.1至2027.12),主持
(2)低损耗自偏置六角铁氧体薄片材料的研发, 苏州市重点产业技术创新(前瞻性应用基础研究项目)(2021.11至2024.10),主持
(3)多铁性六角铁氧体薄膜的微波特性及其电场调控, 电子薄膜与集成器件国家重点实验室开放基金项目,(2021.12至2023.11),主持
(4)多铁性六角铁氧体有序微纳米结构的磁学和磁电性质研究, 国家自然科学基金面上项目(2018.1至2021.12),主持
(5)集成薄膜材料设计、制备和高温特性研究, 国家重点研发计划项目参与单位子课题,(2021.12至2025.11),参与单位主持人
(6)与Si基IC集成的晶圆级高性能敏感薄膜制备方法研究, 国家重点研发计划项目参与单位子课题,(2017.7至2021.6),参与单位主持人
(7)掺杂M型铁氧体薄膜的磁学、介电和磁介电性质研究, 电子薄膜与集成器件国家重点实验室开放基金项目,(2015.10至2017.10),主持
(8)掺杂M型铁氧体的软磁、介电和高频性质研究, 多频谱技术教育部重点实验室开放基金项目,(2015.1至2016.12),主持
(9)Co基Z型六角铁氧体薄膜室温巨磁电耦合效应研究, 国家自然科学基金青年基金项目,(2013.1-2015.12),主持
(10)Co2Z型六角铁氧体薄膜室温巨磁电耦合效应研究, 教育部中央支持高校博士点基金新教师项目,(2013.1-2015.12),主持
2. 主要科研设备:
1)脉冲激光镀膜系统 Pulsed Laser Deposition (PLD);
2)高真空磁控溅射镀膜系统;Spin-coating 镀膜机;
3)球磨机、充磁电磁铁、微波合成仪等;
4)热压烧结平台,高温烧结炉5台;
5)综合物理性能测试系统(PPMS):磁性和半导体综合变温测试平台;
6)变温霍尔效应测试仪
7)Keithely 6517,Keithely2400,Agilent E4980、Keithely2182、Radiant Multiferroic 铁电测试仪等高精度电学测试仪表及探针台
8)矢量网路分析仪
9) 计算工作站4台
1. 培养博士研究生2名(毕业1名,在读1名);
2. 培养硕士研究生16名(已毕业7名,在读9名);
3. 本科科研实践和毕业设计学生20多名。
一、课程
1. 《普通物理学》
2. 《专业实验》
3.《纳米材料与薄膜技术》(全英文课程)
二、获奖
1.指导学生获2017年江苏省大学生物理实验作品竞赛二等奖,优秀指导教师。
2.指导学生获2019年江苏省大学生物理实验作品竞赛二等奖,优秀指导教师。
3.指导学生获2022年江苏省大学生物理实验作品竞赛一等奖,优秀指导教师。
4.2021年苏州大学建设银行教学奖三等奖。
Selected Publications (Classified with research topics):
1.Magnetic, electric and Magneto-electric Properties
[1]X.Y. Wang, L. Ma, C.L. Wang, J. Wang, J. Guo, R. J. Tang*, J.T. Zhu*, G.F. Zou*, Seed Engineering toward Layer-regulated Growth of Magnetic Semiconductor VS2, Advanced Functional Materials, 2213295,1-9 (2023).
[2]G.Q. Liang, S.C. Xu, H. Zhou, X.D.Su, R.n Zhao, H. Yang*,R. J. Tang*, Multi-field tuning of dielectric relaxation in epitaxial multiferroic hexaferrite thin film around room temperature: Property and mechanisms,Ceramics International, 48, 30012(2022).
[3]Feng Peng, A.J. Dong, G.Q. Liang, R. Zhao, W.W. Li, K. Sun, X.D.Su,R. J. Tang*, Submicron pre-sintering grain size effects on the microstructure and magnetic properties of hot-press sintered barium hexaferrite thick films,Ceramics International, 48, 22486 (2022).
[4]Q. S. Zhu, R. J. Tang*, G.Q. Liang, H. Wang, H.Y. Wang, R. Zhao, L. You, X.D.Su, Low voltage control of magnetism in BaFe10.2Sc1.8O19/BaTiO3 bilayer epitaxial thin film at temperatures up to 390 K,Applied Physics Letters, 120, 062401 (2022).
[5]S.C. Xu, Q.S. Zhu, G.Q. Liang, J.M. Zhang, H. Wang, H.Y. Wang, R. Zhao, L.You, X.D. Su, R. J. Tang*, Lattice defects related magnetic and magnetocapacitance properties of multiferroic BaFe10.2Sc1.8O19 epitaxial thin films, Scripta Materialia, 210(114466) (2022).
[6]Q. S. Zhu, R. J. Tang*, F. Peng, H. Wang, H.Y. Wang, R. Zhao, L. You, X.D. Su, Mechanical regulation of the magnetic properties of uniaxial anisotropic hexaferrite thin films, Physical Review Applied, 16(054006),1-10 (2021).
[7]J. Wang, L. Ma, X.Y. Wang, X.H. Wang, J.J. Yao, Q.H. Yi, R. J. Tang, and G.F. Zou, Sub-Nanometer Thick Wafer-Size NiO Films with Room-Temperature Ferromagnetic Behavior, Angew. Chem. Int. Ed. 60, 25020–25027 (2021). (Collaboration with 50% contribution).
[8]Dan Zhou, Hansong Zeng, Guoqing Liang, R. J. Tang*, Zhi H. Hang, Zhiwei Hu,Zixi Pei& X. S. Ling, On the Origin of the Anomalous Hall Effect in Nb Thin Films, Chinese Physics B 30(3) 211850, (2021).
[9]Hansong Zeng, Dan Zhou, Guoqing Liang, R. J. Tang*, Zhi H. Hang, Zhiwei Hu,Zixi Pei& X. S. Ling, Kondo effect and superconductivity in niobium with iron impurities, Scientific Reports,11:14256(2021).
[10]Q.S.Zhu, R. J. Tang* H. Zhou, et’al, Chemical tuning of the magnetic properties of epitaxial BaFe12-xScxO19 (0< x < 2.1) hexaferrite thin films, Journal of Alloys and Compounds, 802, 522-527 (2019).
[11]J. Shen, C. Jiang, C.Y. Li and R. J. Tang*, Investigation of magnetic properties of Sr3(Co, Zn)2Fe24O41 Z-type hexaferrites, Materials Research Express 6, 066111 (2019).
[12]J.J Zhang, W.L.Kong,R. J. Tang*, X.D.Su*, J.S.Chen* et’al, Piezoelectric control of resistance switching in VO2/Pb(Zr0.52Ti0.48)O3 thin film heterostructure, Applied Physics Letters. 114, 061603 (2019).
[13]Q.S.Zhu, R.J. Tang* H. Zhou, et’al, Impedance spectroscopy and conduction mechanism of magnetoelectric hexaferrite BaFe10.2Sc1.8O19, Journal of the American Ceramics Society, 00:1-10 (2019).
[14]C.R. Li, S.M. Zhang, R.J. Tang, Y. Lifshitz,* Le He,* X.H. Zhang* et'al, Curvature-Controlled Non-Epitaxial Growth of Hierarchical Nanostructures, Angew. Chem. Int. Ed. 57, 1-6 (2018).
[15]W.H. Zhang, Q.S.Zhu, R.J. Tang* et’al, Temperature dependent magnetic properties of conical magnetic structure M-type hexaferrites BaFe10.2Sc1.8O19 and SrFe10.2Sc1.8O19, Journal of Alloys and Compounds, 750,368e374 (2018).
[16]H. Zhou, R. J. Tang*, H.P. Lu, et’al, Phase formation and magnetic property evolution processes of hexaferrite with composition BaO﹒0.9Sc2O3﹒5.1Fe2O3, Journal ofMaterials Science: Materials in Electronics, p1-7(2017).
[17]R. J. Tang*, H.Zhou, H. Yang*et’al, Room-temperature magnetodielectric effects in epitaxial hexaferrite BaFe10.2Sc1.8O19 thin film, Applied Physics Letters. 110, 242901 (2017).
[18]R. J. Tang*,H.Zhou, H.Yang*,Room-temperature multiferroic and magneto-capacitance effects in M-type hexaferrite BaFe10.2Sc1.8O19, Applied Physics Letters. 109, 082903(2016). [Editor's Pick]
[19]R. J. Tang*, Z. Hao, H. Yang etal.,Dielectric relaxation and polaronic conduction in epitaxial BaFe12O19 hexaferrite thin film,Journal of Physics D: Applied Physics, 49, 1-6 (2016).
[20]R. J. Tang*, C. Jiang, H. Zhou, H.Yang*, Effects of composition and temperature on the magnetic properties of(Ba,Sr)3Co2Fe24O41 Z type hexaferrites, Journal of Alloys and Compounds,658, 132(2016).
[21]R. J. Tang*, C. Jiang, Y. Fang, H.Yang*, Chemical states of air annealed Sr3Co2Fe24O41 Z-type hexaferrite- an X-ray photoelectron spectroscopy study, Materials Technology: Advanced Performance Materials, 30(A4), 1 (2016).
[22]R. J. Tang*, C.Jiang, H.Yang*et al., Impedance spectroscopy and scaling behaviors of Sr3Co2Fe24O41 hexaferrites, Applied Physics Letters,106, 022902 (2015).
[23]R. J. Tang*, C.Jiang, H.Yang*et al., Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite”, Scientific Reports, 5,13645 (2015).
2. Electric and Magnetoelectric Properties of Oxide nanocomposites.
[24]L.X. Ye, D. Zhang, J.Y. Fan R. J. Tang, W.W. Li H. Yang etal.,Epitaxial (110)-oriented La0.7 Sr0.3MnO3 directly on flexible mica substrate,Journal of Physics D: Applied Physics. 55, 224002 (2022).
[25]Z.J.Shi, Z.H. Jiang, R. J. Tang*et al., Study on the Effects of Oxygen Vacancy in SrCoOx Thin Films, Applied Physics, 6, 205-211(2016).
[26]Z.H. Jiang, Z.J.Shi, R. J. Tang*et al., Effect of Post-Anneal and NaClO Oxidation on the Properties of SrCoOx Epitaxial Thin Films, Applied Physics, 6, 219-225(2016).
[27]X. Lu, R. J. Tang*, H. Yang*, SrMnO3 Film Grown by Pulsed Laser Deposition. Applied Physics, 5, 1-7(2015).
[28]W. W. Li, W. Zhang, R.J. Tang, Hao Yang*et al.,Vertical Interface Induced Dielectric Relaxation inNanocomposite (BaTiO3)1-x:(Sm2O3)x Thin Films, Scientific Reports 5, 11335 (2015)
[29]R.Zhao, W.W. Li, R. J. Tang, H. Yang*et al.,Precise tuning of(YBa2Cu3O7-δ)1-x:(BaZrO3)x thin film nanocomposite structures”,Advanced Functional Materials, 24(33), 5240(2014).
[30]R.Zhao, W.W. Li, R. J. Tang, H.Yang*et al., Manipulating leakage behavior via distribution of interfaces in oxide thin films, Applied Physics Letters, 105, 072907 (2014).
[31]W.W.Li, R. Zhao,R. J. Tang, H.Yang*,et’al. Vertical-interface-manipulated conduction behavior in nanocomposite oxide thin films, ACS: Appl. Mater. Interfaces,6, 5356 (2014)
[32]R.Zhao, W.W. Li, R. J. Tang, H. Yang*,et’al. Manipulating leakage behavior via distribution of interfaces in oxide thin films, Applied Physics Letters, 8, 101 (2014).
[33]W.W.Li, R. Zhao, R. J. Tang, H.Yang*, et’al. Oxygen-Vacancy-Induced Anti-ferromagnetism to Ferromagnetism Transformation in Eu0.5Ba0.5TiO3 thin film, Scientific Reports, 3, 2618 (2013).
[34]R.Zhao, W.W. Li, R. J. Tang*, H. Yang*, et’al. Conduction mechanisms of the EuTiO3 epitaxial thin film, Applied Physics Letters, 8, 101 (2012).
3. CoPt and FePt Based Nanocomposites for Perpendicular Magnetic Recording Media.
[35]R. J. Tang*, P.Ho, Growth of Ru–SiO2 underlayerfor Co72Pt28–SiO2 nanocomposite films , Phys. Stat. Solidi (A): Appl &Mater. Sci., 3, 1162-1167 (2014).
[36]R. J. Tang*, W. L. Zhang, Y.R. Li et’al. Effects of soft layer anisotropy and thickness on the magnetic properties of the soft/hard perpendicular exchange-coupled nanocomposite films, Journal of Magnetism and Magnetic Materials. 323, 2569-2574 (2011).
[37]R. J. Tang*, W. L. Zhang, Y.R. Li et’al., Effects of TiO2 volume fraction on the microstructure and magnetic properties of CoPt-TiO2 nanocomposite films.”, Science China: Physics, Mechanics and Astronomy, 54, 1283-1288(2011).
[38]R. J. Tang*, W. L. Zhang, Y.R. Li et’al., Microstructure and magnetic properties of the CoPtRu-SiO2 single andCoPtRu-SiO2/Co72Pt28-SiO2 double layer nanocomposite films, Materials Science Forum, 688, 358-363(2011).
[39]R. J. Tang*, P. Ho, B. C.Lim, Influence of Ru/Ru-SiO2 underlayers on the microstructure and magnetic properties of CoPt-SiO2 perpendicular recording media., Thin Solid Films, 518, 5813-5819 (2010).
[40]R. J. Tang*, W. L. Zhang, Y.R. Li et’al., Microstructure and magnetic properties of CoPt-TiO2 nanocomposite films prepared by annealing CoPt/TiO2 multi-layers., Journal of Magnetism and Magnetic Materials.322, 3490-3494 (2010).
[41]R. J. Tang*, W. L. Zhang, Y.R. Li et’al., Annealing environment effects on the microstructure and magnetic properties of FePt-TiO2 and CoPt-TiO2 nanocomposite films, Journal of Alloy and Compounds, 496, 380-384 (2010).
4. Micromagnetic Simulation of Patterned Magnetic Thin films.
[42]S.C. Xu, J.F. Yin, R.J. Tang*, et’al., Effects of the shape anisotropy and biasing field on the magnetization reversal process of the diamond-shaped NiFe nano films, Physica B: Condensed Materials, 525, 26-29(2017).
[43]R. J. Tang*, W. L. Zhang, H.W. Zhang et’al.,The spontaneous and remanence domain states of diamond-shaped NiFe nano films, Research and Progress in Solid State Electronics,27, 24-27 (2007). [In Chinese]
[44]W. L. Zhang, R. J. Tang*, H.W. Zhang et’al.,Electric current model in the Magnetic Random Access Memory, Research and Progress in Solid State Electronics, 26, 307-311 (2006). [In Chinese]
[45]W.L. Zhang, R. J. Tang, H.W. Zhang et’al., Magnetization reversal behavior simulation of diamond shaped NiFe nano film elements, IEEE Transaction on Magnetism, 41, 4390-4393 (2005).
[46]W.L. Zhang, R. J. Tang*, H.W. Zhang et’al., Simulation of the magnetization reversal process of rectangle-shaped NiFe film elements under an orthogonal magnetic field.”, Acta Metallurgica Sinica,18, 642-646 (2005).
5. Flexible Magnetic Thin films.
[47]J.D. Liu,* Y. Feng, R.J. Tang, R. Zhao, H.Yang* et’al., Mechanically Tunable Magnetic Properties of Flexible SrRuO3 Epitaxial Thin Films on Mica Substrates, Adv. Electron. Mater. 1700522(2018).
[48]W.L. Zhang, B. Peng, R. J. Tang et’al., Stress impedance effects in flexible amorphous FeCoSiB magnetoelastic films”, Journal of Magnetism and Magnetic Materials. 320, 1958-1960 (2008).
[49]R.J.Tang*, Q.Y.Xie, B.Peng et al., Influences of Ar pressure on the surface morphology and magnetic properties of FeCoSiB amorphous thin film. Journal of Functional Materials. 38, 1114-1116 (2007). [In Chinese]
[50]B. Peng, W.L. Zhang, R. J. Tang et’al., Magnetic anisotropy properties of FeCoSiB amorphous thin film grown under stress. Journal of Functional Materials. 38, 1111-1113 (2007). [In Chinese]
授权专利:
(1) 汤如俊; 彭峰 ; 一种高剩磁比、低孔隙率六角铁氧体厚膜及其制备方法与应用, 2023-1-6,(中国发明专利)ZL202111395507.8;
(2) 汤如俊; 苏晓东; 毕研明 ; Y型六角铁氧体材料、其制备方法以及微波器件, 2022-8-1, (中国发明专利)
2022109183604;
(3) 汤如俊; 王禹 ; 具有周期性微纳米级凹凸结构的金属软磁薄膜及其制备, 2022-2-8,(中国发明专利)
ZL201910355210.5;
(4) 汤如俊; 周浩; 杨浩 ; 一种具有室温宽频大磁电容效应的铁氧体材料及其制备方法, 2021-11-30, (中国发明专利), ZL 201610693559.6;
(5) 汤如俊; 周浩; 杨浩 ; 制备具有室温宽频大磁电容效应的铁氧体外延薄膜的方法, 2020-5-1, (中国发明专利)
ZL201610809230.1;
(6) 汤如俊; 徐思晨 ; 微纳米尺寸图形化薄膜阵列的介电测试系统及方法, 2020-4-6,(中国发明专利)
ZL202010251069.7;
(7) 汤如俊; 朱齐山; 苏晓东 ; 柔性六角铁氧体薄膜及其制备方法, 2020-6-30,(中国发明专利)
ZL201810692387.X ;
(8) 汤如俊; 冯亦恒 ; 小型多功能三维磁电测试系统, 2019-11-18,(中国发明专利)ZL201911129394.X;
(9) 汤如俊; 葛水兵; 陈靓; 王忠彦; 吉从政 ; 一种电性能测试装置, 2023-2-27,(实用新型专利)ZL2022225460184;
(10) 汤如俊; 王天阳; 葛水兵; 王涵永 ; 一种变温磁电测试装置, 2021-11-6,(实用新型专利)ZL202120933412.6;
欢迎对磁电薄膜物理(偏物理)、高性能磁电材料(偏材料)和智能传感器件(材料+物理+应用)感兴趣,并有志于科学研究的同学加入本实验室!
1. 每年招生博士研究生0-1名(根据项目情况和申请情况定);
2. 每年招生硕士研究生2名左右;
3. 每年招收1名本科导师制科研实践学生、2-3名本科毕业设计学生。
汤如俊,教授,博士生导师
2002年本科毕业于吉林大学, 2006和2010年分别获得电子科技大学微电子与固体电子学院硕士和博士学位(导师:李言荣,教授/院士;张万里教授)。2007至2009年在新加坡国立大学(NUS)材料科学与工程系博士联合培养学习(导师:Prof.Jingsheng Chen & Prof.Gan Moog Chow)。2011年起在苏州大学物理科学与技术学院、前沿材料物理与器件江苏省重点实验室工作。
研究方向:针对芯片系统小型化、集成化和智能化的方向,理解集成磁电材料的多维度物理性能,开发高性能磁学、电学功能材料与器件。在该方向,主持国家自然科学基金项目3项、国家重点研发计划项目子课题2项、教育部基金项目1项、国家重点实验室开放课题项目2项、苏州市重点产业前瞻性研究项目1项、其它科研项目6项。在Advanced Functional Materials、Angew.Chem.Int.Ed.、Physical Review Applied 和 Applied Physics Letters 等重要期刊上发表研究论文70余篇,获授权国家发明专利7项和实用新型专利2项。培养博士/硕士研究生20余名。兼任国家自然科学基金项目通讯评审专家、江苏省高新企业通讯评审专家和中国电子学会应用磁学分会高级会员。
教学方面,主编并出版《Introduction to Thin Film Materials and Technology(薄膜材料与技术导论)》英文教材一部,指导本科生获省级物理作品竞赛一等奖1次和二等奖2次,2021年获苏州大学建设银行教学奖。
主要研究领域为:磁电功能材料、物理与器件,具体包括
1. 氧化物薄膜磁学、电学和磁电耦合性质的多场调控(实验+微磁学模拟);
2. 面向6G通讯和新能源产业应用的高性能磁性材料;
3. 新型智能低维材料与智能传感器件;
每年招收博士研究生0-1名、硕士研究生2名。
欢迎对功能氧化物薄膜磁电物理性质(偏物理)、高性能磁性材料(偏材料)和智能传感器件(材料+物理+应用)感兴趣,并有志于科学研究的同学加入本实验室!优秀博士生可推荐去国外一流研究组联合培养。
1. 主持的纵向科研项目:
(1)国家自然科学基金面上项目(2024.1至2027.12),主持
(2)低损耗自偏置六角铁氧体薄片材料的研发, 苏州市重点产业技术创新(前瞻性应用基础研究项目)(2021.11至2024.10),主持
(3)多铁性六角铁氧体薄膜的微波特性及其电场调控, 电子薄膜与集成器件国家重点实验室开放基金项目,(2021.12至2023.11),主持
(4)多铁性六角铁氧体有序微纳米结构的磁学和磁电性质研究, 国家自然科学基金面上项目(2018.1至2021.12),主持
(5)集成薄膜材料设计、制备和高温特性研究, 国家重点研发计划项目参与单位子课题,(2021.12至2025.11),参与单位主持人
(6)与Si基IC集成的晶圆级高性能敏感薄膜制备方法研究, 国家重点研发计划项目参与单位子课题,(2017.7至2021.6),参与单位主持人
(7)掺杂M型铁氧体薄膜的磁学、介电和磁介电性质研究, 电子薄膜与集成器件国家重点实验室开放基金项目,(2015.10至2017.10),主持
(8)掺杂M型铁氧体的软磁、介电和高频性质研究, 多频谱技术教育部重点实验室开放基金项目,(2015.1至2016.12),主持
(9)Co基Z型六角铁氧体薄膜室温巨磁电耦合效应研究, 国家自然科学基金青年基金项目,(2013.1-2015.12),主持
(10)Co2Z型六角铁氧体薄膜室温巨磁电耦合效应研究, 教育部中央支持高校博士点基金新教师项目,(2013.1-2015.12),主持
2. 主要科研设备:
1)脉冲激光镀膜系统 Pulsed Laser Deposition (PLD);
2)高真空磁控溅射镀膜系统;Spin-coating 镀膜机;
3)球磨机、充磁电磁铁、微波合成仪等;
4)热压烧结平台,高温烧结炉5台;
5)综合物理性能测试系统(PPMS):磁性和半导体综合变温测试平台;
6)变温霍尔效应测试仪
7)Keithely 6517,Keithely2400,Agilent E4980、Keithely2182、Radiant Multiferroic 铁电测试仪等高精度电学测试仪表及探针台
8)矢量网路分析仪
9) 计算工作站4台
1. 培养博士研究生2名(毕业1名,在读1名);
2. 培养硕士研究生16名(已毕业7名,在读9名);
3. 本科科研实践和毕业设计学生20多名。
一、课程
1. 《普通物理学》
2. 《专业实验》
3.《纳米材料与薄膜技术》(全英文课程)
二、获奖
1.指导学生获2017年江苏省大学生物理实验作品竞赛二等奖,优秀指导教师。
2.指导学生获2019年江苏省大学生物理实验作品竞赛二等奖,优秀指导教师。
3.指导学生获2022年江苏省大学生物理实验作品竞赛一等奖,优秀指导教师。
4.2021年苏州大学建设银行教学奖三等奖。
Selected Publications (Classified with research topics):
1.Magnetic, electric and Magneto-electric Properties
[1]X.Y. Wang, L. Ma, C.L. Wang, J. Wang, J. Guo, R. J. Tang*, J.T. Zhu*, G.F. Zou*, Seed Engineering toward Layer-regulated Growth of Magnetic Semiconductor VS2, Advanced Functional Materials, 2213295,1-9 (2023).
[2]G.Q. Liang, S.C. Xu, H. Zhou, X.D.Su, R.n Zhao, H. Yang*,R. J. Tang*, Multi-field tuning of dielectric relaxation in epitaxial multiferroic hexaferrite thin film around room temperature: Property and mechanisms,Ceramics International, 48, 30012(2022).
[3]Feng Peng, A.J. Dong, G.Q. Liang, R. Zhao, W.W. Li, K. Sun, X.D.Su,R. J. Tang*, Submicron pre-sintering grain size effects on the microstructure and magnetic properties of hot-press sintered barium hexaferrite thick films,Ceramics International, 48, 22486 (2022).
[4]Q. S. Zhu, R. J. Tang*, G.Q. Liang, H. Wang, H.Y. Wang, R. Zhao, L. You, X.D.Su, Low voltage control of magnetism in BaFe10.2Sc1.8O19/BaTiO3 bilayer epitaxial thin film at temperatures up to 390 K,Applied Physics Letters, 120, 062401 (2022).
[5]S.C. Xu, Q.S. Zhu, G.Q. Liang, J.M. Zhang, H. Wang, H.Y. Wang, R. Zhao, L.You, X.D. Su, R. J. Tang*, Lattice defects related magnetic and magnetocapacitance properties of multiferroic BaFe10.2Sc1.8O19 epitaxial thin films, Scripta Materialia, 210(114466) (2022).
[6]Q. S. Zhu, R. J. Tang*, F. Peng, H. Wang, H.Y. Wang, R. Zhao, L. You, X.D. Su, Mechanical regulation of the magnetic properties of uniaxial anisotropic hexaferrite thin films, Physical Review Applied, 16(054006),1-10 (2021).
[7]J. Wang, L. Ma, X.Y. Wang, X.H. Wang, J.J. Yao, Q.H. Yi, R. J. Tang, and G.F. Zou, Sub-Nanometer Thick Wafer-Size NiO Films with Room-Temperature Ferromagnetic Behavior, Angew. Chem. Int. Ed. 60, 25020–25027 (2021). (Collaboration with 50% contribution).
[8]Dan Zhou, Hansong Zeng, Guoqing Liang, R. J. Tang*, Zhi H. Hang, Zhiwei Hu,Zixi Pei& X. S. Ling, On the Origin of the Anomalous Hall Effect in Nb Thin Films, Chinese Physics B 30(3) 211850, (2021).
[9]Hansong Zeng, Dan Zhou, Guoqing Liang, R. J. Tang*, Zhi H. Hang, Zhiwei Hu,Zixi Pei& X. S. Ling, Kondo effect and superconductivity in niobium with iron impurities, Scientific Reports,11:14256(2021).
[10]Q.S.Zhu, R. J. Tang* H. Zhou, et’al, Chemical tuning of the magnetic properties of epitaxial BaFe12-xScxO19 (0< x < 2.1) hexaferrite thin films, Journal of Alloys and Compounds, 802, 522-527 (2019).
[11]J. Shen, C. Jiang, C.Y. Li and R. J. Tang*, Investigation of magnetic properties of Sr3(Co, Zn)2Fe24O41 Z-type hexaferrites, Materials Research Express 6, 066111 (2019).
[12]J.J Zhang, W.L.Kong,R. J. Tang*, X.D.Su*, J.S.Chen* et’al, Piezoelectric control of resistance switching in VO2/Pb(Zr0.52Ti0.48)O3 thin film heterostructure, Applied Physics Letters. 114, 061603 (2019).
[13]Q.S.Zhu, R.J. Tang* H. Zhou, et’al, Impedance spectroscopy and conduction mechanism of magnetoelectric hexaferrite BaFe10.2Sc1.8O19, Journal of the American Ceramics Society, 00:1-10 (2019).
[14]C.R. Li, S.M. Zhang, R.J. Tang, Y. Lifshitz,* Le He,* X.H. Zhang* et'al, Curvature-Controlled Non-Epitaxial Growth of Hierarchical Nanostructures, Angew. Chem. Int. Ed. 57, 1-6 (2018).
[15]W.H. Zhang, Q.S.Zhu, R.J. Tang* et’al, Temperature dependent magnetic properties of conical magnetic structure M-type hexaferrites BaFe10.2Sc1.8O19 and SrFe10.2Sc1.8O19, Journal of Alloys and Compounds, 750,368e374 (2018).
[16]H. Zhou, R. J. Tang*, H.P. Lu, et’al, Phase formation and magnetic property evolution processes of hexaferrite with composition BaO﹒0.9Sc2O3﹒5.1Fe2O3, Journal ofMaterials Science: Materials in Electronics, p1-7(2017).
[17]R. J. Tang*, H.Zhou, H. Yang*et’al, Room-temperature magnetodielectric effects in epitaxial hexaferrite BaFe10.2Sc1.8O19 thin film, Applied Physics Letters. 110, 242901 (2017).
[18]R. J. Tang*,H.Zhou, H.Yang*,Room-temperature multiferroic and magneto-capacitance effects in M-type hexaferrite BaFe10.2Sc1.8O19, Applied Physics Letters. 109, 082903(2016). [Editor's Pick]
[19]R. J. Tang*, Z. Hao, H. Yang etal.,Dielectric relaxation and polaronic conduction in epitaxial BaFe12O19 hexaferrite thin film,Journal of Physics D: Applied Physics, 49, 1-6 (2016).
[20]R. J. Tang*, C. Jiang, H. Zhou, H.Yang*, Effects of composition and temperature on the magnetic properties of(Ba,Sr)3Co2Fe24O41 Z type hexaferrites, Journal of Alloys and Compounds,658, 132(2016).
[21]R. J. Tang*, C. Jiang, Y. Fang, H.Yang*, Chemical states of air annealed Sr3Co2Fe24O41 Z-type hexaferrite- an X-ray photoelectron spectroscopy study, Materials Technology: Advanced Performance Materials, 30(A4), 1 (2016).
[22]R. J. Tang*, C.Jiang, H.Yang*et al., Impedance spectroscopy and scaling behaviors of Sr3Co2Fe24O41 hexaferrites, Applied Physics Letters,106, 022902 (2015).
[23]R. J. Tang*, C.Jiang, H.Yang*et al., Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite”, Scientific Reports, 5,13645 (2015).
2. Electric and Magnetoelectric Properties of Oxide nanocomposites.
[24]L.X. Ye, D. Zhang, J.Y. Fan R. J. Tang, W.W. Li H. Yang etal.,Epitaxial (110)-oriented La0.7 Sr0.3MnO3 directly on flexible mica substrate,Journal of Physics D: Applied Physics. 55, 224002 (2022).
[25]Z.J.Shi, Z.H. Jiang, R. J. Tang*et al., Study on the Effects of Oxygen Vacancy in SrCoOx Thin Films, Applied Physics, 6, 205-211(2016).
[26]Z.H. Jiang, Z.J.Shi, R. J. Tang*et al., Effect of Post-Anneal and NaClO Oxidation on the Properties of SrCoOx Epitaxial Thin Films, Applied Physics, 6, 219-225(2016).
[27]X. Lu, R. J. Tang*, H. Yang*, SrMnO3 Film Grown by Pulsed Laser Deposition. Applied Physics, 5, 1-7(2015).
[28]W. W. Li, W. Zhang, R.J. Tang, Hao Yang*et al.,Vertical Interface Induced Dielectric Relaxation inNanocomposite (BaTiO3)1-x:(Sm2O3)x Thin Films, Scientific Reports 5, 11335 (2015)
[29]R.Zhao, W.W. Li, R. J. Tang, H. Yang*et al.,Precise tuning of(YBa2Cu3O7-δ)1-x:(BaZrO3)x thin film nanocomposite structures”,Advanced Functional Materials, 24(33), 5240(2014).
[30]R.Zhao, W.W. Li, R. J. Tang, H.Yang*et al., Manipulating leakage behavior via distribution of interfaces in oxide thin films, Applied Physics Letters, 105, 072907 (2014).
[31]W.W.Li, R. Zhao,R. J. Tang, H.Yang*,et’al. Vertical-interface-manipulated conduction behavior in nanocomposite oxide thin films, ACS: Appl. Mater. Interfaces,6, 5356 (2014)
[32]R.Zhao, W.W. Li, R. J. Tang, H. Yang*,et’al. Manipulating leakage behavior via distribution of interfaces in oxide thin films, Applied Physics Letters, 8, 101 (2014).
[33]W.W.Li, R. Zhao, R. J. Tang, H.Yang*, et’al. Oxygen-Vacancy-Induced Anti-ferromagnetism to Ferromagnetism Transformation in Eu0.5Ba0.5TiO3 thin film, Scientific Reports, 3, 2618 (2013).
[34]R.Zhao, W.W. Li, R. J. Tang*, H. Yang*, et’al. Conduction mechanisms of the EuTiO3 epitaxial thin film, Applied Physics Letters, 8, 101 (2012).
3. CoPt and FePt Based Nanocomposites for Perpendicular Magnetic Recording Media.
[35]R. J. Tang*, P.Ho, Growth of Ru–SiO2 underlayerfor Co72Pt28–SiO2 nanocomposite films , Phys. Stat. Solidi (A): Appl &Mater. Sci., 3, 1162-1167 (2014).
[36]R. J. Tang*, W. L. Zhang, Y.R. Li et’al. Effects of soft layer anisotropy and thickness on the magnetic properties of the soft/hard perpendicular exchange-coupled nanocomposite films, Journal of Magnetism and Magnetic Materials. 323, 2569-2574 (2011).
[37]R. J. Tang*, W. L. Zhang, Y.R. Li et’al., Effects of TiO2 volume fraction on the microstructure and magnetic properties of CoPt-TiO2 nanocomposite films.”, Science China: Physics, Mechanics and Astronomy, 54, 1283-1288(2011).
[38]R. J. Tang*, W. L. Zhang, Y.R. Li et’al., Microstructure and magnetic properties of the CoPtRu-SiO2 single andCoPtRu-SiO2/Co72Pt28-SiO2 double layer nanocomposite films, Materials Science Forum, 688, 358-363(2011).
[39]R. J. Tang*, P. Ho, B. C.Lim, Influence of Ru/Ru-SiO2 underlayers on the microstructure and magnetic properties of CoPt-SiO2 perpendicular recording media., Thin Solid Films, 518, 5813-5819 (2010).
[40]R. J. Tang*, W. L. Zhang, Y.R. Li et’al., Microstructure and magnetic properties of CoPt-TiO2 nanocomposite films prepared by annealing CoPt/TiO2 multi-layers., Journal of Magnetism and Magnetic Materials.322, 3490-3494 (2010).
[41]R. J. Tang*, W. L. Zhang, Y.R. Li et’al., Annealing environment effects on the microstructure and magnetic properties of FePt-TiO2 and CoPt-TiO2 nanocomposite films, Journal of Alloy and Compounds, 496, 380-384 (2010).
4. Micromagnetic Simulation of Patterned Magnetic Thin films.
[42]S.C. Xu, J.F. Yin, R.J. Tang*, et’al., Effects of the shape anisotropy and biasing field on the magnetization reversal process of the diamond-shaped NiFe nano films, Physica B: Condensed Materials, 525, 26-29(2017).
[43]R. J. Tang*, W. L. Zhang, H.W. Zhang et’al.,The spontaneous and remanence domain states of diamond-shaped NiFe nano films, Research and Progress in Solid State Electronics,27, 24-27 (2007). [In Chinese]
[44]W. L. Zhang, R. J. Tang*, H.W. Zhang et’al.,Electric current model in the Magnetic Random Access Memory, Research and Progress in Solid State Electronics, 26, 307-311 (2006). [In Chinese]
[45]W.L. Zhang, R. J. Tang, H.W. Zhang et’al., Magnetization reversal behavior simulation of diamond shaped NiFe nano film elements, IEEE Transaction on Magnetism, 41, 4390-4393 (2005).
[46]W.L. Zhang, R. J. Tang*, H.W. Zhang et’al., Simulation of the magnetization reversal process of rectangle-shaped NiFe film elements under an orthogonal magnetic field.”, Acta Metallurgica Sinica,18, 642-646 (2005).
5. Flexible Magnetic Thin films.
[47]J.D. Liu,* Y. Feng, R.J. Tang, R. Zhao, H.Yang* et’al., Mechanically Tunable Magnetic Properties of Flexible SrRuO3 Epitaxial Thin Films on Mica Substrates, Adv. Electron. Mater. 1700522(2018).
[48]W.L. Zhang, B. Peng, R. J. Tang et’al., Stress impedance effects in flexible amorphous FeCoSiB magnetoelastic films”, Journal of Magnetism and Magnetic Materials. 320, 1958-1960 (2008).
[49]R.J.Tang*, Q.Y.Xie, B.Peng et al., Influences of Ar pressure on the surface morphology and magnetic properties of FeCoSiB amorphous thin film. Journal of Functional Materials. 38, 1114-1116 (2007). [In Chinese]
[50]B. Peng, W.L. Zhang, R. J. Tang et’al., Magnetic anisotropy properties of FeCoSiB amorphous thin film grown under stress. Journal of Functional Materials. 38, 1111-1113 (2007). [In Chinese]
授权专利:
(1) 汤如俊; 彭峰 ; 一种高剩磁比、低孔隙率六角铁氧体厚膜及其制备方法与应用, 2023-1-6,(中国发明专利)ZL202111395507.8;
(2) 汤如俊; 苏晓东; 毕研明 ; Y型六角铁氧体材料、其制备方法以及微波器件, 2022-8-1, (中国发明专利)
2022109183604;
(3) 汤如俊; 王禹 ; 具有周期性微纳米级凹凸结构的金属软磁薄膜及其制备, 2022-2-8,(中国发明专利)
ZL201910355210.5;
(4) 汤如俊; 周浩; 杨浩 ; 一种具有室温宽频大磁电容效应的铁氧体材料及其制备方法, 2021-11-30, (中国发明专利), ZL 201610693559.6;
(5) 汤如俊; 周浩; 杨浩 ; 制备具有室温宽频大磁电容效应的铁氧体外延薄膜的方法, 2020-5-1, (中国发明专利)
ZL201610809230.1;
(6) 汤如俊; 徐思晨 ; 微纳米尺寸图形化薄膜阵列的介电测试系统及方法, 2020-4-6,(中国发明专利)
ZL202010251069.7;
(7) 汤如俊; 朱齐山; 苏晓东 ; 柔性六角铁氧体薄膜及其制备方法, 2020-6-30,(中国发明专利)
ZL201810692387.X ;
(8) 汤如俊; 冯亦恒 ; 小型多功能三维磁电测试系统, 2019-11-18,(中国发明专利)ZL201911129394.X;
(9) 汤如俊; 葛水兵; 陈靓; 王忠彦; 吉从政 ; 一种电性能测试装置, 2023-2-27,(实用新型专利)ZL2022225460184;
(10) 汤如俊; 王天阳; 葛水兵; 王涵永 ; 一种变温磁电测试装置, 2021-11-6,(实用新型专利)ZL202120933412.6;
欢迎对磁电薄膜物理(偏物理)、高性能磁电材料(偏材料)和智能传感器件(材料+物理+应用)感兴趣,并有志于科学研究的同学加入本实验室!
1. 每年招生博士研究生0-1名(根据项目情况和申请情况定);
2. 每年招生硕士研究生2名左右;
3. 每年招收1名本科导师制科研实践学生、2-3名本科毕业设计学生。