程东亚,苏州大学数学科学学院教授,长期致力于概率极限理论及其在金融保险中的研究。
受教育经历
2009/09-2012/06,苏州大学,数学科学学院,博士
2002/09-2005/06,苏州大学,数学科学学院,硕士
1994/09-1998/06,苏州大学,数学科学学院,学士
研究工作经历
2019/07-至今, 苏州大学,数学科学学院,教授
2016/09-2017/10, University of North Carolina at Chapel Hill, 访问学者,
合作导师:Amarjit Budhiraja
2014/06-2018/10,苏州大学,数学科学学院,博士后,合作导师:杨立坚
2013/07-2019/06, 苏州大学,数学科学学院,副教授
2007/11-2013/06,苏州大学,数学科学学院,讲师
2005/08-2007/10,苏州大学,数学科学学院,助教
全国工业统计学教学研究会青年统计学家协会理事,苏州市现场统计研究会副理事长,苏州大学第一届硕士专业学位研究生教育指导委员会委员。
随机游动、重尾分布、破产概率
[25] Wang, Y. and Cheng, D. *, 2020. Elementary renewal theorems for widely orthant dependent random variables. Communications in Statistics: Theory and Methods, to appear.
[24] Cheng,D. and Yu, C. *, 2020. Asymptotic ruin probabilities of a two-dimensional renewal risk model with dependent inter-arrival times. Communications in Statistics: Theory and Methods, to appear.
[23] Cheng,D. and Yu, C. *, 2019. Uniform asymptotics for the ruin probabilities in a bidimensional renewal risk model with strong subexponential claims. Stochastics,91(5), 643-656.
[22] Yu, C. and Cheng, D.*,2019. Asymptotic behavior for sums of non-identically distributed random variables. Applied Mathematics-A Journal of Chinese Universities, 34(1), 45-54.
[21] Cheng, F. and Cheng, D. *, 2018. Randomly weighted sums of dependent subexponential random variables with applications to risk theory. Scandinavian Actuarial Journal, 2018(3), 191-202.
[20].Wang, Y., Xu, H., Cheng, D. and Yu, C., 2018. The local asymptotic estimation for the supremum of a random walk with generalized strong subexponential summands. Statistical Papers, 59(1), 99-126.
[19]Xu, H., Cheng, F., Wang, Y. and Cheng, D., 2017. A necessary and sufficient condition for the subexponentiality of the product convolution. Advances in Applied Probability, 50(1), 57-73.
[18] Cheng,D. and Yu, C. *, 2017. Asymptotics for the ruin probabilities of a two-dimensional renewal risk model. Dynamic Systems and Applications, 26(1),517-534.
[17] Yu, C. and Cheng, D.*,2017. Randomly weighted sums of linearly wide quadrant dependent random variables with heavy tails. Communications in Statistics: Theory and Methods, 46(2), 591-601.
[16] Cheng, D., Zhang, W. and Wang, Y., 2016.On the strong convergence of weighted sums of widely dependent random variables. Communications in Statistics : Theory and Methods, 45(21), 6447-6460.
[15] Yu, C. and Cheng, D.*,2016. The influence on the asymptotics of the random walks caused by the variation of the increments. Italian Journal of Pure and Applied Mathematics, 36, 195-202. (EI)
[14] Chen, W., Wang, Y. and Cheng, D., 2016.An inequality of widely dependent random variables and its applications. Lithuanian Mathematical Journal, 56( 1), 16–31.
[13] Yu, C. and Cheng, D.*,2015. Tail behavior of the supremum of a random walk with heavy-tailed increments and perturbation. International Journal of Pure and Applied Mathematics, 101(2), 223-232.
[12] Yu, C., Wang, Y. and Cheng,D.,2015. Tail behavior of the sums of dependent and heavy-tailed random variables. Journal of the Korean Statistical Society, 44(1), 12-27.
[11] Yang, Y., Zhang, Z., Jiang, T. and Cheng, D., 2015. Uniformly asymptotic behavior of ruin probabilities in a time-dependent renewal risk model with stochastic return. Journal of Computational and Applied Mathematics, 287, 32-43.
[10] Cheng, D., 2014. Randomly weighted sums of dependent random variables with dominated variation.Journal of Mathematical Analysis and Applications, 420(2), 1617-1633.
[9] He, W., Cheng, D. and Wang, Y., 2013. Asymptotic lower bounds of precise large deviations with nonnegative dependent random variables. Statistics and Probability Letters, 83(1), 331–338.
[8] Cheng, D. and Wang, Y., 2012. Asymptotic behavior of the ratio of tail probabilities of sum and maximum of independent random variables. Lithuanian Mathematical Journal, 52, 29-39.
[7] Cheng, D., Ni, F., Pakes, A. G. and Wang, Y., 2012. Some properties of the exponential distribution class with applications to risk theory. Journal of the Korean Statistical Society, 41(4), 515-527.
[6] Wang, Y. and Cheng, D., 2011. Basic renewal theorems for random walks with widely dependent increments. Journal of Mathematical Analysis and Applications, 384(2), 597-606.
[5] Cheng, D. and Wang, Y., 2009.Tail asymptotics and local asymptotics for the supremum of a random walk with an infinite mean,Chinese Annals of Mathematics, Series A, 30A(5), 705-716.
[4] Cheng, D. and Wang, Y., 2009.Asymptotics for the density of the supremum of a certain kind of random walks.Acta Mathematic Scientia, Series A, 29A(5), 1206-1212.
[3] Wang, Y., Yang, Y., Wang, K. and Cheng, D., 2007. Some new equivalent conditions on asymptotics and local asymptotics for random sums and their applications. Insurance: Mathematics and Economics, 40(2), 256-266.
[2]Wang, Y., Wang K. and Cheng D., 2006. Precise large deviationsfor sums of negatively associated random variables with common dominatedly varying tails. Acta Mathematic Scientia, Series B, 22(6), 1725-1734.
[1] Wang, Y., Cheng, D. and Wang, K., 2005. The closure of a local subexponential distribution class under convolution roots, with applications to the compound Poisson process. Journal of Applied Probability, 42(4), 1194-1203.
程东亚,苏州大学数学科学学院教授,长期致力于概率极限理论及其在金融保险中的研究。
受教育经历
2009/09-2012/06,苏州大学,数学科学学院,博士
2002/09-2005/06,苏州大学,数学科学学院,硕士
1994/09-1998/06,苏州大学,数学科学学院,学士
研究工作经历
2019/07-至今, 苏州大学,数学科学学院,教授
2016/09-2017/10, University of North Carolina at Chapel Hill, 访问学者,
合作导师:Amarjit Budhiraja
2014/06-2018/10,苏州大学,数学科学学院,博士后,合作导师:杨立坚
2013/07-2019/06, 苏州大学,数学科学学院,副教授
2007/11-2013/06,苏州大学,数学科学学院,讲师
2005/08-2007/10,苏州大学,数学科学学院,助教
全国工业统计学教学研究会青年统计学家协会理事,苏州市现场统计研究会副理事长,苏州大学第一届硕士专业学位研究生教育指导委员会委员。
随机游动、重尾分布、破产概率
[25] Wang, Y. and Cheng, D. *, 2020. Elementary renewal theorems for widely orthant dependent random variables. Communications in Statistics: Theory and Methods, to appear.
[24] Cheng,D. and Yu, C. *, 2020. Asymptotic ruin probabilities of a two-dimensional renewal risk model with dependent inter-arrival times. Communications in Statistics: Theory and Methods, to appear.
[23] Cheng,D. and Yu, C. *, 2019. Uniform asymptotics for the ruin probabilities in a bidimensional renewal risk model with strong subexponential claims. Stochastics,91(5), 643-656.
[22] Yu, C. and Cheng, D.*,2019. Asymptotic behavior for sums of non-identically distributed random variables. Applied Mathematics-A Journal of Chinese Universities, 34(1), 45-54.
[21] Cheng, F. and Cheng, D. *, 2018. Randomly weighted sums of dependent subexponential random variables with applications to risk theory. Scandinavian Actuarial Journal, 2018(3), 191-202.
[20].Wang, Y., Xu, H., Cheng, D. and Yu, C., 2018. The local asymptotic estimation for the supremum of a random walk with generalized strong subexponential summands. Statistical Papers, 59(1), 99-126.
[19]Xu, H., Cheng, F., Wang, Y. and Cheng, D., 2017. A necessary and sufficient condition for the subexponentiality of the product convolution. Advances in Applied Probability, 50(1), 57-73.
[18] Cheng,D. and Yu, C. *, 2017. Asymptotics for the ruin probabilities of a two-dimensional renewal risk model. Dynamic Systems and Applications, 26(1),517-534.
[17] Yu, C. and Cheng, D.*,2017. Randomly weighted sums of linearly wide quadrant dependent random variables with heavy tails. Communications in Statistics: Theory and Methods, 46(2), 591-601.
[16] Cheng, D., Zhang, W. and Wang, Y., 2016.On the strong convergence of weighted sums of widely dependent random variables. Communications in Statistics : Theory and Methods, 45(21), 6447-6460.
[15] Yu, C. and Cheng, D.*,2016. The influence on the asymptotics of the random walks caused by the variation of the increments. Italian Journal of Pure and Applied Mathematics, 36, 195-202. (EI)
[14] Chen, W., Wang, Y. and Cheng, D., 2016.An inequality of widely dependent random variables and its applications. Lithuanian Mathematical Journal, 56( 1), 16–31.
[13] Yu, C. and Cheng, D.*,2015. Tail behavior of the supremum of a random walk with heavy-tailed increments and perturbation. International Journal of Pure and Applied Mathematics, 101(2), 223-232.
[12] Yu, C., Wang, Y. and Cheng,D.,2015. Tail behavior of the sums of dependent and heavy-tailed random variables. Journal of the Korean Statistical Society, 44(1), 12-27.
[11] Yang, Y., Zhang, Z., Jiang, T. and Cheng, D., 2015. Uniformly asymptotic behavior of ruin probabilities in a time-dependent renewal risk model with stochastic return. Journal of Computational and Applied Mathematics, 287, 32-43.
[10] Cheng, D., 2014. Randomly weighted sums of dependent random variables with dominated variation.Journal of Mathematical Analysis and Applications, 420(2), 1617-1633.
[9] He, W., Cheng, D. and Wang, Y., 2013. Asymptotic lower bounds of precise large deviations with nonnegative dependent random variables. Statistics and Probability Letters, 83(1), 331–338.
[8] Cheng, D. and Wang, Y., 2012. Asymptotic behavior of the ratio of tail probabilities of sum and maximum of independent random variables. Lithuanian Mathematical Journal, 52, 29-39.
[7] Cheng, D., Ni, F., Pakes, A. G. and Wang, Y., 2012. Some properties of the exponential distribution class with applications to risk theory. Journal of the Korean Statistical Society, 41(4), 515-527.
[6] Wang, Y. and Cheng, D., 2011. Basic renewal theorems for random walks with widely dependent increments. Journal of Mathematical Analysis and Applications, 384(2), 597-606.
[5] Cheng, D. and Wang, Y., 2009.Tail asymptotics and local asymptotics for the supremum of a random walk with an infinite mean,Chinese Annals of Mathematics, Series A, 30A(5), 705-716.
[4] Cheng, D. and Wang, Y., 2009.Asymptotics for the density of the supremum of a certain kind of random walks.Acta Mathematic Scientia, Series A, 29A(5), 1206-1212.
[3] Wang, Y., Yang, Y., Wang, K. and Cheng, D., 2007. Some new equivalent conditions on asymptotics and local asymptotics for random sums and their applications. Insurance: Mathematics and Economics, 40(2), 256-266.
[2]Wang, Y., Wang K. and Cheng D., 2006. Precise large deviationsfor sums of negatively associated random variables with common dominatedly varying tails. Acta Mathematic Scientia, Series B, 22(6), 1725-1734.
[1] Wang, Y., Cheng, D. and Wang, K., 2005. The closure of a local subexponential distribution class under convolution roots, with applications to the compound Poisson process. Journal of Applied Probability, 42(4), 1194-1203.