Group Webpage (English): https://mesointegrate.com
个人简介
蒋建华,苏州大学/中国科学技术大学教授。2000-2010年在中国科学技术大学学习,获学士和博士学位。之后在以色列魏茨曼研究所和加拿大多伦多大学从事博士后研究。2015年起任苏州大学教授,2021年获得国家杰出青年基金项目的资助。主要从事拓扑光子学/声子学、非平衡统计物理等方面的研究。拓展了利用室温光子和声子系统发现新颖拓扑物理效应的研究,特别在拓扑体-缺陷对应关系、高阶拓扑态、非阿贝尔拓扑态等方面做出了一系列享有国际声誉的工作,并在非平衡统计物理和非常规热电效应方面做了一系列基础性、开拓性的工作。发表同行评审学术论文100余篇(含Nature、Nature子刊、Phys. Rev. Lett.等)。曾获中国光学十大进展等奖项,并获得江苏特聘教授、教育部国家级青年人才等荣誉。2022年以项目负责人的身份获得科技部国家重点研发计划的支持。
学术兼职:
“全国统计物理与复杂系统学术会议”学术委员会委员
“全国超材料大会”理事会理事
National Science Review编辑部成员
Science Bulletin副编辑
国际电磁研究进展会议(PIERS 2016, 2018, 2019)分会场组织者和主席。
《Chinese Physics Letter》,《Chines Physics B》,《中国物理学报》和《物理》杂志青年编辑
其它荣誉:
江苏特聘教授
苏州市紧缺人才
中国科学院院长奖
代表作:
Yang Liu, Shuwai Leung, Fei-Fei Li, Zhi-Kang Lin, Xuefeng Tao, Yin Poo∗, and Jian-Hua Jiang∗, “Bulk-disclination correspondence in topological crystalline insulators”,Nature589, 381-385 (2021). Highlight: Experimental discovery of the topological bulk-disclination correspondence. See Nature: News & Views“Electrons broken into pieces at crystal defects”.
2. Li Luo, Hai-Xiao Wang, Zhi-Kang Lin, Bin Jiang, Ying Wu, Feng Li∗, and Jian-Hua Jiang∗, “Observation of a phononic higher-order Weyl semimetal”, Nature Materials20, 794-799 (2021). Highlight:Experimental discovery of the higher-order Weyl semimetal using a phononic platform.See Nature Materials: News & Views“The sound of Weyl hinges”.
3. Hai-Xiao Wang, Zhi-Kang Lin, Bin Jiang, Guan-Yu Guo, and Jian-Hua Jiang∗, “Higher-Order Weyl Semimetals”, Phys. Rev. Lett.125, 146401 (2020). Highlight:Proposal of a new concept of higher-order Weyl semimetals.
4. Bin Jiang, Adrien Bouhon∗, Zhi-Kang Lin, Xiaoxi Zhou, Bo Hou, Feng Li, Robert- Jan Slager∗, and Jian-Hua Jiang∗, “Experimental observation of non-Abelian topological acoustic semimetals and their phase transitions”,Nature Physics17, 1239-1246 (2021). Highlight: Observation of the Euler class topology and unveil the rich phase transitions of topological semimetals due to the non-Abelian braiding of band nodes. The creation and merging of band nodes are governed by the laws of the non-Abelian topological charges.
5. Xiujuan Zhang, Hai-Xiao Wang, Zhi-Kang Lin, Yuan Tian, Biye Xie, Ming-Hui Lu∗, Yan-Feng Chen, Jian-Hua Jiang∗, “Second-order topology and multi-dimensional topological transitions in sonic crystals”, Nature Physics15, 582 (2019). Highlight:Experimental observation of higher-order topology and multidimensional topological transitions using tunable sonic crystals.
6. Zhi-Kang Lin, Ying Wu∗, Bin Jiang, Yang Liu, Shiqiao Wu, Feng Li∗, and Jian-Hua Jiang∗, “Experimental observation of topological Wannier cycles”, arXiv:2105.02070 under review at Nature Materials (close to acceptance) Highlight: Experimental discovery of topological Wannier cycles---novel fundamental topological phenomena induced by highly localized gauge flux.
7. Hao Ge, Xiang-Yuan Xu, Le Liu, Rui Xu, Si-Yuan Yu, Ming Bao, Jian-Hua Jiang∗, Ming-Hui Lu∗, and Yan-Feng Chen∗, “Observation of acoustic skyrmions, Phys. Rev. Lett.127, 144502 (2021) (Editor’s suggestion) (Featured in APSPhysics Synopsis: Skyrmions Made from Sound Waves). Highlight:The first observation of skyrmion patterns in acoustics.
8. Xiujuan Zhang, Yuan Tian, Jian-Hua Jiang∗, Ming-Hui Lu∗, and Yan-Feng Chen∗, “Observation of higher-order non-Hermitian skin effect”, Nature Communications12, 5377 (2021). Highlight:Experimental observation of higher-order non-Hermitian skin effect.
9. Xiujuan Zhang, Bi-Ye Xie, Hong-Fei Wang, Xiangyuan Xu, Yuan Tian, Jian-Hua Jiang∗, Ming-Hui Lu∗, and Yan-Feng Chen∗, “Dimensional hierarchy of higher-order topology in three-dimensional sonic crystals”, Nature Communications 10, 5331 (2019). Highlight:Experimental discovery of a third-order higher-order topological insulator.
10. Fei-Fei Li, Hai-Xiao Wang, Zhan Xiong, Qun Lou, Ping Chen, Rui-Xin Wu, Yin Poo∗, Jian-Hua Jiang∗, and Sajeev John, “Topological light-trapping on a dislocation”, Nature Communications9, 2462 (2018). Highlight: The first experimental realization of a photonic cavity mode bound to a dislocation due to topological mechanisms.
Group long-term goals: Topological photonics/phononics/polaritonics, Quantum complex systems
欢迎本科生前来开展研究,可发表论文。更欢迎研究生加入研究团队。
1.拓扑经典波动
拓扑研究的是几何体连续变形下不变的性质。拓扑绝缘体是近来凝聚态物理的热点。拓扑绝缘体本身的体能带是绝缘体,但在它的界面或者边缘是导带,可以允许电子输运。和传统异质结构来输运电子不同,拓扑绝缘体不需要对材料界面和边缘进行特别地加工,其界面态/边缘态的性质只由其体能带的拓扑性质决定。在受到体能带拓扑性质保护的界面态/边缘态的电子输运不会受到杂质和声子的影响,可以非常的稳定,对于新型电子器件的发展具有重要的应用价值。
材料和结构的拓扑性质并不受研究对象是电子或光子而发生改变。将对拓扑绝缘体研究的思路和方法引入到电磁波、声波和弹性波研究中,成为近年非常热门的研究课题:拓扑经典波动。拓扑现象可以丰富经典波动系统的物理性质,并增加很多崭新的应用。
2.非弹性热电和非平衡统计
未来科技的一个重要挑战是制造具有高能量效率、多功能、少材料耗费的智能设备。这些设备将有助于缓解人类对能量和材料的过度消耗,以及由此引发的环境、资源和能源问题。热电能量转换具有无机械损耗、无噪音、长寿命等优势,是优质的可再生能源。
长期以来人们对热电转换机理的理论研究停留在弹性输运近似的框架下。近年来,我们和瑞士的同行较早研究了非弹性热电输运的物理和性质。我们提出了非弹性热电输运的几个经典的模型,澄清了其中的物理机制,并率先指出了非弹性热电效应的一系列优势。我们通过一系列的研究建立了非弹性热电输运的理论基础。并先后提出利用多端输运、非线性、合作效应等方式提升和扩展热电效应的性能和应用价值。先后提出了热电交叉整流和线性热三极管效应等非弹性热电效应独特的物理应用。作为这一系列研究的副产品,我们还发现能量合作效应,独立地发现了能量转换的普适性规律,推广了最大功产生原理(Jacobi’s law)。我们的研究还拓展到热电输运性质的介观涨落特性,并发现了效率涨落的一些普适性规律。
***Our research on photonic crystals highlighted by Phys.org (国际媒体报道我们的研究成果)
https://phys.org/news/2017-10-limit-thin-film-absorption-solar-water-splitting.html
Talk at Institute of theoretical Physics, Beijing, China, 2017, Title: ’Inelasticthermoelectricity and beyond’.
Talk at Peking University, China, 2017. Title: ’Dirac Physics and Topology inPhotonics’.
Invited talk at Chinese Physical Society Autumn meeting 2017, Chengdu, China.Title: ’Inelastic thermoelectricity: new opportunities in an old field’.
Invited talk at ’Open quantum systems’ workshop at International Center forTheoretical Science, Tata Institute of Fundamental Researches, India, 2017. Title:’Dirac Physics and Topology in Photonics’.
Invited talk at the fourth Chinese annual statistical physics conference, 2017, Xi-An, China. Title: ‘Optimal efficiency and power: universality and fluctuations’.
Talk at Department of Physics, Nanjing Normal University, China, 2017. Title:’Dirac Physics and Topology in Photonics’.
Talk at Department of Physics, University of Toronto, Canada, 2017. Title: ’DiracPhysics and Topology in Photonics’.
Talk at Department of Chermistry, University of Toronto, Canada, 2017. Title:’Simulation of Dirac physics and fermionic band topology in electromagnetism’.
Talk at University of Calgary, Canada, 2017. Title: ’Simulation of Dirac physicsand fermionic band topology in electromagnetism’.
Talk at Beijing Normal University, China, 2017. Title: ’Recent trends in meso-scopic thermoelectricity’.
Talk at Xi’An Jiaotong–Liverpool University, China, 2016. Title: ’Optimal effi-ciency and power: universality and fluctuations’.
Talk at Weizmann Institute of Science, Israel, 2016. Title: ’Optimal efficiency andpower: universality and fluctuations; emphasizing inelastic thermoelectricity’.
Talk at Wuhan University, China 2016. Title: ’Topological Photonic Crystal fromSymmorphic and Nonsymmorphic Symmetry.’
Talk at Institute of Physics, Beijing, China 2016. Title: ’Topological PhotonicCrystal from Symmorphic and Nonsymmorphic Symmetry.’
Talk at Nanjing University, Nanjing, China 2016. Title: ’Topological PhotonicCrystal from Symmorphic and Nonsymmorphic Symmetry.’
Invited talk at PIERS 2016 Shanghai, China 2016. Title: ’Quantum Simulationof Topological Energy Bands and Strong-Correlation in Photonics.’
Talk at East China Normal University, Shanghai, China 2016. Title: ’Semicon-ductor nanostructures for quantum photonics and renewable energy.’
Talk at Tongji University, Shanghai, China, 2016. Title: ’Topological photoniccrystals in two-dimensions and three-dimensions.’
Talk at Institute of Physics, Beijing, China 2015. Title: ’Optimal efficiency andpower: universality and fluctuations.’
Talk at Nanjing University, Nanjing, China 2015. Title: ’Semiconductor nanos-tructures for quantum photonics and renewable energy.’
Invited talk at Department of Physics, Rochester University, Rochester, NY, USA,2015. Title: ‘Thermoelectric phenomena in mesoscopic systems: inelastic effectsand universal properties.’
Talk at School of Physical Science and Technology, Shoochow University, Suzhou,China, 2014. Title: ’Photonic architectures for long-lived room-temperature Bose-Einstein Condensation’.
Talk at School of Physical Science and Electronic Technology, South China Uni-versity of Technology, Guangzhou, China, 2014. Title: ’Photonic architectures forlong-lived room-temperature Bose-Einstein Condensation’.
Talk at Department of Physics, Tongji University, Shanghai, China, 2014. Title:’Thermodynamic bounds and general properties of optimal efficiency and power’.
Talk at School of Materials Science and Engineering, Tongji University, Shanghai,China, 2013. Title: ’Collective Thermoelectric Effect in Three-Terminal Thermo-electric Systems and Beyond’.
Talk at Department of Physics, Tongji University, Shanghai, China, 2013. Title:’Collective Thermoelectric Effect in Three-Terminal Thermoelectric Systems andBeyond’.
Talk at the Chemical Physics Theory Group, Department of Chemistry, Universityof Toronto, Toronto, Canada, 2013. Title: ’Thermoelectric effects: new aspectsfrom inelastic processes’.
Talk at Department of Physics, Tongji University, Shanghai, China, 2013. Title:’Thermoelectric effects: new aspects from inelastic processes’.
Talk at the Istitute for Advanced Study, Tsinghua University, Beijing, China,2013. Title: ’Thermoelectric effects: new aspects from inelastic processes’.
Talk at the scientific retreat of the Department of Condensed Matter Physics,Mishkenot Sha’ananim, Jerusalem, Israel, 2011. Title: ‘Three-Terminal Thermo-electric Hopping Transport in 1D Nanosystems’.
Talk at Institute fu ?r Theoretical Physics at Regensburg University, Regensburg,Germany, 2011. Title: ’Non-Abelian states from k-space vortices’.
Talk at the Department of Condensed Matter Physics, Weizmann Institute ofScience, Rehovot, Israel, 2010. Title: ’Spin Dynamics in III-V Semiconductors’.
Poster at the 5th International School and Conference on Spintronics and Quan-tum Information Technology, Krak ?ow, Poland, 2009. Title: ’Electron-spin relax-ation in bulk III-V semiconductors from a fully microscopic kinetic spin Blochequation approach’. Contributing authors: J. H. Jiang and M. W. Wu.
Invited talk at the 13th National Conference on Magnetism, Yichang, Hubei,China, 2008. Title: ’Effects of intense terahertz fields on spin dynamics in semi-conductor nanostructures’. Contributing authors: J. H. Jiang and M. W. Wu.Also contribute to the talk ‘Electron spin relaxation in paramagnetic GaMnAsquantum wells’ (Contributing authors: Y. Zhou, J. H. Jiang and M. W. Wu) inthe same conference.
Invitedtalkatthe16thNationalConferenceonPhysicsofSemiconductors,LanzhouUniversity, Lanzhou, China, 2007. Title: ’Reexamination of Spin Decoherence inSemiconductor Quantum Dots from Equation-of-Motion Approach’. Contributingauthors: J. H. Jiang and M. W. Wu.
Talk at the 16th National Conference on Physics of Semiconductors, LanzhouUniversity, Lanzhou, China, 2007. Title: ’Spin Relaxation in an InAs QuantumDot in the presence of Terahertz Driving Fields’. Contributing authors: J. H.Jiang and M. W. Wu.
Talk at the 14th National Conference on Theoretical Condensed Matter Physicsand Statistical Physics, Sun Yat-Sen University, Guangzhou, China, 2006. Title:’Intense terahertz laser fields on a quantum dot with Rashba spin-orbit coupling’.Contributing authors: J. H. Jiang and M. W. Wu.
Also contribute to the talk ’Spin filtering with remote control’ (Contributing au-thors: X. Y. Feng, J. H. Jiang, and M. W. Wu) in the same conference.
Ph.D candidators:
Mr. Hai-Xiao Wang (王海啸)
Ms. Zhan Xiong (熊展)
Mr. Jin-Cheng Lu (陆金成)
Master candidators:
Ms. Xuan Zhu (朱旋)
Ms. Rongqian Wang (王荣倩)
Mr. Zhikang Lin (林志康)
Review Articles
1. M. W. Wu, J. H. Jiang, and M. Q. Weng, Spin dynamics in semiconductors,
Physics Reports 493, 61-236 (2010)
2. J.-H. Jiang and Yoseph Imry, Linear and Nonlinear Mesoscopic Thermoelectric
Transport with Coupling to Heat Baths, Comptes Rendus 17, 1047-1059 (2016)
(Invited review).
Research Articles
1. B. K. Agarwalla, J. H. Jiang, and D. Segal, Quantum efficiency bound for
continuous heat engines coupled to noncanonical reservoirs, Physical Review B
96, 104304 (2017).
2. J.-H. Jiang and Y. Imry, Enhancing thermoelectric performance by nonlinear
eects, Physical Review Applied 7, 064001 (2017).
3. J. Lu, R. Wang, Y. Liu, and J.-H. Jiang, Thermoelectric Cooperative Eect in
Three-Terminal Elastic Transport through a Quantum Dot, J. Appl. Phys. 122,
044301 (2017).
4. H.-X. Wang, Y. Chen, Z. H. Hang, H.Y. Kee, J.-H. Jiang, Type-II Dirac pho-
tons, NPJ Quantum Materials 2, 54 (2017).
5. Hai-Xiao Wang, Alan Zhan, Ya-Dong Xu, HuanYang Chen, W. L. You, Arka
Majumdar, and J.-H. Jiang, Quantum Many-Body Simulation using Cavity
Coupled Monolayer Excitons, Journal of Physics: Condensed Matter accepted
6. Yadong Xu, J.-H. Jiang, and Huanyang Chen, Stable lossless polaritons on non-
Hermitian optical interfaces, Phys. Rev. B (Rapid Communication) 95, 041409
(2017).
7. B. J. Frey, P. Kuang, M.-L. Hsieh, S.-Y. Lin, J.-H. Jiang, and S. John, Effec-
tively inifnite optical path-lengh created using a simple cubic photonic crystal for
extreme light trapping, Scientic Reports 7, 4171 (2017).
8. J. H. Jiang, X. G. Xu, L. Gilburd, and G. C.Walker, Optical hot-spots in boron-
nitride nanotubes at mid infrared frequencies: one-dimensional, Optics Express
25, 25059 (2017).
9. J. H. Jiang, P. Vasudev, and S. John, Photonic-band-gap architectures for long-
lifetime room-temperature polariton condensation in GaAs quantum wells, Phys.
Rev. A accepted.
10. Yuting Yang, Yun Fei Xu, Tao Xu, Hai-Xiao Wang, Jian-Hua Jiang, Xiao Hu,
and Zhi Hong Hang, Visualization of unidirectional optical waveguide using topo-
logical photonic crystals made of dielectric material, arXiv preprint arXiv:1610.07780
11. Lijie Li and J.-H. Jiang, Staircase Quantum Dots Conguration in Nanowires
for Optimized Thermoelectric Power, Scientic Reports 6, 31974 (2016).
12. F. Zhuo, Z. Z. Sun, and J.-H. Jiang, Cooperative Spin Caloritronic Devices,
J. Appl. Phys. under review, arXiv:1602.01285
13. Lin Xu, Hai-Xiao Wang, YaDong Xu, HuanYang Chen, and J.-H. Jiang, Acci-
dental degeneracy and topological phase transitions in two-dimensional core-shell
dielectric photonic crystals, Optics Express 24, 18059 (2016).
14. Hai-Xiao Wang, Lin Xu, H.-Y. Chen, and J.-H. Jiang, Three-dimensional pho-
tonic Dirac points stabilized by point group symmetry, Phys. Rev. B 93, 235155
(2016).
15. Hai-Xiao Wang, Ya-Dong Xu, Patrice Genevet, J.-H. Jiang, and HuanYang
Chen, Broadband mode conversion via gradient index metamaterials, Scientic
Reports 6, 24529 (2016).
16. S. Feng, J. H. Jiang, A. Al Rashid, and S. John, Biosensor Architecture for
Enhanced Multiplexing of Disease-Markers: Lab-in-a-Photonic-Crystal, Optics
Express 24, 12166 (2016)
17. P. Vasudev, J. H. Jiang, and S. John, Light-trapping for Room Temperature
Bose-Einstein Condensation in InGaAs Quantum Wells, Optics Express 24,
14010 (2016).
18. B. K. Agarwalla, J. H. Jiang, and D. Segal, Full counting statistics of vibrationally-
assisted electronic conduction: transport and fluctuations of the thermoelectric
efficiency, Phys. Rev. B 92, 245418 (2015).
19. B. K. Agarwalla, J.-H. Jiang, and D. Segal, Thermoelectricity in molecular
junctions with harmonic and anharmonic modes, Beilstein J. Nanotechnol. 6,
2129 (2015).
20. J. H. Jiang, M. Kulkarni, D. Segal, and Y. Imry, Phonon-thermoelectric tran-
sistors and rectiers, Phys. Rev. B 92, 045309 (2015).
21. J.-H. Jiang, B. K. Agarwalla, and D. Segal, Efficiency Statistics and Bounds
for Systems with Broken Time-Reversal Symmetry, Phys. Rev. Lett. 115,
040601 (2015).
22. B. J. Frey, P. Kuang, S.-Y. Lin, J.-H. Jiang and S. John, Large-scale fabrication
of a simple cubic metal oxide photonic crystal for light trapping applications, J.
Vac. Sci. Technol. B 33, 021804 (2015) (Editor's picks).
23. J. H. Jiang and S. John, Photonic Architectures for Equilibrium High-Temperature
Bose-Einstein Condensation in Dichalcogenide Monolayers, Scientic Reports 4,
7432 (2014).
24. J. H. Jiang and S. John, Photonic Crystal Architecture for Room Temperature
Equilibrium Bose-Einstein Condensation of Exciton Polaritons, Phys. Rev. X
4, 031025 (2014)
25. J. H. Jiang, Enhancing efficiency and power of nanostructured thermoelectrics
in three-terminal geometry by cooperative eects, J. Appl. Phys. 116, 194303
(2014).
26. J. H. Jiang, Thermodynamic bounds and general properties of optimal efficiency
and power, Phys. Rev. E 90, 042126 (2014).
27. O. Entin-Wohlman, J.-H. Jiang, and Y. Imry, Efficiency and dissipation in a
two-terminal thermoelectric junction, emphasizing small dissipation, Phys. Rev.
E 89, 012123 (2014).
28. X. G. Xuy, J. H. Jiangy (y: equal contribution), L. Gilburd, R. G. Rensing, K. S.
Burch, C. Zhi, Y. Bando, D. Golberg, and G. C.Walker, Mid-infrared Polaritonic
Coupling between Boron Nitride Nanotubes and Graphene, ACS nano 8, 11305
(2014).
29. X. G. Xu, B. G. Ghamsari, J. H. Jiang, L. Gilburd, G. O. Andreev, C. Zhi,
Y. Bando, D. Golberg, P. Berini, and G. C. Walker, One-dimensional Surface
Phonon Polaritons in Boron Nitride Nanotubes, Nature Communications 5,
4782 (2014)
30. J. H. Jiang, O. Entin-Wohlman, and Y. Imry, Hopping thermoelectric transport
in nite systems: boundary eects, Phys. Rev. B 87, 205420 (2013).
31. J. H. Jiang and S. Wu, Non-Abelian toplogical superconductors from topological
semimetals and related systems under superconducting proximity effect, J. Phys.:
Condens. Matter 25, 055701 (2013)
32. J. H. Jiang, O. Entin-Wohlman, and Y. Imry, Three-terminal semiconductor
junction thermoelectric devices: improving performance, New Journal of Physics
15, 075021 (2013) (In Special Issue: Focus on Thermoelectric Eects in Nanostructures).
33. J. H. Jiang, O. Entin-Wohlman, and Y. Imry, Thermoelectric three-terminal
hopping transport through one-dimensional nanosystems, Phys. Rev. B 85,
075412 (2012).
34. J. H. Jiang, Tunable topological Weyl semimetal from simple cubic lattices with
staggered uxes, Phys. Rev. A 85, 033640 (2012).
35. J. H. Jiang and S. Wu, Spin susceptibility and helical magnetic order at the
edges/surfaces of topological insulators due to Fermi surface nesting, Phys. Rev.
B 83, 205124 (2011).
36. Y. Zhou, J. H. Jiang, and M. W. Wu, Electron spin relaxation in p-type GaAs
quantum wells, New Journal of Physics 11, 113039 (2009).
37. J. H. Jiang, Y. Zhou, T. Korn, C. Schuller, and M. W. Wu, Electron spin
relaxation in paramagnetic Ga(Mn)As quantum wells, Phys. Rev. B 79, 155201
(2009).
38. J. H. Jiang and M. W. Wu, Electron-spin relaxation in bulk III-V semiconduc-
tors from a fully microscopic kinetic spin Bloch equation approach, Phys. Rev.
B 79, 125206 (2009)
39. J. H. Jiang, M. W. Wu, and Y. Zhou, “Kinetics of spin coherence of electrons
in n-type InAs quantum wells under intense terahertz laser fields, Phys. Rev. B
78, 125309 (2008).
40. J. H. Jiang, Y. Y. Wang, and M. W. Wu, ”Reexamination of spin decoherence in
semiconductor quantum dots from the equation-of-motion approach, Phys. Rev.
B 77, 035323 (2008).
41. D. Stich, J. H. Jiang, T. Korn, R. Schulz, D. Schuh, W. Wegscheider, M. W. Wu,
and C. Schuller, “Detection of large magnetoanisotropy of electron spin dephasing
in a high-mobility two-dimensional electron system in a [001] GaAs/AlxGa1??xAs
quantum well, Phys. Rev. B 76, 073309 (2007)
42. X. Y. Feng, J. H. Jiang, and M. Q. Weng, ”Remote-control spin ltering through
a T-type structure, Appl. Phys. Lett. 90, 142503 (2007).
43. J. H. Jiang and M. W. Wu, “Spin relaxation in an InAs quantum dot in the
presence of terahertz driving fields, Phys. Rev. B 75, 035307 (2007).
44. J. H. Jiang, M. Q. Weng, and M. W. Wu, “Intense terahertz laser elds on a
quantum dot with Rashba spin-orbit coupling, J. Appl. Phys. 100, 063709 (2006).
45. J. H. Jiang, M. W. Wu, M. Nagai, and M. Kuwata-Gonokami, ”Formation and
decay of electron-hole droplets in diamond, Phys. Rev. B 71, 035215 (2005).
Patent
1. Y. Imry, O. Entin-Wohlman, J. H. Jiang, “Eciency-enhanced thermoelectric de-
vices, WO Patent 2013035100 A1 (International patent).
Comments
1. J. H. Jiang and M. W. Wu, ”Comment on ‘Density dependence of electron-spin
polarization and relaxation in intrinsic GaAs at room temperature' , J. Phys. D
42, 238001 (2009).
2. J. H. Jiang and M. W. Wu, “Comment on `Photon energy and carrier density
dependence of spin dynamics in bulk CdTe crystal at room temperature' , Appl.
Phys. Lett. 94, 241112 (2009).
Group Webpage (English): https://mesointegrate.com
个人简介
蒋建华,苏州大学/中国科学技术大学教授。2000-2010年在中国科学技术大学学习,获学士和博士学位。之后在以色列魏茨曼研究所和加拿大多伦多大学从事博士后研究。2015年起任苏州大学教授,2021年获得国家杰出青年基金项目的资助。主要从事拓扑光子学/声子学、非平衡统计物理等方面的研究。拓展了利用室温光子和声子系统发现新颖拓扑物理效应的研究,特别在拓扑体-缺陷对应关系、高阶拓扑态、非阿贝尔拓扑态等方面做出了一系列享有国际声誉的工作,并在非平衡统计物理和非常规热电效应方面做了一系列基础性、开拓性的工作。发表同行评审学术论文100余篇(含Nature、Nature子刊、Phys. Rev. Lett.等)。曾获中国光学十大进展等奖项,并获得江苏特聘教授、教育部国家级青年人才等荣誉。2022年以项目负责人的身份获得科技部国家重点研发计划的支持。
学术兼职:
“全国统计物理与复杂系统学术会议”学术委员会委员
“全国超材料大会”理事会理事
National Science Review编辑部成员
Science Bulletin副编辑
国际电磁研究进展会议(PIERS 2016, 2018, 2019)分会场组织者和主席。
《Chinese Physics Letter》,《Chines Physics B》,《中国物理学报》和《物理》杂志青年编辑
其它荣誉:
江苏特聘教授
苏州市紧缺人才
中国科学院院长奖
代表作:
Yang Liu, Shuwai Leung, Fei-Fei Li, Zhi-Kang Lin, Xuefeng Tao, Yin Poo∗, and Jian-Hua Jiang∗, “Bulk-disclination correspondence in topological crystalline insulators”,Nature589, 381-385 (2021). Highlight: Experimental discovery of the topological bulk-disclination correspondence. See Nature: News & Views“Electrons broken into pieces at crystal defects”.
2. Li Luo, Hai-Xiao Wang, Zhi-Kang Lin, Bin Jiang, Ying Wu, Feng Li∗, and Jian-Hua Jiang∗, “Observation of a phononic higher-order Weyl semimetal”, Nature Materials20, 794-799 (2021). Highlight:Experimental discovery of the higher-order Weyl semimetal using a phononic platform.See Nature Materials: News & Views“The sound of Weyl hinges”.
3. Hai-Xiao Wang, Zhi-Kang Lin, Bin Jiang, Guan-Yu Guo, and Jian-Hua Jiang∗, “Higher-Order Weyl Semimetals”, Phys. Rev. Lett.125, 146401 (2020). Highlight:Proposal of a new concept of higher-order Weyl semimetals.
4. Bin Jiang, Adrien Bouhon∗, Zhi-Kang Lin, Xiaoxi Zhou, Bo Hou, Feng Li, Robert- Jan Slager∗, and Jian-Hua Jiang∗, “Experimental observation of non-Abelian topological acoustic semimetals and their phase transitions”,Nature Physics17, 1239-1246 (2021). Highlight: Observation of the Euler class topology and unveil the rich phase transitions of topological semimetals due to the non-Abelian braiding of band nodes. The creation and merging of band nodes are governed by the laws of the non-Abelian topological charges.
5. Xiujuan Zhang, Hai-Xiao Wang, Zhi-Kang Lin, Yuan Tian, Biye Xie, Ming-Hui Lu∗, Yan-Feng Chen, Jian-Hua Jiang∗, “Second-order topology and multi-dimensional topological transitions in sonic crystals”, Nature Physics15, 582 (2019). Highlight:Experimental observation of higher-order topology and multidimensional topological transitions using tunable sonic crystals.
6. Zhi-Kang Lin, Ying Wu∗, Bin Jiang, Yang Liu, Shiqiao Wu, Feng Li∗, and Jian-Hua Jiang∗, “Experimental observation of topological Wannier cycles”, arXiv:2105.02070 under review at Nature Materials (close to acceptance) Highlight: Experimental discovery of topological Wannier cycles---novel fundamental topological phenomena induced by highly localized gauge flux.
7. Hao Ge, Xiang-Yuan Xu, Le Liu, Rui Xu, Si-Yuan Yu, Ming Bao, Jian-Hua Jiang∗, Ming-Hui Lu∗, and Yan-Feng Chen∗, “Observation of acoustic skyrmions, Phys. Rev. Lett.127, 144502 (2021) (Editor’s suggestion) (Featured in APSPhysics Synopsis: Skyrmions Made from Sound Waves). Highlight:The first observation of skyrmion patterns in acoustics.
8. Xiujuan Zhang, Yuan Tian, Jian-Hua Jiang∗, Ming-Hui Lu∗, and Yan-Feng Chen∗, “Observation of higher-order non-Hermitian skin effect”, Nature Communications12, 5377 (2021). Highlight:Experimental observation of higher-order non-Hermitian skin effect.
9. Xiujuan Zhang, Bi-Ye Xie, Hong-Fei Wang, Xiangyuan Xu, Yuan Tian, Jian-Hua Jiang∗, Ming-Hui Lu∗, and Yan-Feng Chen∗, “Dimensional hierarchy of higher-order topology in three-dimensional sonic crystals”, Nature Communications 10, 5331 (2019). Highlight:Experimental discovery of a third-order higher-order topological insulator.
10. Fei-Fei Li, Hai-Xiao Wang, Zhan Xiong, Qun Lou, Ping Chen, Rui-Xin Wu, Yin Poo∗, Jian-Hua Jiang∗, and Sajeev John, “Topological light-trapping on a dislocation”, Nature Communications9, 2462 (2018). Highlight: The first experimental realization of a photonic cavity mode bound to a dislocation due to topological mechanisms.
Group long-term goals: Topological photonics/phononics/polaritonics, Quantum complex systems
欢迎本科生前来开展研究,可发表论文。更欢迎研究生加入研究团队。
1.拓扑经典波动
拓扑研究的是几何体连续变形下不变的性质。拓扑绝缘体是近来凝聚态物理的热点。拓扑绝缘体本身的体能带是绝缘体,但在它的界面或者边缘是导带,可以允许电子输运。和传统异质结构来输运电子不同,拓扑绝缘体不需要对材料界面和边缘进行特别地加工,其界面态/边缘态的性质只由其体能带的拓扑性质决定。在受到体能带拓扑性质保护的界面态/边缘态的电子输运不会受到杂质和声子的影响,可以非常的稳定,对于新型电子器件的发展具有重要的应用价值。
材料和结构的拓扑性质并不受研究对象是电子或光子而发生改变。将对拓扑绝缘体研究的思路和方法引入到电磁波、声波和弹性波研究中,成为近年非常热门的研究课题:拓扑经典波动。拓扑现象可以丰富经典波动系统的物理性质,并增加很多崭新的应用。
2.非弹性热电和非平衡统计
未来科技的一个重要挑战是制造具有高能量效率、多功能、少材料耗费的智能设备。这些设备将有助于缓解人类对能量和材料的过度消耗,以及由此引发的环境、资源和能源问题。热电能量转换具有无机械损耗、无噪音、长寿命等优势,是优质的可再生能源。
长期以来人们对热电转换机理的理论研究停留在弹性输运近似的框架下。近年来,我们和瑞士的同行较早研究了非弹性热电输运的物理和性质。我们提出了非弹性热电输运的几个经典的模型,澄清了其中的物理机制,并率先指出了非弹性热电效应的一系列优势。我们通过一系列的研究建立了非弹性热电输运的理论基础。并先后提出利用多端输运、非线性、合作效应等方式提升和扩展热电效应的性能和应用价值。先后提出了热电交叉整流和线性热三极管效应等非弹性热电效应独特的物理应用。作为这一系列研究的副产品,我们还发现能量合作效应,独立地发现了能量转换的普适性规律,推广了最大功产生原理(Jacobi’s law)。我们的研究还拓展到热电输运性质的介观涨落特性,并发现了效率涨落的一些普适性规律。
***Our research on photonic crystals highlighted by Phys.org (国际媒体报道我们的研究成果)
https://phys.org/news/2017-10-limit-thin-film-absorption-solar-water-splitting.html
Talk at Institute of theoretical Physics, Beijing, China, 2017, Title: ’Inelasticthermoelectricity and beyond’.
Talk at Peking University, China, 2017. Title: ’Dirac Physics and Topology inPhotonics’.
Invited talk at Chinese Physical Society Autumn meeting 2017, Chengdu, China.Title: ’Inelastic thermoelectricity: new opportunities in an old field’.
Invited talk at ’Open quantum systems’ workshop at International Center forTheoretical Science, Tata Institute of Fundamental Researches, India, 2017. Title:’Dirac Physics and Topology in Photonics’.
Invited talk at the fourth Chinese annual statistical physics conference, 2017, Xi-An, China. Title: ‘Optimal efficiency and power: universality and fluctuations’.
Talk at Department of Physics, Nanjing Normal University, China, 2017. Title:’Dirac Physics and Topology in Photonics’.
Talk at Department of Physics, University of Toronto, Canada, 2017. Title: ’DiracPhysics and Topology in Photonics’.
Talk at Department of Chermistry, University of Toronto, Canada, 2017. Title:’Simulation of Dirac physics and fermionic band topology in electromagnetism’.
Talk at University of Calgary, Canada, 2017. Title: ’Simulation of Dirac physicsand fermionic band topology in electromagnetism’.
Talk at Beijing Normal University, China, 2017. Title: ’Recent trends in meso-scopic thermoelectricity’.
Talk at Xi’An Jiaotong–Liverpool University, China, 2016. Title: ’Optimal effi-ciency and power: universality and fluctuations’.
Talk at Weizmann Institute of Science, Israel, 2016. Title: ’Optimal efficiency andpower: universality and fluctuations; emphasizing inelastic thermoelectricity’.
Talk at Wuhan University, China 2016. Title: ’Topological Photonic Crystal fromSymmorphic and Nonsymmorphic Symmetry.’
Talk at Institute of Physics, Beijing, China 2016. Title: ’Topological PhotonicCrystal from Symmorphic and Nonsymmorphic Symmetry.’
Talk at Nanjing University, Nanjing, China 2016. Title: ’Topological PhotonicCrystal from Symmorphic and Nonsymmorphic Symmetry.’
Invited talk at PIERS 2016 Shanghai, China 2016. Title: ’Quantum Simulationof Topological Energy Bands and Strong-Correlation in Photonics.’
Talk at East China Normal University, Shanghai, China 2016. Title: ’Semicon-ductor nanostructures for quantum photonics and renewable energy.’
Talk at Tongji University, Shanghai, China, 2016. Title: ’Topological photoniccrystals in two-dimensions and three-dimensions.’
Talk at Institute of Physics, Beijing, China 2015. Title: ’Optimal efficiency andpower: universality and fluctuations.’
Talk at Nanjing University, Nanjing, China 2015. Title: ’Semiconductor nanos-tructures for quantum photonics and renewable energy.’
Invited talk at Department of Physics, Rochester University, Rochester, NY, USA,2015. Title: ‘Thermoelectric phenomena in mesoscopic systems: inelastic effectsand universal properties.’
Talk at School of Physical Science and Technology, Shoochow University, Suzhou,China, 2014. Title: ’Photonic architectures for long-lived room-temperature Bose-Einstein Condensation’.
Talk at School of Physical Science and Electronic Technology, South China Uni-versity of Technology, Guangzhou, China, 2014. Title: ’Photonic architectures forlong-lived room-temperature Bose-Einstein Condensation’.
Talk at Department of Physics, Tongji University, Shanghai, China, 2014. Title:’Thermodynamic bounds and general properties of optimal efficiency and power’.
Talk at School of Materials Science and Engineering, Tongji University, Shanghai,China, 2013. Title: ’Collective Thermoelectric Effect in Three-Terminal Thermo-electric Systems and Beyond’.
Talk at Department of Physics, Tongji University, Shanghai, China, 2013. Title:’Collective Thermoelectric Effect in Three-Terminal Thermoelectric Systems andBeyond’.
Talk at the Chemical Physics Theory Group, Department of Chemistry, Universityof Toronto, Toronto, Canada, 2013. Title: ’Thermoelectric effects: new aspectsfrom inelastic processes’.
Talk at Department of Physics, Tongji University, Shanghai, China, 2013. Title:’Thermoelectric effects: new aspects from inelastic processes’.
Talk at the Istitute for Advanced Study, Tsinghua University, Beijing, China,2013. Title: ’Thermoelectric effects: new aspects from inelastic processes’.
Talk at the scientific retreat of the Department of Condensed Matter Physics,Mishkenot Sha’ananim, Jerusalem, Israel, 2011. Title: ‘Three-Terminal Thermo-electric Hopping Transport in 1D Nanosystems’.
Talk at Institute fu ?r Theoretical Physics at Regensburg University, Regensburg,Germany, 2011. Title: ’Non-Abelian states from k-space vortices’.
Talk at the Department of Condensed Matter Physics, Weizmann Institute ofScience, Rehovot, Israel, 2010. Title: ’Spin Dynamics in III-V Semiconductors’.
Poster at the 5th International School and Conference on Spintronics and Quan-tum Information Technology, Krak ?ow, Poland, 2009. Title: ’Electron-spin relax-ation in bulk III-V semiconductors from a fully microscopic kinetic spin Blochequation approach’. Contributing authors: J. H. Jiang and M. W. Wu.
Invited talk at the 13th National Conference on Magnetism, Yichang, Hubei,China, 2008. Title: ’Effects of intense terahertz fields on spin dynamics in semi-conductor nanostructures’. Contributing authors: J. H. Jiang and M. W. Wu.Also contribute to the talk ‘Electron spin relaxation in paramagnetic GaMnAsquantum wells’ (Contributing authors: Y. Zhou, J. H. Jiang and M. W. Wu) inthe same conference.
Invitedtalkatthe16thNationalConferenceonPhysicsofSemiconductors,LanzhouUniversity, Lanzhou, China, 2007. Title: ’Reexamination of Spin Decoherence inSemiconductor Quantum Dots from Equation-of-Motion Approach’. Contributingauthors: J. H. Jiang and M. W. Wu.
Talk at the 16th National Conference on Physics of Semiconductors, LanzhouUniversity, Lanzhou, China, 2007. Title: ’Spin Relaxation in an InAs QuantumDot in the presence of Terahertz Driving Fields’. Contributing authors: J. H.Jiang and M. W. Wu.
Talk at the 14th National Conference on Theoretical Condensed Matter Physicsand Statistical Physics, Sun Yat-Sen University, Guangzhou, China, 2006. Title:’Intense terahertz laser fields on a quantum dot with Rashba spin-orbit coupling’.Contributing authors: J. H. Jiang and M. W. Wu.
Also contribute to the talk ’Spin filtering with remote control’ (Contributing au-thors: X. Y. Feng, J. H. Jiang, and M. W. Wu) in the same conference.
Ph.D candidators:
Mr. Hai-Xiao Wang (王海啸)
Ms. Zhan Xiong (熊展)
Mr. Jin-Cheng Lu (陆金成)
Master candidators:
Ms. Xuan Zhu (朱旋)
Ms. Rongqian Wang (王荣倩)
Mr. Zhikang Lin (林志康)
Review Articles
1. M. W. Wu, J. H. Jiang, and M. Q. Weng, Spin dynamics in semiconductors,
Physics Reports 493, 61-236 (2010)
2. J.-H. Jiang and Yoseph Imry, Linear and Nonlinear Mesoscopic Thermoelectric
Transport with Coupling to Heat Baths, Comptes Rendus 17, 1047-1059 (2016)
(Invited review).
Research Articles
1. B. K. Agarwalla, J. H. Jiang, and D. Segal, Quantum efficiency bound for
continuous heat engines coupled to noncanonical reservoirs, Physical Review B
96, 104304 (2017).
2. J.-H. Jiang and Y. Imry, Enhancing thermoelectric performance by nonlinear
eects, Physical Review Applied 7, 064001 (2017).
3. J. Lu, R. Wang, Y. Liu, and J.-H. Jiang, Thermoelectric Cooperative Eect in
Three-Terminal Elastic Transport through a Quantum Dot, J. Appl. Phys. 122,
044301 (2017).
4. H.-X. Wang, Y. Chen, Z. H. Hang, H.Y. Kee, J.-H. Jiang, Type-II Dirac pho-
tons, NPJ Quantum Materials 2, 54 (2017).
5. Hai-Xiao Wang, Alan Zhan, Ya-Dong Xu, HuanYang Chen, W. L. You, Arka
Majumdar, and J.-H. Jiang, Quantum Many-Body Simulation using Cavity
Coupled Monolayer Excitons, Journal of Physics: Condensed Matter accepted
6. Yadong Xu, J.-H. Jiang, and Huanyang Chen, Stable lossless polaritons on non-
Hermitian optical interfaces, Phys. Rev. B (Rapid Communication) 95, 041409
(2017).
7. B. J. Frey, P. Kuang, M.-L. Hsieh, S.-Y. Lin, J.-H. Jiang, and S. John, Effec-
tively inifnite optical path-lengh created using a simple cubic photonic crystal for
extreme light trapping, Scientic Reports 7, 4171 (2017).
8. J. H. Jiang, X. G. Xu, L. Gilburd, and G. C.Walker, Optical hot-spots in boron-
nitride nanotubes at mid infrared frequencies: one-dimensional, Optics Express
25, 25059 (2017).
9. J. H. Jiang, P. Vasudev, and S. John, Photonic-band-gap architectures for long-
lifetime room-temperature polariton condensation in GaAs quantum wells, Phys.
Rev. A accepted.
10. Yuting Yang, Yun Fei Xu, Tao Xu, Hai-Xiao Wang, Jian-Hua Jiang, Xiao Hu,
and Zhi Hong Hang, Visualization of unidirectional optical waveguide using topo-
logical photonic crystals made of dielectric material, arXiv preprint arXiv:1610.07780
11. Lijie Li and J.-H. Jiang, Staircase Quantum Dots Conguration in Nanowires
for Optimized Thermoelectric Power, Scientic Reports 6, 31974 (2016).
12. F. Zhuo, Z. Z. Sun, and J.-H. Jiang, Cooperative Spin Caloritronic Devices,
J. Appl. Phys. under review, arXiv:1602.01285
13. Lin Xu, Hai-Xiao Wang, YaDong Xu, HuanYang Chen, and J.-H. Jiang, Acci-
dental degeneracy and topological phase transitions in two-dimensional core-shell
dielectric photonic crystals, Optics Express 24, 18059 (2016).
14. Hai-Xiao Wang, Lin Xu, H.-Y. Chen, and J.-H. Jiang, Three-dimensional pho-
tonic Dirac points stabilized by point group symmetry, Phys. Rev. B 93, 235155
(2016).
15. Hai-Xiao Wang, Ya-Dong Xu, Patrice Genevet, J.-H. Jiang, and HuanYang
Chen, Broadband mode conversion via gradient index metamaterials, Scientic
Reports 6, 24529 (2016).
16. S. Feng, J. H. Jiang, A. Al Rashid, and S. John, Biosensor Architecture for
Enhanced Multiplexing of Disease-Markers: Lab-in-a-Photonic-Crystal, Optics
Express 24, 12166 (2016)
17. P. Vasudev, J. H. Jiang, and S. John, Light-trapping for Room Temperature
Bose-Einstein Condensation in InGaAs Quantum Wells, Optics Express 24,
14010 (2016).
18. B. K. Agarwalla, J. H. Jiang, and D. Segal, Full counting statistics of vibrationally-
assisted electronic conduction: transport and fluctuations of the thermoelectric
efficiency, Phys. Rev. B 92, 245418 (2015).
19. B. K. Agarwalla, J.-H. Jiang, and D. Segal, Thermoelectricity in molecular
junctions with harmonic and anharmonic modes, Beilstein J. Nanotechnol. 6,
2129 (2015).
20. J. H. Jiang, M. Kulkarni, D. Segal, and Y. Imry, Phonon-thermoelectric tran-
sistors and rectiers, Phys. Rev. B 92, 045309 (2015).
21. J.-H. Jiang, B. K. Agarwalla, and D. Segal, Efficiency Statistics and Bounds
for Systems with Broken Time-Reversal Symmetry, Phys. Rev. Lett. 115,
040601 (2015).
22. B. J. Frey, P. Kuang, S.-Y. Lin, J.-H. Jiang and S. John, Large-scale fabrication
of a simple cubic metal oxide photonic crystal for light trapping applications, J.
Vac. Sci. Technol. B 33, 021804 (2015) (Editor's picks).
23. J. H. Jiang and S. John, Photonic Architectures for Equilibrium High-Temperature
Bose-Einstein Condensation in Dichalcogenide Monolayers, Scientic Reports 4,
7432 (2014).
24. J. H. Jiang and S. John, Photonic Crystal Architecture for Room Temperature
Equilibrium Bose-Einstein Condensation of Exciton Polaritons, Phys. Rev. X
4, 031025 (2014)
25. J. H. Jiang, Enhancing efficiency and power of nanostructured thermoelectrics
in three-terminal geometry by cooperative eects, J. Appl. Phys. 116, 194303
(2014).
26. J. H. Jiang, Thermodynamic bounds and general properties of optimal efficiency
and power, Phys. Rev. E 90, 042126 (2014).
27. O. Entin-Wohlman, J.-H. Jiang, and Y. Imry, Efficiency and dissipation in a
two-terminal thermoelectric junction, emphasizing small dissipation, Phys. Rev.
E 89, 012123 (2014).
28. X. G. Xuy, J. H. Jiangy (y: equal contribution), L. Gilburd, R. G. Rensing, K. S.
Burch, C. Zhi, Y. Bando, D. Golberg, and G. C.Walker, Mid-infrared Polaritonic
Coupling between Boron Nitride Nanotubes and Graphene, ACS nano 8, 11305
(2014).
29. X. G. Xu, B. G. Ghamsari, J. H. Jiang, L. Gilburd, G. O. Andreev, C. Zhi,
Y. Bando, D. Golberg, P. Berini, and G. C. Walker, One-dimensional Surface
Phonon Polaritons in Boron Nitride Nanotubes, Nature Communications 5,
4782 (2014)
30. J. H. Jiang, O. Entin-Wohlman, and Y. Imry, Hopping thermoelectric transport
in nite systems: boundary eects, Phys. Rev. B 87, 205420 (2013).
31. J. H. Jiang and S. Wu, Non-Abelian toplogical superconductors from topological
semimetals and related systems under superconducting proximity effect, J. Phys.:
Condens. Matter 25, 055701 (2013)
32. J. H. Jiang, O. Entin-Wohlman, and Y. Imry, Three-terminal semiconductor
junction thermoelectric devices: improving performance, New Journal of Physics
15, 075021 (2013) (In Special Issue: Focus on Thermoelectric Eects in Nanostructures).
33. J. H. Jiang, O. Entin-Wohlman, and Y. Imry, Thermoelectric three-terminal
hopping transport through one-dimensional nanosystems, Phys. Rev. B 85,
075412 (2012).
34. J. H. Jiang, Tunable topological Weyl semimetal from simple cubic lattices with
staggered uxes, Phys. Rev. A 85, 033640 (2012).
35. J. H. Jiang and S. Wu, Spin susceptibility and helical magnetic order at the
edges/surfaces of topological insulators due to Fermi surface nesting, Phys. Rev.
B 83, 205124 (2011).
36. Y. Zhou, J. H. Jiang, and M. W. Wu, Electron spin relaxation in p-type GaAs
quantum wells, New Journal of Physics 11, 113039 (2009).
37. J. H. Jiang, Y. Zhou, T. Korn, C. Schuller, and M. W. Wu, Electron spin
relaxation in paramagnetic Ga(Mn)As quantum wells, Phys. Rev. B 79, 155201
(2009).
38. J. H. Jiang and M. W. Wu, Electron-spin relaxation in bulk III-V semiconduc-
tors from a fully microscopic kinetic spin Bloch equation approach, Phys. Rev.
B 79, 125206 (2009)
39. J. H. Jiang, M. W. Wu, and Y. Zhou, “Kinetics of spin coherence of electrons
in n-type InAs quantum wells under intense terahertz laser fields, Phys. Rev. B
78, 125309 (2008).
40. J. H. Jiang, Y. Y. Wang, and M. W. Wu, ”Reexamination of spin decoherence in
semiconductor quantum dots from the equation-of-motion approach, Phys. Rev.
B 77, 035323 (2008).
41. D. Stich, J. H. Jiang, T. Korn, R. Schulz, D. Schuh, W. Wegscheider, M. W. Wu,
and C. Schuller, “Detection of large magnetoanisotropy of electron spin dephasing
in a high-mobility two-dimensional electron system in a [001] GaAs/AlxGa1??xAs
quantum well, Phys. Rev. B 76, 073309 (2007)
42. X. Y. Feng, J. H. Jiang, and M. Q. Weng, ”Remote-control spin ltering through
a T-type structure, Appl. Phys. Lett. 90, 142503 (2007).
43. J. H. Jiang and M. W. Wu, “Spin relaxation in an InAs quantum dot in the
presence of terahertz driving fields, Phys. Rev. B 75, 035307 (2007).
44. J. H. Jiang, M. Q. Weng, and M. W. Wu, “Intense terahertz laser elds on a
quantum dot with Rashba spin-orbit coupling, J. Appl. Phys. 100, 063709 (2006).
45. J. H. Jiang, M. W. Wu, M. Nagai, and M. Kuwata-Gonokami, ”Formation and
decay of electron-hole droplets in diamond, Phys. Rev. B 71, 035215 (2005).
Patent
1. Y. Imry, O. Entin-Wohlman, J. H. Jiang, “Eciency-enhanced thermoelectric de-
vices, WO Patent 2013035100 A1 (International patent).
Comments
1. J. H. Jiang and M. W. Wu, ”Comment on ‘Density dependence of electron-spin
polarization and relaxation in intrinsic GaAs at room temperature' , J. Phys. D
42, 238001 (2009).
2. J. H. Jiang and M. W. Wu, “Comment on `Photon energy and carrier density
dependence of spin dynamics in bulk CdTe crystal at room temperature' , Appl.
Phys. Lett. 94, 241112 (2009).